organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Bromo­meth­yl-1-phenyl­sulfon­yl-1H-indole

aDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and cDepartment of Physics, Presidency College, Chennai 600 005, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com

(Received 12 March 2008; accepted 21 March 2008; online 29 March 2008)

In the title mol­ecule, C15H12BrNO2S, the indole mean plane and phenyl ring are nearly orthogonal to each other, forming a dihedral angle of 88.19 (13)°. The Br atom is disordered over two close positions with occupancies of 0.56 (4) and 0.44 (4). The crystal packing exhibits weak inter­molecular C—H⋯π inter­actions.

Related literature

For related crystal structures, see: Chakkaravarthi et al. (2007[Chakkaravarthi, G., Ramesh, N., Mohanakrishnan, A. K. & Manivannan, V. (2007). Acta Cryst. E63, o3564.], 2008[Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o542.]). For biological activities of indole derivatives, see: Okabe & Adachi (1998[Okabe, N. & Adachi, Y. (1998). Acta Cryst. C54, 386-387.]); Schollmeyer et al. (1995[Schollmeyer, D., Fischer, G. & Pindur, U. (1995). Acta Cryst. C51, 2572-2575.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12BrNO2S

  • Mr = 350.23

  • Monoclinic, P 21 /c

  • a = 11.7060 (9) Å

  • b = 8.2399 (7) Å

  • c = 15.4495 (11) Å

  • β = 103.858 (3)°

  • V = 1446.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.98 mm−1

  • T = 295 (2) K

  • 0.18 × 0.18 × 0.16 mm

Data collection
  • Bruker Kappa APEX2 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.]) Tmin = 0.566, Tmax = 0.620

  • 16472 measured reflections

  • 3606 independent reflections

  • 2160 reflections with I > 2s(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.199

  • S = 1.06

  • 3606 reflections

  • 191 parameters

  • 8 restraints

  • H-atom parameters constrained

  • Δρmax = 1.25 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯Cg1i 0.93 2.83 3.716 (6) 160
C9—H9DCg1ii 0.97 2.92 3.673 (5) 135
C1—H1⋯Cg2iii 0.93 2.69 3.584 (6) 162
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1 and Cg2 are the centroids of atoms C3–C8 and C10–C15, respectively.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2 program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The indole derivatives are found to possess antibacterial (Okabe and Adachi, 1998) and antitumour (Schollmeyer et al., 1995) activities. In continuation of our studies in indole derivatives, we present the crystal structure of the title compound (I).

The geometric parameters of (I) (Fig. 1) agree with those in the reported structures (Chakkaravarthi et al., 2007; 2008) The indole mean plane and phenyl ring are nearly orthogonal to each other forming a dihedral angle of 88.19 (13)°. The plane of N1/S1/C1 makes the dihedral angles of 84.30 (14)°) and 72.38 (16)°, respectively, with the indole mean plane and phenyl ring. The sum of bond angles around N1 (356.9°) indicates that N1 is sp2-hybridized. The torsion angles C11-C10-S1-O2 [-6.3 (5)°] and C15-C10-S1-O1 [39.4 (5)°] indicate the syn conformation of the sulfonyl moiety.

The crystal packing exhibits weak intermolecular C—H···π interactions, involving the rings C3-C8 (centroid Cg1) and C10-C15 (centroid Cg2) (Table 1).

Related literature top

For related crystal structures, see Chakkaravarthi et al. (2007, 2008). For biological activities of indole derivatives, see: Okabe & Adachi (1998); Schollmeyer et al. (1995).

Experimental top

4-(Methyl)-1-(phenylsulfonyl)-1H-indole (1 g, 2.8 m.mol), N-bromo succinimide (0.5 g, 3 m.mol), azobis isobutyro nitrile (50 mg) were dissolved in 50 ml of carbon tetra chloride and refluxed on a waterbath for 2 h, then cooled to the room temperature. Succinimide was filtered off over sodium sulfate. Filtrate was evaporated under reduced pressure. Product was recrystallized from methanol. Yield: 80 %.

Refinement top

H atoms were positioned geometrically and refined using riding model with C-H = 0.93-0.97 Å, and Uiso(H) = 1.2Ueq(C). The Br atom was treated as disordered over two close positions with the occupancies of 0.56 (4) and 0.44 (4), respectively. The distances C4-C5, C10-C11, C11-C12, C12-C13, C13-C14, C14-C15, C15-C10 were restrained to 1.395 (5) Å and the distance C9-Br1A was restrained to 1.91 (10) Å. The positive residual peak 1.26 e Å-3 is located at 1.62 Å from C9; the peak might be the disordered component of Br with small occupancy. It was ignored as showing no any structural or packing consequences.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: APEX2 (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic labels and 50% probability displacement ellipsoids for non-H atoms. Only major parts of the disordered atoms are drawn.
4-Bromomethyl-1-phenylsulfonyl-1H-indole top
Crystal data top
C15H12BrNO2SF(000) = 704
Mr = 350.23Dx = 1.608 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5113 reflections
a = 11.7060 (9) Åθ = 2.5–25.8°
b = 8.2399 (7) ŵ = 2.99 mm1
c = 15.4495 (11) ÅT = 295 K
β = 103.858 (3)°Block, colourless
V = 1446.8 (2) Å30.18 × 0.18 × 0.16 mm
Z = 4
Data collection top
Bruker Kappa APEX2
diffractometer
3606 independent reflections
Radiation source: fine-focus sealed tube2160 reflections with I > 2s(I)
Graphite monochromatorRint = 0.041
ω and ϕ scanθmax = 28.6°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.566, Tmax = 0.620k = 1011
16472 measured reflectionsl = 1220
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.199H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.089P)2 + 1.9138P]
where P = (Fo2 + 2Fc2)/3
3606 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 1.25 e Å3
8 restraintsΔρmin = 0.54 e Å3
Crystal data top
C15H12BrNO2SV = 1446.8 (2) Å3
Mr = 350.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.7060 (9) ŵ = 2.99 mm1
b = 8.2399 (7) ÅT = 295 K
c = 15.4495 (11) Å0.18 × 0.18 × 0.16 mm
β = 103.858 (3)°
Data collection top
Bruker Kappa APEX2
diffractometer
3606 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2160 reflections with I > 2s(I)
Tmin = 0.566, Tmax = 0.620Rint = 0.041
16472 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0628 restraints
wR(F2) = 0.199H-atom parameters constrained
S = 1.06Δρmax = 1.25 e Å3
3606 reflectionsΔρmin = 0.54 e Å3
191 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.7826 (5)0.6808 (6)0.2167 (3)0.0595 (13)
H10.83450.70220.18100.071*
C20.7274 (4)0.7938 (6)0.2531 (3)0.0576 (12)
H20.73260.90550.24630.069*
C30.6578 (4)0.7104 (6)0.3052 (3)0.0501 (11)
C40.5821 (4)0.7671 (7)0.3555 (3)0.0605 (13)
C50.5258 (5)0.6520 (8)0.3953 (4)0.0771 (18)
H50.47340.68560.42840.092*
C60.5457 (6)0.4882 (9)0.3870 (4)0.0769 (18)
H60.50630.41470.41510.092*
C70.6223 (5)0.4290 (7)0.3385 (4)0.0643 (14)
H70.63670.31860.33450.077*
C80.6757 (4)0.5440 (6)0.2967 (3)0.0489 (11)
C100.9404 (4)0.3588 (5)0.3317 (3)0.0502 (11)
C110.9363 (5)0.2442 (6)0.3965 (3)0.0673 (14)
H110.87540.16900.38840.081*
C121.0253 (5)0.2450 (8)0.4736 (3)0.0833 (19)
H121.02480.16970.51830.100*
C131.1153 (5)0.3580 (7)0.4842 (4)0.0805 (19)
H131.17510.35690.53610.097*
C141.1177 (5)0.4719 (7)0.4194 (3)0.0765 (17)
H141.17830.54770.42770.092*
C151.0293 (4)0.4726 (6)0.3419 (3)0.0621 (13)
H151.02970.54840.29730.075*
N10.7516 (3)0.5255 (5)0.2396 (3)0.0524 (10)
O10.8833 (4)0.3941 (6)0.1596 (2)0.0771 (12)
O20.7575 (3)0.2269 (5)0.2295 (3)0.0775 (11)
S10.83141 (11)0.36176 (16)0.23203 (8)0.0569 (4)
C90.5669 (4)0.9457 (7)0.3700 (3)0.0725 (16)
H9A0.48650.96650.37340.087*0.56 (4)
H9B0.58131.00600.31980.087*0.56 (4)
H9C0.48980.96330.38130.087*0.44 (4)
H9D0.57011.00350.31600.087*0.44 (4)
Br10.6721 (4)1.0180 (7)0.4768 (3)0.0792 (10)0.56 (4)
Br1A0.6841 (7)1.0268 (5)0.4688 (5)0.0844 (16)0.44 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.057 (3)0.061 (3)0.062 (3)0.007 (3)0.017 (2)0.013 (2)
C20.055 (3)0.051 (3)0.066 (3)0.006 (2)0.012 (2)0.010 (2)
C30.047 (2)0.059 (3)0.038 (2)0.008 (2)0.0024 (18)0.0035 (19)
C40.054 (3)0.081 (4)0.040 (2)0.013 (3)0.001 (2)0.002 (2)
C50.067 (4)0.115 (6)0.052 (3)0.014 (4)0.020 (3)0.005 (3)
C60.071 (4)0.103 (5)0.059 (3)0.008 (3)0.019 (3)0.020 (3)
C70.069 (3)0.062 (3)0.056 (3)0.009 (3)0.005 (3)0.008 (2)
C80.040 (2)0.063 (3)0.037 (2)0.002 (2)0.0032 (17)0.0036 (19)
C100.047 (2)0.054 (3)0.046 (2)0.014 (2)0.0038 (19)0.005 (2)
C110.063 (3)0.065 (3)0.071 (3)0.008 (3)0.009 (3)0.008 (3)
C120.100 (5)0.087 (4)0.057 (3)0.035 (4)0.007 (3)0.015 (3)
C130.072 (4)0.093 (5)0.061 (3)0.030 (4)0.017 (3)0.022 (3)
C140.052 (3)0.088 (4)0.079 (4)0.002 (3)0.006 (3)0.019 (3)
C150.054 (3)0.064 (3)0.065 (3)0.000 (3)0.007 (2)0.002 (2)
N10.049 (2)0.057 (2)0.049 (2)0.0085 (18)0.0068 (17)0.0049 (17)
O10.090 (3)0.096 (3)0.0455 (19)0.027 (2)0.0168 (18)0.0023 (19)
O20.068 (2)0.062 (2)0.090 (3)0.001 (2)0.005 (2)0.014 (2)
S10.0549 (7)0.0595 (8)0.0494 (7)0.0101 (6)0.0010 (5)0.0080 (5)
C90.074 (4)0.090 (4)0.050 (3)0.030 (3)0.006 (3)0.002 (3)
Br10.0703 (18)0.118 (3)0.0437 (13)0.035 (2)0.0030 (8)0.0089 (11)
Br1A0.120 (4)0.059 (2)0.068 (2)0.016 (3)0.0095 (16)0.0012 (13)
Geometric parameters (Å, º) top
C1—C21.332 (7)C11—C121.381 (4)
C1—N11.398 (7)C11—H110.9300
C1—H10.9300C12—C131.386 (5)
C2—C31.448 (7)C12—H120.9300
C2—H20.9300C13—C141.379 (4)
C3—C41.392 (7)C13—H130.9300
C3—C81.398 (7)C14—C151.382 (4)
C4—C51.380 (4)C14—H140.9300
C4—C91.505 (8)C15—H150.9300
C5—C61.381 (9)N1—S11.661 (4)
C5—H50.9300O1—S11.421 (4)
C6—C71.387 (9)O2—S11.403 (4)
C6—H60.9300C9—Br11.903 (6)
C7—C81.379 (7)C9—Br1A1.9115 (10)
C7—H70.9300C9—H9A0.9700
C8—N11.402 (6)C9—H9B0.9700
C10—C151.381 (4)C9—H9C0.9700
C10—C111.386 (4)C9—H9D0.9700
C10—S11.749 (4)
C2—C1—N1110.6 (4)C12—C13—H13119.4
C2—C1—H1124.7C13—C14—C15119.4 (5)
N1—C1—H1124.7C13—C14—H14120.3
C1—C2—C3107.3 (5)C15—C14—H14120.3
C1—C2—H2126.4C10—C15—C14118.9 (5)
C3—C2—H2126.4C10—C15—H15120.5
C4—C3—C8120.7 (5)C14—C15—H15120.5
C4—C3—C2132.0 (5)C1—N1—C8107.5 (4)
C8—C3—C2107.2 (4)C1—N1—S1122.8 (4)
C5—C4—C3117.0 (5)C8—N1—S1125.8 (3)
C5—C4—C9121.2 (5)O2—S1—O1120.3 (3)
C3—C4—C9121.7 (5)O2—S1—N1107.0 (2)
C4—C5—C6121.4 (6)O1—S1—N1104.9 (2)
C4—C5—H5119.3O2—S1—C10109.2 (2)
C6—C5—H5119.3O1—S1—C10109.7 (2)
C5—C6—C7122.6 (6)N1—S1—C10104.7 (2)
C5—C6—H6118.7C4—C9—Br1111.1 (4)
C7—C6—H6118.7C4—C9—Br1A111.9 (3)
C8—C7—C6115.8 (6)C4—C9—H9A109.4
C8—C7—H7122.1Br1—C9—H9A109.4
C6—C7—H7122.1Br1A—C9—H9A114.5
C7—C8—C3122.4 (5)C4—C9—H9B109.4
C7—C8—N1130.3 (5)Br1—C9—H9B109.4
C3—C8—N1107.3 (4)Br1A—C9—H9B103.3
C15—C10—C11122.4 (4)H9A—C9—H9B108.0
C15—C10—S1117.5 (3)C4—C9—H9C108.8
C11—C10—S1120.1 (3)Br1—C9—H9C103.5
C12—C11—C10118.1 (5)Br1A—C9—H9C108.9
C12—C11—H11121.0H9B—C9—H9C114.5
C10—C11—H11121.0C4—C9—H9D108.7
C11—C12—C13120.0 (5)Br1—C9—H9D116.2
C11—C12—H12120.0Br1A—C9—H9D110.3
C13—C12—H12120.0H9A—C9—H9D101.4
C14—C13—C12121.2 (5)H9C—C9—H9D108.2
C14—C13—H13119.4
N1—C1—C2—C31.5 (6)C13—C14—C15—C100.2 (9)
C1—C2—C3—C4178.7 (5)C2—C1—N1—C82.3 (6)
C1—C2—C3—C80.2 (5)C2—C1—N1—S1161.2 (4)
C8—C3—C4—C50.4 (7)C7—C8—N1—C1179.0 (5)
C2—C3—C4—C5178.0 (5)C3—C8—N1—C12.1 (5)
C8—C3—C4—C9176.4 (4)C7—C8—N1—S120.9 (7)
C2—C3—C4—C95.2 (7)C3—C8—N1—S1160.2 (3)
C3—C4—C5—C61.3 (8)C1—N1—S1—O2159.9 (4)
C9—C4—C5—C6175.5 (5)C8—N1—S1—O245.2 (4)
C4—C5—C6—C70.2 (10)C1—N1—S1—O131.1 (5)
C5—C6—C7—C81.6 (9)C8—N1—S1—O1174.0 (4)
C6—C7—C8—C32.5 (7)C1—N1—S1—C1084.4 (4)
C6—C7—C8—N1176.3 (5)C8—N1—S1—C1070.6 (4)
C4—C3—C8—C71.5 (7)C15—C10—S1—O2173.1 (4)
C2—C3—C8—C7179.7 (4)C11—C10—S1—O26.3 (5)
C4—C3—C8—N1177.5 (4)C15—C10—S1—O139.4 (5)
C2—C3—C8—N11.2 (5)C11—C10—S1—O1140.0 (4)
C15—C10—C11—C120.3 (8)C15—C10—S1—N172.7 (4)
S1—C10—C11—C12179.0 (4)C11—C10—S1—N1108.0 (4)
C10—C11—C12—C130.1 (9)C5—C4—C9—Br184.3 (6)
C11—C12—C13—C140.6 (9)C3—C4—C9—Br192.4 (6)
C12—C13—C14—C150.6 (9)C5—C4—C9—Br1A91.4 (7)
C11—C10—C15—C140.3 (8)C3—C4—C9—Br1A85.3 (6)
S1—C10—C15—C14179.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···Cg1i0.932.833.716 (6)160
C9—H9D···Cg1ii0.972.923.673 (5)135
C1—H1···Cg2iii0.932.693.584 (6)162
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H12BrNO2S
Mr350.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)11.7060 (9), 8.2399 (7), 15.4495 (11)
β (°) 103.858 (3)
V3)1446.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.99
Crystal size (mm)0.18 × 0.18 × 0.16
Data collection
DiffractometerBruker Kappa APEX2
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.566, 0.620
No. of measured, independent and
observed [I > 2s(I)] reflections
16472, 3606, 2160
Rint0.041
(sin θ/λ)max1)0.673
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.199, 1.06
No. of reflections3606
No. of parameters191
No. of restraints8
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.25, 0.54

Computer programs: APEX2 (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···Cg1i0.932.833.716 (6)160
C9—H9D···Cg1ii0.972.923.673 (5)135
C1—H1···Cg2iii0.932.693.584 (6)162
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x+2, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Sophisticated Analytical Instrument Facility, Indian Institute of Technology, Madras, for the data collection.

References

First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o542.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChakkaravarthi, G., Ramesh, N., Mohanakrishnan, A. K. & Manivannan, V. (2007). Acta Cryst. E63, o3564.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkabe, N. & Adachi, Y. (1998). Acta Cryst. C54, 386–387.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchollmeyer, D., Fischer, G. & Pindur, U. (1995). Acta Cryst. C51, 2572–2575.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds