organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Amino-3-methyl-1-phenyl-1H-1,2,4-triazole

aLaboratoire de Chimie Appliquée: Hétérocycles, Corps gras et Polymères, Faculté des Sciences de Sfax, BP 802, 3018 Sfax, Tunisia, and bLaboratoire de Sciences de Matériaux et d'Environnement, Faculté des Sciences de SFAX, BP 802, 3018 SFAX, Tunisia
*Correspondence e-mail: fatmazouari2003@yahoo.fr

(Received 16 February 2008; accepted 1 March 2008; online 7 March 2008)

In the title compound, C9H10N4, the phenyl and triazole rings make a dihedral angle of 38.80 (2)°. N—H⋯N hydrogen bonds link the mol­ecules, forming centrosymmetric R22(8) rings; these rings are inter­connected through a C(5) chain, building up a zigzag layer parallel to the (100) plane.

Related literature

For related literature, see: Altman & Solomost (1993[Altman, A. & Solomost, T. (1993). Hortic. Sci. 28, 201-203.]); Genady & Gabel (2003[Genady, A. & Gabel, D. (2003). Tetrahedron Lett. 44, 2915-2917.]); Kanazawa et al. (1988[Kanazawa, S., Driscoll, M. & Struhl, K. (1988). Mol. Cell. Biol. 8, 644-673.]); Karanik et al. (2003[Karanik, M., Paetzel, M. & Liebscher, J. (2003). Synthesis, 8, 1201-1208.]); Hashimoto et al. (1990[Hashimoto, F., Sugimoto, C. & Hayashi, H. (1990). Chem. Pharm. Bull. 38, 2532-2536.]); Allouch et al. (2004[Allouch, F., Chabchoub, F., Ben Hassine, B. & Salem, M. (2004). Heterocycl. Commun. 10, 63-66 .]). For a discussion of hydrogen-bond patterns, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C9H10N4

  • Mr = 174.21

  • Monoclinic, P 21 /c

  • a = 8.5110 (5) Å

  • b = 11.2490 (8) Å

  • c = 10.1048 (7) Å

  • β = 101.866 (4)°

  • V = 946.76 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 (7) K

  • 0.49 × 0.14 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.984, Tmax = 0.997

  • 16028 measured reflections

  • 3882 independent reflections

  • 1997 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.148

  • S = 0.94

  • 3882 reflections

  • 124 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯N3i 0.886 (8) 2.110 (8) 2.9923 (13) 173.1 (12)
N4—H4B⋯N2ii 0.917 (8) 2.210 (10) 3.0415 (14) 150.4 (10)
Symmetry codes: (i) -x+1, -y, -z+2; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The aminotriazoles are crucial heterocyclic substances which have a great interest thanks to their biological and pharmacological activity (Kanazawa et al., 1988; Hashimoto et al., 1990) such as antitumoral and inhibition of cholesterol activity. In addition they have many applications in agriculture domain (Altman et al., 1993). Aminotriazole are useful binucleophilic agents that lead to polycondensed heterocycles (Genady et al., 2003; Karanik et al., 2003). However, the studies that deal with N1-phenyl-aminotriazole are very limited (Allouch et al., 2004). Until now only a few reactions were reported concerning the addition-cyclizations of bielectrophile compounds with N1-phenyl-aminotriazoles. In fact, these later are not well identified, this can be explicable by the existence of the tautomer equilibrium. That is why we have undertaken a crystallographic study.

In this paper, we report the synthesis of 5-amino-3-méthyl N1-phényl-1,2,4-triazole. The reaction of N-phenyl ethyl acetydrazonate with cyanamidegave aminotriazole could lead to structure (I) or its isomer (II) (Scheme). The structure elucidation was achieved by X-ray diffraction, and proved that the reaction occurs cleanly to form 5-amino-3-méthyl N1-phényl-1,2,4-triazole (I).

In the title compound, the phenyl and the triazole rings remain planar with mean deviations from planarity of 0.0072 and 0.0049Å respectively. However, the two rings are twisted with respect to each other making a dihedral angle of 38.80 (2)° (Fig. 1).

The occurrence of N—H···N hydrogen bonds links the molecules through inversion centre to form R22(8) ring (Etter et al., 1990; Bernstein et al., 1995) and these rings are interconnected through C(5) chain to build up a like zigzag layer developping along the (1 0 0) plane (Table 1, Fig. 2)

Related literature top

For related literature, see: Altman & Solomost (1993); Genady & Gabel (2003); Kanazawa et al. (1988); Karanik et al. (2003); Hashimoto et al. (1990); Allouch et al. (2004). For a discussion of hydrogen-bond patterns, see: Bernstein et al. (1995); Etter et al. (1990).

Experimental top

A mixture containing 3.56 g (0.02 mol) of N-phenyl ethyl acetydrazonateand 0.88 g (0.021 mol) of cyanamidein 20 ml of methanol was stirred and heated to reflux for 12 h. The solvent was removed under rotary evaporation. The crude product was washed with ether then recrystallized from methanol to give analytically pure crystals.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl) and 0.93 Å (aromatic) with Uiso(H) = 1.2Ueq(Phenyl) or Uiso(H) = 1.5Ueq(methyl). The methyl was found to be statistically disordered over two positions. H atoms attached to nitrogen were located in difference Fourier maps and included in the subsequent refinement using soft restraints (N—H= 0.90 (1)Å and H···H= 1.59 (2) Å) with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view showing the formation of the R22(8) ring and C(5) chains through N—H···N hydrogen bonds drawn as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry codes: (i) -x + 1, -y, -z + 2; (ii) x, -y + 1/2, z + 1/2]
[Figure 3] Fig. 3. The tautomeric forms of the title compound.
5-Amino-3-methyl-1-phenyl-1H-1,2,4-triazole top
Crystal data top
C9H10N4F(000) = 368
Mr = 174.21Dx = 1.222 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2898 reflections
a = 8.5110 (5) Åθ = 2.5–23.3°
b = 11.2490 (8) ŵ = 0.08 mm1
c = 10.1048 (7) ÅT = 296 K
β = 101.866 (4)°Prism, colourless
V = 946.76 (11) Å30.49 × 0.14 × 0.08 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3882 independent reflections
Radiation source: sealed tube1997 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ and ω scansθmax = 34.4°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1113
Tmin = 0.984, Tmax = 0.997k = 1717
16028 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 0.94 w = 1/[σ2(Fo2) + (0.0699P)2]
where P = (Fo2 + 2Fc2)/3
3882 reflections(Δ/σ)max < 0.001
124 parametersΔρmax = 0.19 e Å3
3 restraintsΔρmin = 0.17 e Å3
Crystal data top
C9H10N4V = 946.76 (11) Å3
Mr = 174.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.5110 (5) ŵ = 0.08 mm1
b = 11.2490 (8) ÅT = 296 K
c = 10.1048 (7) Å0.49 × 0.14 × 0.08 mm
β = 101.866 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3882 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1997 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.997Rint = 0.047
16028 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0503 restraints
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 0.94Δρmax = 0.19 e Å3
3882 reflectionsΔρmin = 0.17 e Å3
124 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.22326 (10)0.20008 (8)0.83687 (9)0.0445 (2)
N20.28380 (11)0.22738 (9)0.72310 (10)0.0530 (3)
N30.43302 (11)0.08529 (9)0.84645 (9)0.0500 (3)
N40.29094 (12)0.06921 (9)1.02612 (10)0.0528 (3)
H4A0.3772 (12)0.0290 (10)1.0662 (12)0.063*
H4B0.2503 (14)0.1219 (9)1.0797 (11)0.063*
C40.08173 (12)0.25677 (10)0.85950 (12)0.0454 (3)
C30.31616 (12)0.11612 (9)0.90899 (11)0.0424 (3)
C20.40669 (14)0.15538 (11)0.73467 (12)0.0535 (3)
C90.03152 (14)0.19287 (12)0.90944 (15)0.0606 (3)
H90.01590.11240.92860.073*
C50.05851 (16)0.37569 (12)0.82934 (14)0.0663 (4)
H50.13540.41930.79680.080*
C10.51079 (17)0.15076 (16)0.63304 (15)0.0792 (5)
H1A0.59360.09250.66010.119*0.50
H1B0.55880.22730.62700.119*0.50
H1C0.44710.12950.54640.119*0.50
H1D0.47270.20700.56230.119*0.50
H1E0.50760.07220.59530.119*0.50
H1F0.61920.17000.67600.119*0.50
C70.19460 (19)0.36600 (17)0.89769 (18)0.0921 (6)
H70.28900.40280.90850.111*
C60.0814 (2)0.42885 (14)0.84843 (18)0.0877 (5)
H60.09910.50890.82740.105*
C80.16821 (16)0.24917 (14)0.93076 (18)0.0797 (5)
H80.24280.20720.96790.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0431 (4)0.0488 (5)0.0457 (5)0.0065 (4)0.0189 (4)0.0059 (4)
N20.0492 (5)0.0649 (6)0.0499 (6)0.0084 (4)0.0218 (5)0.0126 (5)
N30.0474 (5)0.0574 (6)0.0487 (6)0.0104 (4)0.0181 (4)0.0014 (4)
N40.0584 (6)0.0544 (6)0.0507 (6)0.0157 (5)0.0228 (5)0.0088 (5)
C40.0414 (5)0.0509 (6)0.0457 (6)0.0077 (4)0.0130 (5)0.0019 (5)
C30.0439 (5)0.0418 (6)0.0437 (6)0.0034 (4)0.0140 (5)0.0003 (5)
C20.0480 (6)0.0669 (7)0.0500 (7)0.0048 (5)0.0200 (5)0.0064 (6)
C90.0476 (6)0.0612 (8)0.0777 (9)0.0036 (5)0.0243 (6)0.0070 (7)
C50.0711 (8)0.0611 (8)0.0754 (10)0.0174 (6)0.0353 (7)0.0164 (7)
C10.0679 (8)0.1133 (12)0.0673 (10)0.0214 (8)0.0392 (7)0.0151 (8)
C70.0709 (9)0.1057 (13)0.1108 (14)0.0396 (9)0.0445 (9)0.0214 (10)
C60.0926 (11)0.0767 (10)0.1056 (13)0.0420 (8)0.0481 (10)0.0290 (9)
C80.0534 (8)0.0923 (11)0.1032 (12)0.0100 (7)0.0385 (8)0.0146 (9)
Geometric parameters (Å, º) top
N1—C31.3459 (14)C5—C61.3811 (18)
N1—N21.3874 (11)C5—H50.9300
N1—C41.4224 (12)C1—H1A0.9600
N2—C21.3090 (14)C1—H1B0.9600
N3—C31.3294 (12)C1—H1C0.9600
N3—C21.3577 (15)C1—H1D0.9600
N4—C31.3528 (14)C1—H1E0.9600
N4—H4A0.886 (8)C1—H1F0.9600
N4—H4B0.917 (8)C7—C81.363 (2)
C4—C51.3773 (17)C7—C61.369 (2)
C4—C91.3785 (15)C7—H70.9300
C2—C11.4888 (15)C6—H60.9300
C9—C81.3799 (17)C8—H80.9300
C9—H90.9300
C3—N1—N2109.09 (7)H1A—C1—H1C109.5
C3—N1—C4130.56 (8)H1B—C1—H1C109.5
N2—N1—C4120.33 (9)C2—C1—H1D109.5
C2—N2—N1102.42 (9)H1A—C1—H1D141.1
C3—N3—C2103.43 (9)H1B—C1—H1D56.3
C3—N4—H4A109.5 (8)H1C—C1—H1D56.3
C3—N4—H4B114.3 (8)C2—C1—H1E109.5
H4A—N4—H4B115.9 (11)H1A—C1—H1E56.3
C5—C4—C9120.55 (10)H1B—C1—H1E141.1
C5—C4—N1119.18 (9)H1C—C1—H1E56.3
C9—C4—N1120.27 (10)H1D—C1—H1E109.5
N3—C3—N1109.84 (9)C2—C1—H1F109.5
N3—C3—N4125.66 (10)H1A—C1—H1F56.3
N1—C3—N4124.49 (9)H1B—C1—H1F56.3
N2—C2—N3115.20 (9)H1C—C1—H1F141.1
N2—C2—C1122.54 (11)H1D—C1—H1F109.5
N3—C2—C1122.26 (11)H1E—C1—H1F109.5
C4—C9—C8119.55 (13)C8—C7—C6119.63 (12)
C4—C9—H9120.2C8—C7—H7120.2
C8—C9—H9120.2C6—C7—H7120.2
C4—C5—C6118.57 (12)C7—C6—C5121.25 (14)
C4—C5—H5120.7C7—C6—H6119.4
C6—C5—H5120.7C5—C6—H6119.4
C2—C1—H1A109.5C7—C8—C9120.39 (13)
C2—C1—H1B109.5C7—C8—H8119.8
H1A—C1—H1B109.5C9—C8—H8119.8
C2—C1—H1C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N3i0.89 (1)2.11 (1)2.9923 (13)173 (1)
N4—H4B···N2ii0.92 (1)2.21 (1)3.0415 (14)150 (1)
Symmetry codes: (i) x+1, y, z+2; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H10N4
Mr174.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.5110 (5), 11.2490 (8), 10.1048 (7)
β (°) 101.866 (4)
V3)946.76 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.49 × 0.14 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.984, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
16028, 3882, 1997
Rint0.047
(sin θ/λ)max1)0.794
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.148, 0.94
No. of reflections3882
No. of parameters124
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.17

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N3i0.886 (8)2.110 (8)2.9923 (13)173.1 (12)
N4—H4B···N2ii0.917 (8)2.210 (10)3.0415 (14)150.4 (10)
Symmetry codes: (i) x+1, y, z+2; (ii) x, y+1/2, z+1/2.
 

References

First citationAllouch, F., Chabchoub, F., Ben Hassine, B. & Salem, M. (2004). Heterocycl. Commun. 10, 63–66 .  Google Scholar
First citationAltman, A. & Solomost, T. (1993). Hortic. Sci. 28, 201–203.  CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGenady, A. & Gabel, D. (2003). Tetrahedron Lett. 44, 2915–2917.  Web of Science CrossRef CAS Google Scholar
First citationHashimoto, F., Sugimoto, C. & Hayashi, H. (1990). Chem. Pharm. Bull. 38, 2532–2536.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKanazawa, S., Driscoll, M. & Struhl, K. (1988). Mol. Cell. Biol. 8, 644–673.  Google Scholar
First citationKaranik, M., Paetzel, M. & Liebscher, J. (2003). Synthesis, 8, 1201–1208.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds