metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m523-m524

2,4,6-Tri­amino-1,3,5-triazine-1,3-diium aqua­penta­fluoridoaluminate

aLaboratoire des Oxydes et Fluorures - UMR 6010 CNRS, Faculté des Sciences et Techniques, Université du Maine, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
*Correspondence e-mail: vincent.maisonneuve@univ-lemans.fr

(Received 28 January 2008; accepted 8 February 2008; online 5 March 2008)

The title compound, (C3H8N6)[AlF5(H2O)], was obtained by solvothermal synthesis from the reaction of aluminium hydroxide, 1,3,5-triazine-2,4,6-triamine (melamine), aqueous HF and water at 323 K for 48 h. The structure consists of [AlF5(H2O)]2− octa­hedra and diprotonated melaminium cations. Cohesion is ensured by a three-dimensional network of hydrogen bonds.

Related literature

For related literature, see: Adil, Ben Ali et al. (2006[Adil, K., Ben Ali, A., Leblanc, M. & Maisonneuve, V. (2006). Solid State Sci. 8, 698-703.]); Adil, Leblanc & Maisonneuve (2006[Adil, K., Leblanc, M. & Maisonneuve, V. (2006). J. Fluorine Chem. 127, 1349-1354.]); Farrugia (1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); Goreshnik et al. (2002[Goreshnik, E., Leblanc, M., Gaudin, E., Tautelle, F. & Maisonneuve, V. (2002). Solid State Sci. 4, 1213-1219.], 2003[Goreshnik, E., Leblanc, M. & Maisonneuve, V. (2003). Acta Cryst. E59, m1059-m1061.]); Rother et al. (1996[Rother, G., Worzala, H. & Bentrup, U. (1996). Z. Anorg. Allg. Chem. 622, 1991-1996.], 1998[Rother, G., Worzala, H. & Bentrup, U. (1998). Z. Kristallogr. New Cryst. Struct. 213, 119-120.]); Schroder et al. (1993[Schroder, L., Frenzen, G., Massa, W. & &Menz, D.-H. (1993). Z. Anorg. Allg. Chem. 619, 1307-1314.]); Tang et al. (2001[Tang, L.-Q., Dadachov, M. S. & Zou, X.-D. (2001). Z. Kristallogr. New Cryst. Struct. 216, 385-386.]).

[Scheme 1]

Experimental

Crystal data
  • (C3H8N6)[AlF5(H2O)]

  • Mr = 268.13

  • Monoclinic, P 21 /c

  • a = 7.571 (2) Å

  • b = 8.823 (2) Å

  • c = 13.484 (5) Å

  • β = 105.53 (3)°

  • V = 867.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 298 (2) K

  • 0.20 × 0.13 × 0.08 mm

Data collection
  • Siemens AED2 diffractometer

  • Absorption correction: none

  • 2500 measured reflections

  • 2500 independent reflections

  • 1441 reflections with I > 2σ(I)

  • 3 standard reflections frequency: 120 min intensity decay: 4%

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.133

  • S = 1.04

  • 2500 reflections

  • 152 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯N1i 0.90 (4) 1.94 (5) 2.789 (3) 156 (5)
O1W—H2W⋯F1ii 0.90 (4) 1.63 (4) 2.515 (3) 169 (5)
N2—H2⋯F4iii 0.86 1.75 2.601 (3) 169
N3—H3⋯F2iv 0.86 2.11 2.871 (3) 148
N3—H3⋯F3iv 0.86 2.28 2.990 (3) 140
N3—H3⋯F1iv 0.86 2.52 2.953 (4) 112
N4—H4A⋯F5v 0.86 2.07 2.763 (3) 138
N4—H4B⋯F2iii 0.86 1.89 2.739 (3) 168
N5—H5A⋯F3 0.86 2.06 2.837 (3) 151
N5—H5B⋯F3iv 0.86 2.02 2.804 (4) 151
N5—H5B⋯F4 0.86 2.39 2.863 (3) 115
N6—H6A⋯F1vi 0.86 2.04 2.836 (4) 154
N6—H6B⋯F2iv 0.86 2.08 2.860 (4) 150
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x+1, -y, -z; (vi) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: STADI4 (Stoe & Cie, 1998[Stoe & Cie (1998). STADI4 (Version 1.07) and X-RED (Version 1.10). Stoe & Cie, Darmstadt, Germany.]); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1998[Stoe & Cie (1998). STADI4 (Version 1.07) and X-RED (Version 1.10). Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Release 3.1e. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, enCIFer (Version 1.2; Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Numerous hybrid fluoroaluminates with linear or branched amines are reported; during the last five years more than 20 compounds were evidenced (Goreshnik et al., 2002; Adil, Ben Ali et al., 2006; Adil, Leblanc & Maisonneuve, 2006). At the opposite, only few hybrid fluoroaluminates with cyclic amines are known (Schroder et al., 1993; Rother et al., 1996; Rother et al., 1998; Tang et al., 2001; Goreshnik et al., 2003). 1,3,5-triazine-2,4,6-triamine (melamine) with three primary amines, three tertiary amines and a conjugated planar configuration was selected. (C3H8N6).[AlF5(H2O)] is synthesized and constitutes the first melamine templated fluoroaluminate.

The structure is built up from isolated [AlF5(H2O)]2- anions and diprotonated (C3H8N6)2+ cations (Fig. 1). A distortion of the aluminium coordination octahedron results from the presence of the water molecule: Al—F distances range from 1.758 (2) to 1.829 (2) Å and Al—O distance is 1.929 (3) Å. Melaminium cations are planar and two tertiary amines are protonated. C, N, H atomic positions are related by a pseudo two fold symmetry axis along the N1—C2—N5 direction. Hydrogen bonded octahedra form infinite inorganic chains along b axis (Fig. 2); the O1W—H2W···F1 hydrogen bonds (2.51 Å) are short. Every melaminium cation is surrounded by five [AlF5(H2O)] octahedra (Fig. 3).

Related literature top

For related literature, see: Adil, Ben Ali et al. (2006); Adil, Leblanc & Maisonneuve (2006); Farrugia (1999); Goreshnik et al. (2002, 2003); Rother et al. (1996, 1998); Schroder et al. (1993); Tang et al. (2001).

Experimental top

The title compound was prepared under hydrothermal conditions at 323 K for 48 h using Teflon-lined autoclaves from a started mixture of Al(OH)3 (Sochal), 1,3,5-triazine-2,4,6-triamine named melamine (Janssen chimica), HF aqueous solution (40%, Prolabo) and deionized water in the molar ratio 1:0.5:8.5:55.5. The resulting crystalline product was washed with water and dried in air. Needle crystals suitable for single-crystal X-ray diffraction were selected using an optical microscope.

Refinement top

The structure was solved by direct methods (SHELXS86) and refined with SHELXL97; these programs are included in WinGX package (Farrugia, 1999). Hydrogen atoms of amine cations were located applying geometrical constraints which imply equal distances and angles to the central atom (AFIX option). Hydrogen atoms of water molecules were found in difference Fourier maps and the O—H distances were constrained to be equal to 0.9 Å (DFIX option). H atoms were refined with an isotropic thermal parameters and non-hydrogen atoms were refined with anisotropic thermal factors. The maximum residual electron density peak is located at 0.46 Å from Al. Protonation takes place on the two over three tertiary amine groups.

Computing details top

Data collection: STADI4 (Stoe & Cie, 1998); cell refinement: STADI4 (Stoe & Cie, 1998); data reduction: X-RED (Stoe & Cie, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Version 1.2; Allen et al., 2004) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the melaminium cation and [AlF5(H2O)]2- anion with the atom-labellin scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. (100) projection of (C3H8N6).[AlF5(H2O)] structure.
[Figure 3] Fig. 3. Network of hydrogen bonds between melaminium cations and [AlF5(H2O)] octahedra. [Symmetry codes: (iii) 1 - x, y - 1/2, 1/2 - z; (iv) 1 - x, 1/2 + y, 1/2 - z; (v) 1 - x, -y, -z; (vi) 1 + x, 1/2 - y, z - 1/2]
2,4,6-Triamino-1,3,5-triazine-1,3-diium aquapentafluoridoaluminate top
Crystal data top
(C3H8N6)[AlF5(H2O)]F(000) = 544
Mr = 268.13Dx = 2.052 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 30 reflections
a = 7.571 (2) Åθ = 28–32°
b = 8.823 (2) ŵ = 0.31 mm1
c = 13.484 (5) ÅT = 298 K
β = 105.53 (3)°Parallepiped, colourless
V = 867.8 (5) Å30.20 × 0.13 × 0.08 mm
Z = 4
Data collection top
Siemens AED2
diffractometer
Rint = 0.000
Radiation source: fine-focus sealed tubeθmax = 30.0°, θmin = 2.8°
Graphite monochromatorh = 1010
2θ/ω scansk = 012
2500 measured reflectionsl = 018
2500 independent reflections3 standard reflections every 120 min
1441 reflections with I > 2σ(I) intensity decay: 4%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0437P)2 + 0.9389P]
where P = (Fo2 + 2Fc2)/3
2500 reflections(Δ/σ)max < 0.001
152 parametersΔρmax = 0.46 e Å3
2 restraintsΔρmin = 0.48 e Å3
Crystal data top
(C3H8N6)[AlF5(H2O)]V = 867.8 (5) Å3
Mr = 268.13Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.571 (2) ŵ = 0.31 mm1
b = 8.823 (2) ÅT = 298 K
c = 13.484 (5) Å0.20 × 0.13 × 0.08 mm
β = 105.53 (3)°
Data collection top
Siemens AED2
diffractometer
Rint = 0.000
2500 measured reflections3 standard reflections every 120 min
2500 independent reflections intensity decay: 4%
1441 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0542 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.46 e Å3
2500 reflectionsΔρmin = 0.48 e Å3
152 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al10.2088 (1)0.2232 (1)0.30136 (7)0.0163 (2)
F10.0457 (3)0.0750 (2)0.30467 (16)0.0288 (5)
F20.2911 (3)0.1978 (2)0.44074 (14)0.0251 (4)
F30.3778 (3)0.0880 (2)0.28702 (17)0.0299 (5)
F40.3610 (3)0.3839 (2)0.31272 (16)0.0267 (5)
F50.1237 (3)0.2429 (2)0.16732 (14)0.0304 (5)
O1W0.0310 (3)0.3648 (3)0.32584 (18)0.0214 (5)
H1W0.062 (5)0.324 (5)0.346 (4)0.062 (12)*
H2W0.007 (7)0.444 (4)0.284 (3)0.062 (12)*
N10.7845 (4)0.2143 (3)0.0619 (2)0.0202 (6)
N20.6746 (4)0.1144 (3)0.0739 (2)0.0195 (6)
H20.64990.03590.10560.023*
N30.6895 (4)0.3729 (3)0.0557 (2)0.0203 (6)
H30.67140.46330.07480.024*
N40.7594 (4)0.0423 (3)0.0409 (2)0.0232 (6)
H4A0.79960.05860.09380.028*
H4B0.73100.11730.00740.028*
N50.5822 (4)0.2735 (3)0.1861 (2)0.0271 (6)
H5A0.55430.19660.21810.033*
H5B0.56640.36380.20630.033*
N60.8013 (4)0.4736 (3)0.0717 (2)0.0293 (7)
H6A0.84460.46520.12420.035*
H6B0.78500.56190.04860.035*
C10.7414 (4)0.0960 (3)0.0113 (2)0.0179 (6)
C20.6481 (4)0.2534 (4)0.1076 (2)0.0191 (6)
C30.7602 (4)0.3525 (4)0.0271 (2)0.0199 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.0209 (5)0.0127 (4)0.0176 (4)0.0002 (4)0.0090 (3)0.0014 (4)
F10.0359 (13)0.0199 (10)0.0351 (11)0.0115 (9)0.0175 (10)0.0075 (9)
F20.0330 (11)0.0214 (10)0.0204 (9)0.0027 (8)0.0063 (8)0.0020 (8)
F30.0355 (13)0.0191 (10)0.0413 (12)0.0089 (9)0.0207 (10)0.0013 (9)
F40.0292 (12)0.0191 (9)0.0379 (11)0.0069 (8)0.0197 (10)0.0054 (9)
F50.0435 (13)0.0312 (11)0.0188 (9)0.0044 (10)0.0122 (9)0.0009 (8)
O1W0.0240 (13)0.0179 (11)0.0251 (12)0.0055 (10)0.0113 (10)0.0066 (9)
N10.0263 (14)0.0171 (13)0.0202 (13)0.0005 (11)0.0114 (11)0.0003 (11)
N20.0256 (15)0.0133 (12)0.0236 (13)0.0001 (11)0.0134 (12)0.0016 (10)
N30.0260 (15)0.0125 (12)0.0240 (13)0.0006 (10)0.0097 (12)0.0026 (10)
N40.0354 (18)0.0180 (13)0.0204 (13)0.0015 (12)0.0152 (12)0.0003 (11)
N50.0340 (17)0.0241 (14)0.0288 (15)0.0016 (13)0.0181 (13)0.0034 (13)
N60.0402 (19)0.0190 (14)0.0328 (16)0.0052 (13)0.0166 (15)0.0020 (12)
C10.0200 (16)0.0181 (15)0.0166 (14)0.0008 (12)0.0065 (12)0.0002 (12)
C20.0168 (15)0.0205 (15)0.0204 (14)0.0022 (12)0.0056 (12)0.0025 (12)
C30.0192 (16)0.0177 (15)0.0228 (15)0.0005 (12)0.0056 (13)0.0006 (13)
Geometric parameters (Å, º) top
Al1—F51.757 (2)N3—C21.347 (4)
Al1—F31.797 (2)N3—C31.374 (4)
Al1—F41.807 (2)N3—H30.8600
Al1—F11.807 (2)N4—C11.302 (4)
Al1—F21.829 (2)N4—H4A0.8600
Al1—O1W1.929 (2)N4—H4B0.8600
O1W—H1W0.90 (4)N5—C21.299 (4)
O1W—H2W0.90 (4)N5—H5A0.8600
N1—C11.334 (4)N5—H5B0.8600
N1—C31.337 (4)N6—C31.304 (4)
N2—C21.342 (4)N6—H6A0.8600
N2—C11.383 (4)N6—H6B0.8600
N2—H20.8600
F5—Al1—F391.76 (11)C2—N3—H3119.5
F5—Al1—F493.42 (11)C3—N3—H3119.5
F3—Al1—F494.23 (10)C1—N4—H4A120.0
F5—Al1—F191.84 (11)C1—N4—H4B120.0
F3—Al1—F191.90 (10)H4A—N4—H4B120.0
F4—Al1—F1171.80 (10)C2—N5—H5A120.0
F5—Al1—F2177.98 (12)C2—N5—H5B120.0
F3—Al1—F288.45 (11)H5A—N5—H5B120.0
F4—Al1—F288.57 (10)C3—N6—H6A120.0
F1—Al1—F286.15 (10)C3—N6—H6B120.0
F5—Al1—O1W91.80 (11)H6A—N6—H6B120.0
F3—Al1—O1W176.37 (11)N4—C1—N1121.1 (3)
F4—Al1—O1W86.32 (10)N4—C1—N2117.1 (3)
F1—Al1—O1W87.23 (10)N1—C1—N2121.8 (3)
F2—Al1—O1W87.97 (10)N5—C2—N2121.7 (3)
H1W—O1W—H2W111 (4)N5—C2—N3120.7 (3)
C1—N1—C3117.3 (3)N2—C2—N3117.6 (3)
C2—N2—C1120.6 (3)N6—C3—N1120.9 (3)
C2—N2—H2119.7N6—C3—N3117.4 (3)
C1—N2—H2119.7N1—C3—N3121.7 (3)
C2—N3—C3121.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···N1i0.90 (4)1.94 (5)2.789 (3)156 (5)
O1W—H2W···F1ii0.90 (4)1.63 (4)2.515 (3)169 (5)
N2—H2···F4iii0.861.752.601 (3)169
N3—H3···F2iv0.862.112.871 (3)148
N3—H3···F3iv0.862.282.990 (3)140
N3—H3···F1iv0.862.522.953 (4)112
N4—H4A···F5v0.862.072.763 (3)138
N4—H4B···F2iii0.861.892.739 (3)168
N5—H5A···F30.862.062.837 (3)151
N5—H5B···F3iv0.862.022.804 (4)151
N5—H5B···F40.862.392.863 (3)115
N6—H6A···F1vi0.862.042.836 (4)154
N6—H6B···F2iv0.862.082.860 (4)150
Symmetry codes: (i) x1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1/2, z+1/2; (v) x+1, y, z; (vi) x+1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula(C3H8N6)[AlF5(H2O)]
Mr268.13
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.571 (2), 8.823 (2), 13.484 (5)
β (°) 105.53 (3)
V3)867.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.20 × 0.13 × 0.08
Data collection
DiffractometerSiemens AED2
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2500, 2500, 1441
Rint0.000
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.133, 1.04
No. of reflections2500
No. of parameters152
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.48

Computer programs: STADI4 (Stoe & Cie, 1998), X-RED (Stoe & Cie, 1998), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2005), SHELXL97 (Sheldrick, 2008), enCIFer (Version 1.2; Allen et al., 2004) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···N1i0.90 (4)1.94 (5)2.789 (3)156 (5)
O1W—H2W···F1ii0.90 (4)1.63 (4)2.515 (3)169 (5)
N2—H2···F4iii0.861.752.601 (3)169.2
N3—H3···F2iv0.862.112.871 (3)147.6
N3—H3···F3iv0.862.282.990 (3)140.0
N3—H3···F1iv0.862.522.953 (4)112.3
N4—H4A···F5v0.862.072.763 (3)137.5
N4—H4B···F2iii0.861.892.739 (3)168.4
N5—H5A···F30.862.062.837 (3)150.5
N5—H5B···F3iv0.862.022.804 (4)151.2
N5—H5B···F40.862.392.863 (3)115.2
N6—H6A···F1vi0.862.042.836 (4)154.3
N6—H6B···F2iv0.862.082.860 (4)150.3
Symmetry codes: (i) x1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1/2, z+1/2; (v) x+1, y, z; (vi) x+1, y+1/2, z1/2.
 

References

First citationAdil, K., Ben Ali, A., Leblanc, M. & Maisonneuve, V. (2006). Solid State Sci. 8, 698–703.  Web of Science CSD CrossRef CAS Google Scholar
First citationAdil, K., Leblanc, M. & Maisonneuve, V. (2006). J. Fluorine Chem. 127, 1349–1354.  Web of Science CSD CrossRef CAS Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2005). DIAMOND. Release 3.1e. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGoreshnik, E., Leblanc, M., Gaudin, E., Tautelle, F. & Maisonneuve, V. (2002). Solid State Sci. 4, 1213–1219.  Web of Science CSD CrossRef CAS Google Scholar
First citationGoreshnik, E., Leblanc, M. & Maisonneuve, V. (2003). Acta Cryst. E59, m1059–m1061.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRother, G., Worzala, H. & Bentrup, U. (1996). Z. Anorg. Allg. Chem. 622, 1991–1996.  CSD CrossRef CAS Web of Science Google Scholar
First citationRother, G., Worzala, H. & Bentrup, U. (1998). Z. Kristallogr. New Cryst. Struct. 213, 119–120.  CAS Google Scholar
First citationSchroder, L., Frenzen, G., Massa, W. & &Menz, D.-H. (1993). Z. Anorg. Allg. Chem. 619, 1307–1314.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1998). STADI4 (Version 1.07) and X-RED (Version 1.10). Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTang, L.-Q., Dadachov, M. S. & Zou, X.-D. (2001). Z. Kristallogr. New Cryst. Struct. 216, 385–386.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m523-m524
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds