metal-organic compounds
Bis(2,6-dimethylpyrazine-κN4)diiodidozinc(II)
aDepartment of Fine Chemistry and Eco-Products and Materials Education Center, Seoul National University of Technology, Seoul 139-743, Republic of Korea, bTree Breeding Division, Korea Forest Research Institute, Suwon 441-350, Republic of Korea, cDepartment of Forest Resources and Environment, Kyungpook National University, Sangju 742-711, Republic of Korea, and dDivision of Nano Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
*Correspondence e-mail: chealkim@sunt.ac.kr, ymeekim@ewha.ac.kr
In the title compound, [ZnI2(C6H8N2)2], the ZnII ion is coordinated by two iodide anions and two N atoms from 2,6-dimethylpyrazine in a distorted tetrahedral geometry.
Related literature
For background information, see: Batten & Robson (1998); Chi et al. (2006); Evans & Lin (2002); Hong et al. (2004); Janiak (2003); Janaik & Scharmann (2003); Kasai et al. (2000); Kitagawa et al. (2004); Luan et al. (2005, 2006); Moler et al. (2001); Moulton & Zaworotko (2001); Ryu et al. (2005); Wang et al. (2006); Blake et al. (1999); Saalfrank et al. (2001).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808005382/dn2320sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808005382/dn2320Isup2.hkl
244.29 mg (0.75 mmol) of ZnI2 were dissolved in 4 ml water and carefully layered by 4 ml e thanol solution of 2,6-dimethylpyrazine ligand (165.52 mg, 1.5 mmol). Suitable crystals of the title compound for X-ray analysis were obtained in a few weeks.
Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[ZnI2(C6H8N2)2] | F(000) = 1008 |
Mr = 535.48 | Dx = 2.080 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2888 reflections |
a = 9.1825 (7) Å | θ = 2.7–25.6° |
b = 13.8144 (10) Å | µ = 5.04 mm−1 |
c = 13.6242 (10) Å | T = 170 K |
β = 98.381 (1)° | Rod, colorless |
V = 1709.8 (2) Å3 | 0.10 × 0.05 × 0.05 mm |
Z = 4 |
Bruker SMART CCD diffractometer | 2518 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.109 |
Graphite monochromator | θmax = 26.0°, θmin = 2.1° |
ϕ and ω scans | h = −11→11 |
9413 measured reflections | k = −17→16 |
3344 independent reflections | l = −9→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.069 | H-atom parameters constrained |
S = 0.81 | w = 1/[σ2(Fo2) + (0.0147P)2] where P = (Fo2 + 2Fc2)/3 |
3344 reflections | (Δ/σ)max = 0.001 |
176 parameters | Δρmax = 0.81 e Å−3 |
0 restraints | Δρmin = −1.28 e Å−3 |
[ZnI2(C6H8N2)2] | V = 1709.8 (2) Å3 |
Mr = 535.48 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.1825 (7) Å | µ = 5.04 mm−1 |
b = 13.8144 (10) Å | T = 170 K |
c = 13.6242 (10) Å | 0.10 × 0.05 × 0.05 mm |
β = 98.381 (1)° |
Bruker SMART CCD diffractometer | 2518 reflections with I > 2σ(I) |
9413 measured reflections | Rint = 0.109 |
3344 independent reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.069 | H-atom parameters constrained |
S = 0.81 | Δρmax = 0.81 e Å−3 |
3344 reflections | Δρmin = −1.28 e Å−3 |
176 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.07870 (6) | 0.24556 (4) | 0.76694 (4) | 0.02508 (15) | |
I1 | 0.07868 (4) | 0.15009 (3) | 0.60725 (2) | 0.03357 (11) | |
I2 | 0.19801 (4) | 0.41101 (3) | 0.79495 (2) | 0.03516 (11) | |
N11 | −0.1362 (4) | 0.2579 (3) | 0.7987 (3) | 0.0244 (9) | |
N12 | −0.4102 (4) | 0.2602 (3) | 0.8610 (3) | 0.0290 (10) | |
N21 | 0.1716 (4) | 0.1540 (3) | 0.8789 (3) | 0.0247 (9) | |
N22 | 0.3046 (4) | 0.0275 (3) | 1.0237 (3) | 0.0283 (10) | |
C11 | −0.2359 (5) | 0.1893 (4) | 0.7695 (3) | 0.0262 (11) | |
H11 | −0.2115 | 0.1387 | 0.7276 | 0.031* | |
C12 | −0.3750 (5) | 0.1903 (4) | 0.7992 (3) | 0.0274 (11) | |
C13 | −0.3120 (5) | 0.3282 (4) | 0.8896 (3) | 0.0280 (12) | |
C14 | −0.1739 (5) | 0.3274 (4) | 0.8575 (3) | 0.0278 (11) | |
H14 | −0.1058 | 0.3778 | 0.8781 | 0.033* | |
C15 | −0.4843 (5) | 0.1130 (4) | 0.7682 (4) | 0.0361 (13) | |
H15A | −0.5043 | 0.0768 | 0.8267 | 0.054* | |
H15B | −0.4450 | 0.0688 | 0.7222 | 0.054* | |
H15C | −0.5758 | 0.1422 | 0.7351 | 0.054* | |
C16 | −0.3539 (5) | 0.4070 (4) | 0.9555 (4) | 0.0438 (15) | |
H16A | −0.4566 | 0.4258 | 0.9340 | 0.066* | |
H16B | −0.2898 | 0.4631 | 0.9515 | 0.066* | |
H16C | −0.3429 | 0.3837 | 1.0241 | 0.066* | |
C21 | 0.1310 (5) | 0.0616 (4) | 0.8802 (3) | 0.0278 (12) | |
H21 | 0.0566 | 0.0385 | 0.8299 | 0.033* | |
C22 | 0.1950 (5) | −0.0025 (4) | 0.9535 (3) | 0.0302 (12) | |
C23 | 0.3442 (5) | 0.1193 (4) | 1.0219 (3) | 0.0277 (12) | |
C24 | 0.2793 (5) | 0.1839 (4) | 0.9502 (3) | 0.0265 (11) | |
H24 | 0.3112 | 0.2494 | 0.9515 | 0.032* | |
C25 | 0.1460 (6) | −0.1051 (4) | 0.9560 (4) | 0.0391 (14) | |
H25A | 0.1946 | −0.1436 | 0.9098 | 0.059* | |
H25B | 0.0390 | −0.1085 | 0.9366 | 0.059* | |
H25C | 0.1720 | −0.1308 | 1.0234 | 0.059* | |
C26 | 0.4667 (6) | 0.1544 (4) | 1.1002 (3) | 0.0406 (14) | |
H26A | 0.4261 | 0.1714 | 1.1606 | 0.061* | |
H26B | 0.5133 | 0.2115 | 1.0756 | 0.061* | |
H26C | 0.5401 | 0.1030 | 1.1152 | 0.061* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0246 (3) | 0.0250 (3) | 0.0258 (3) | 0.0006 (2) | 0.0044 (2) | 0.0019 (3) |
I1 | 0.0398 (2) | 0.0359 (2) | 0.02578 (18) | 0.00179 (16) | 0.00728 (14) | −0.00169 (16) |
I2 | 0.0342 (2) | 0.0259 (2) | 0.0448 (2) | −0.00311 (15) | 0.00379 (16) | 0.00327 (16) |
N11 | 0.023 (2) | 0.027 (2) | 0.023 (2) | 0.0031 (18) | 0.0014 (17) | 0.0060 (19) |
N12 | 0.028 (2) | 0.034 (3) | 0.026 (2) | 0.005 (2) | 0.0062 (18) | 0.001 (2) |
N21 | 0.025 (2) | 0.027 (3) | 0.0217 (19) | −0.0010 (18) | 0.0039 (16) | 0.0008 (19) |
N22 | 0.028 (2) | 0.030 (3) | 0.026 (2) | 0.002 (2) | 0.0014 (18) | 0.000 (2) |
C11 | 0.022 (3) | 0.028 (3) | 0.027 (2) | 0.004 (2) | −0.001 (2) | −0.002 (2) |
C12 | 0.023 (3) | 0.029 (3) | 0.028 (3) | 0.003 (2) | 0.000 (2) | 0.007 (2) |
C13 | 0.029 (3) | 0.030 (3) | 0.025 (3) | 0.004 (2) | 0.004 (2) | 0.003 (2) |
C14 | 0.028 (3) | 0.026 (3) | 0.028 (3) | 0.001 (2) | 0.000 (2) | 0.000 (2) |
C15 | 0.024 (3) | 0.038 (3) | 0.045 (3) | −0.006 (3) | 0.003 (2) | −0.008 (3) |
C16 | 0.032 (3) | 0.049 (4) | 0.051 (3) | 0.001 (3) | 0.009 (3) | −0.011 (3) |
C21 | 0.029 (3) | 0.028 (3) | 0.026 (3) | −0.003 (2) | 0.004 (2) | −0.004 (2) |
C22 | 0.032 (3) | 0.029 (3) | 0.030 (3) | 0.000 (2) | 0.008 (2) | −0.001 (2) |
C23 | 0.030 (3) | 0.032 (3) | 0.021 (2) | −0.003 (2) | 0.004 (2) | −0.004 (2) |
C24 | 0.023 (2) | 0.029 (3) | 0.029 (3) | −0.001 (2) | 0.008 (2) | −0.002 (2) |
C25 | 0.050 (3) | 0.030 (3) | 0.034 (3) | −0.002 (3) | −0.003 (3) | 0.007 (3) |
C26 | 0.041 (3) | 0.045 (4) | 0.033 (3) | −0.008 (3) | −0.006 (2) | 0.002 (3) |
Zn1—N21 | 2.068 (4) | C15—H15A | 0.9800 |
Zn1—N11 | 2.088 (4) | C15—H15B | 0.9800 |
Zn1—I2 | 2.5393 (7) | C15—H15C | 0.9800 |
Zn1—I1 | 2.5442 (6) | C16—H16A | 0.9800 |
N11—C14 | 1.328 (6) | C16—H16B | 0.9800 |
N11—C11 | 1.337 (6) | C16—H16C | 0.9800 |
N12—C13 | 1.321 (6) | C21—C22 | 1.398 (7) |
N12—C12 | 1.351 (6) | C21—H21 | 0.9500 |
N21—C21 | 1.331 (6) | C22—C25 | 1.489 (7) |
N21—C24 | 1.346 (5) | C23—C24 | 1.392 (6) |
N22—C23 | 1.321 (6) | C23—C26 | 1.513 (6) |
N22—C22 | 1.348 (6) | C24—H24 | 0.9500 |
C11—C12 | 1.395 (7) | C25—H25A | 0.9800 |
C11—H11 | 0.9500 | C25—H25B | 0.9800 |
C12—C15 | 1.485 (7) | C25—H25C | 0.9800 |
C13—C14 | 1.401 (7) | C26—H26A | 0.9800 |
C13—C16 | 1.496 (7) | C26—H26B | 0.9800 |
C14—H14 | 0.9500 | C26—H26C | 0.9800 |
N21—Zn1—N11 | 101.39 (14) | H15B—C15—H15C | 109.5 |
N21—Zn1—I2 | 108.49 (11) | C13—C16—H16A | 109.5 |
N11—Zn1—I2 | 107.19 (12) | C13—C16—H16B | 109.5 |
N21—Zn1—I1 | 105.22 (11) | H16A—C16—H16B | 109.5 |
N11—Zn1—I1 | 109.72 (10) | C13—C16—H16C | 109.5 |
I2—Zn1—I1 | 122.78 (2) | H16A—C16—H16C | 109.5 |
C14—N11—C11 | 117.7 (4) | H16B—C16—H16C | 109.5 |
C14—N11—Zn1 | 121.4 (3) | N21—C21—C22 | 121.8 (4) |
C11—N11—Zn1 | 120.5 (3) | N21—C21—H21 | 119.1 |
C13—N12—C12 | 118.6 (4) | C22—C21—H21 | 119.1 |
C21—N21—C24 | 117.6 (4) | N22—C22—C21 | 120.3 (5) |
C21—N21—Zn1 | 120.7 (3) | N22—C22—C25 | 118.2 (4) |
C24—N21—Zn1 | 121.7 (3) | C21—C22—C25 | 121.5 (5) |
C23—N22—C22 | 117.5 (4) | N22—C23—C24 | 122.5 (4) |
N11—C11—C12 | 121.5 (5) | N22—C23—C26 | 118.2 (4) |
N11—C11—H11 | 119.2 | C24—C23—C26 | 119.2 (5) |
C12—C11—H11 | 119.2 | N21—C24—C23 | 120.3 (5) |
N12—C12—C11 | 120.0 (5) | N21—C24—H24 | 119.9 |
N12—C12—C15 | 118.6 (4) | C23—C24—H24 | 119.9 |
C11—C12—C15 | 121.3 (5) | C22—C25—H25A | 109.5 |
N12—C13—C14 | 120.8 (5) | C22—C25—H25B | 109.5 |
N12—C13—C16 | 118.1 (4) | H25A—C25—H25B | 109.5 |
C14—C13—C16 | 121.1 (5) | C22—C25—H25C | 109.5 |
N11—C14—C13 | 121.4 (5) | H25A—C25—H25C | 109.5 |
N11—C14—H14 | 119.3 | H25B—C25—H25C | 109.5 |
C13—C14—H14 | 119.3 | C23—C26—H26A | 109.5 |
C12—C15—H15A | 109.5 | C23—C26—H26B | 109.5 |
C12—C15—H15B | 109.5 | H26A—C26—H26B | 109.5 |
H15A—C15—H15B | 109.5 | C23—C26—H26C | 109.5 |
C12—C15—H15C | 109.5 | H26A—C26—H26C | 109.5 |
H15A—C15—H15C | 109.5 | H26B—C26—H26C | 109.5 |
Experimental details
Crystal data | |
Chemical formula | [ZnI2(C6H8N2)2] |
Mr | 535.48 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 170 |
a, b, c (Å) | 9.1825 (7), 13.8144 (10), 13.6242 (10) |
β (°) | 98.381 (1) |
V (Å3) | 1709.8 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 5.04 |
Crystal size (mm) | 0.10 × 0.05 × 0.05 |
Data collection | |
Diffractometer | Bruker SMART CCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9413, 3344, 2518 |
Rint | 0.109 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.069, 0.81 |
No. of reflections | 3344 |
No. of parameters | 176 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.81, −1.28 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
Financial support from the Environmental Technology Educational Innovation Program (2006) of the Ministry of Environment and the Seoul R & BD Program is gratefully acknowledged.
References
Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494. Web of Science CrossRef Google Scholar
Blake, A. J., Brooks, N. R., Champness, N. R., Cooke, P. A., Deveson, A. M., Fenske, D., Hubberstey, P. & Schröder, M. (1999). J. Chem. Soc. Dalton Trans. pp. 2103–2110. Web of Science CSD CrossRef Google Scholar
Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chi, Y.-N., Huang, K.-L., Cui, F.-Y., Xu, Y.-Q. & Hu, C.-W. (2006). Inorg. Chem. 45, 10605–10612. Web of Science CSD CrossRef PubMed CAS Google Scholar
Evans, O. R. & Lin, W. (2002). Acc. Chem. Res. 35, 511–522. Web of Science CrossRef PubMed CAS Google Scholar
Hong, S. J., Ryu, J. Y., Lee, J. Y., Kim, C., Kim, S.-J. & Kim, Y. (2004). Dalton Trans. pp. 2697–2701. Web of Science CSD CrossRef Google Scholar
Janaik, C. & Scharmann, T. G. (2003). Polyhedron, 22, 1123–1133. Web of Science CrossRef Google Scholar
Janiak, C. (2003). Dalton Trans. pp. 2781–2804. Web of Science CrossRef Google Scholar
Kasai, K., Aoyagi, M. & Fujita, M. (2000). J. Am. Chem. Soc. 122, 2140–2141. Web of Science CSD CrossRef CAS Google Scholar
Kitagawa, S., Kitaura, R. & Noro, S.-I. (2004). Angew. Chem. Int. Ed. 43, 2334–2375. Web of Science CrossRef CAS Google Scholar
Luan, X.-J., Cai, X.-H., Wang, Y.-Y., Li, D.-S., Wang, C.-J., Liu, P., Hu, H.-M., Shi, Q.-Z. & Peng, S.-M. (2006). Chem. Eur. J. 12, 6281–6289. Web of Science CSD CrossRef PubMed CAS Google Scholar
Luan, X.-J., Wang, Y.-Y., Li, D.-S., Liu, P., Hu, H.-M., Shi, Q.-Z. & Peng, S.-M. (2005). Angew. Chem. Int. Ed. 44, 3864–3867. Web of Science CSD CrossRef CAS Google Scholar
Moler, D. B., Chen, H., Li, B., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330. Web of Science PubMed Google Scholar
Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658. Web of Science CrossRef PubMed CAS Google Scholar
Ryu, J. Y., Han, J. H., Lee, J. Y., Hong, S. J., Choi, S. H., Kim, C., Kim, S.-J. & Kim, Y. (2005). Inorg. Chim. Acta, 358, 3659–3670. Web of Science CSD CrossRef CAS Google Scholar
Saalfrank, R. W., Bernt, I., Chowdhry, M. M., Hampel, F. & Vaughan, G. B. M. (2001). Chem. Eur. J. 7, 2765–2769. CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, X.-Y., Wang, L., Wang, Z.-M. & Gao, S. (2006). J. Am. Chem. Soc. 128, 674–675. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Much interest has recently been focused on the rational design and construction of novel discrete and polymeric metal-organic complexes, not only due to their structural and topological novelty (Batten & Robson, 1998, Moler et al., 2001, Moulton & Zaworotko, 2001), but also for their potential applications as functional materials such as catalysis, molecular recognition, separation, and nonlinear optics (Hong et al., 2004, Evans & Lin, 2002, Kasai et al. 2000, Kitagawa et al., 2004). It has shown that many factors such as the coordination geometry of metal ions (Chi et al.,2006), the structure of organic ligands (Wang et al.,2006), the solvent system (Ryu et al., 2005), the counteranion (Luan et al., 2006), and the ratio of ligands to metal ions (Blake et al., 1999, Saalfrank et al., 2001) influence highly on the structure of metal-organic complexes. In addition, it has been considered that the secondary forces such as hydrogen-bonding, pi-pi stacking, and host–guest interactions are of importance as well (Luan et al., 2005, Janaik & Scharmann, 2003, Janiak, 2003). For obtaining novel structural motifs with predictable properties, therefore, a large number of organic ligands were designed and utilized. Among them, 2,6-dimethylpyrazine was often selected. We have also reacted ZnI2 with 2,6-dimethylpyrazine to form a new zinc complex and report here on the crystal structure of diiodobis(2,6-dimethylpyrazine)zinc(II).
Asymmetric unit contains a whole molecule (Fig. 1). ZnII ion is coordinated by two iodide anions and two nitrogen atoms from 2,6-dimethylpyrazine to form a distorted tetrahedral geometry (Fig. 1). Zn—I bond distances are 2.5393 (7) and 2.5442 (6) Å, and I—Zn—I and N—Zn—N bond angles are 122.78 (2) and 101.39 (14)°, respectively.