metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,6-di­methyl­pyrazine-κN4)di­iodidozinc(II)

aDepartment of Fine Chemistry and Eco-Products and Materials Education Center, Seoul National University of Technology, Seoul 139-743, Republic of Korea, bTree Breeding Division, Korea Forest Research Institute, Suwon 441-350, Republic of Korea, cDepartment of Forest Resources and Environment, Kyungpook National University, Sangju 742-711, Republic of Korea, and dDivision of Nano Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
*Correspondence e-mail: chealkim@sunt.ac.kr, ymeekim@ewha.ac.kr

(Received 21 February 2008; accepted 26 February 2008; online 5 March 2008)

In the title compound, [ZnI2(C6H8N2)2], the ZnII ion is coordinated by two iodide anions and two N atoms from 2,6-dimethyl­pyrazine in a distorted tetra­hedral geometry.

Related literature

For background information, see: Batten & Robson (1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.]); Chi et al. (2006[Chi, Y.-N., Huang, K.-L., Cui, F.-Y., Xu, Y.-Q. & Hu, C.-W. (2006). Inorg. Chem. 45, 10605-10612.]); Evans & Lin (2002[Evans, O. R. & Lin, W. (2002). Acc. Chem. Res. 35, 511-522.]); Hong et al. (2004[Hong, S. J., Ryu, J. Y., Lee, J. Y., Kim, C., Kim, S.-J. & Kim, Y. (2004). Dalton Trans. pp. 2697-2701.]); Janiak (2003[Janiak, C. (2003). Dalton Trans. pp. 2781-2804.]); Janaik & Scharmann (2003[Janaik, C. & Scharmann, T. G. (2003). Polyhedron, 22, 1123-1133.]); Kasai et al. (2000[Kasai, K., Aoyagi, M. & Fujita, M. (2000). J. Am. Chem. Soc. 122, 2140-2141.]); Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S.-I. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]); Luan et al. (2005[Luan, X.-J., Wang, Y.-Y., Li, D.-S., Liu, P., Hu, H.-M., Shi, Q.-Z. & Peng, S.-M. (2005). Angew. Chem. Int. Ed. 44, 3864-3867.], 2006[Luan, X.-J., Cai, X.-H., Wang, Y.-Y., Li, D.-S., Wang, C.-J., Liu, P., Hu, H.-M., Shi, Q.-Z. & Peng, S.-M. (2006). Chem. Eur. J. 12, 6281-6289.]); Moler et al. (2001[Moler, D. B., Chen, H., Li, B., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.]); Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]); Ryu et al. (2005[Ryu, J. Y., Han, J. H., Lee, J. Y., Hong, S. J., Choi, S. H., Kim, C., Kim, S.-J. & Kim, Y. (2005). Inorg. Chim. Acta, 358, 3659-3670.]); Wang et al. (2006[Wang, X.-Y., Wang, L., Wang, Z.-M. & Gao, S. (2006). J. Am. Chem. Soc. 128, 674-675.]); Blake et al. (1999[Blake, A. J., Brooks, N. R., Champness, N. R., Cooke, P. A., Deveson, A. M., Fenske, D., Hubberstey, P. & Schröder, M. (1999). J. Chem. Soc. Dalton Trans. pp. 2103-2110.]); Saalfrank et al. (2001[Saalfrank, R. W., Bernt, I., Chowdhry, M. M., Hampel, F. & Vaughan, G. B. M. (2001). Chem. Eur. J. 7, 2765-2769.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnI2(C6H8N2)2]

  • Mr = 535.48

  • Monoclinic, P 21 /c

  • a = 9.1825 (7) Å

  • b = 13.8144 (10) Å

  • c = 13.6242 (10) Å

  • β = 98.381 (1)°

  • V = 1709.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.04 mm−1

  • T = 170 (2) K

  • 0.10 × 0.05 × 0.05 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 9413 measured reflections

  • 3344 independent reflections

  • 2518 reflections with I > 2σ(I)

  • Rint = 0.109

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.069

  • S = 0.81

  • 3344 reflections

  • 176 parameters

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −1.27 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Much interest has recently been focused on the rational design and construction of novel discrete and polymeric metal-organic complexes, not only due to their structural and topological novelty (Batten & Robson, 1998, Moler et al., 2001, Moulton & Zaworotko, 2001), but also for their potential applications as functional materials such as catalysis, molecular recognition, separation, and nonlinear optics (Hong et al., 2004, Evans & Lin, 2002, Kasai et al. 2000, Kitagawa et al., 2004). It has shown that many factors such as the coordination geometry of metal ions (Chi et al.,2006), the structure of organic ligands (Wang et al.,2006), the solvent system (Ryu et al., 2005), the counteranion (Luan et al., 2006), and the ratio of ligands to metal ions (Blake et al., 1999, Saalfrank et al., 2001) influence highly on the structure of metal-organic complexes. In addition, it has been considered that the secondary forces such as hydrogen-bonding, pi-pi stacking, and host–guest interactions are of importance as well (Luan et al., 2005, Janaik & Scharmann, 2003, Janiak, 2003). For obtaining novel structural motifs with predictable properties, therefore, a large number of organic ligands were designed and utilized. Among them, 2,6-dimethylpyrazine was often selected. We have also reacted ZnI2 with 2,6-dimethylpyrazine to form a new zinc complex and report here on the crystal structure of diiodobis(2,6-dimethylpyrazine)zinc(II).

Asymmetric unit contains a whole molecule (Fig. 1). ZnII ion is coordinated by two iodide anions and two nitrogen atoms from 2,6-dimethylpyrazine to form a distorted tetrahedral geometry (Fig. 1). Zn—I bond distances are 2.5393 (7) and 2.5442 (6) Å, and I—Zn—I and N—Zn—N bond angles are 122.78 (2) and 101.39 (14)°, respectively.

Related literature top

For background information, see: Batten & Robson (1998); Chi et al. (2006); Evans & Lin (2002); Hong et al. (2004); Janiak (2003); Janaik & Scharmann (2003); Kasai et al. (2000); Kitagawa et al. (2004); Luan et al. (2005, 2006); Moler et al. (2001); Moulton & Zaworotko (2001); Ryu et al. (2005); Wang et al. (2006); Blake et al. (1999); Saalfrank et al. (2001).

Experimental top

244.29 mg (0.75 mmol) of ZnI2 were dissolved in 4 ml water and carefully layered by 4 ml e thanol solution of 2,6-dimethylpyrazine ligand (165.52 mg, 1.5 mmol). Suitable crystals of the title compound for X-ray analysis were obtained in a few weeks.

Refinement top

(type here to add refinement details)

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are shown at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
Bis(2,6-dimethylpyrazine-κN4)diiodidozinc(II) top
Crystal data top
[ZnI2(C6H8N2)2]F(000) = 1008
Mr = 535.48Dx = 2.080 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2888 reflections
a = 9.1825 (7) Åθ = 2.7–25.6°
b = 13.8144 (10) ŵ = 5.04 mm1
c = 13.6242 (10) ÅT = 170 K
β = 98.381 (1)°Rod, colorless
V = 1709.8 (2) Å30.10 × 0.05 × 0.05 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2518 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.109
Graphite monochromatorθmax = 26.0°, θmin = 2.1°
ϕ and ω scansh = 1111
9413 measured reflectionsk = 1716
3344 independent reflectionsl = 916
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 0.81 w = 1/[σ2(Fo2) + (0.0147P)2]
where P = (Fo2 + 2Fc2)/3
3344 reflections(Δ/σ)max = 0.001
176 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 1.28 e Å3
Crystal data top
[ZnI2(C6H8N2)2]V = 1709.8 (2) Å3
Mr = 535.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.1825 (7) ŵ = 5.04 mm1
b = 13.8144 (10) ÅT = 170 K
c = 13.6242 (10) Å0.10 × 0.05 × 0.05 mm
β = 98.381 (1)°
Data collection top
Bruker SMART CCD
diffractometer
2518 reflections with I > 2σ(I)
9413 measured reflectionsRint = 0.109
3344 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 0.81Δρmax = 0.81 e Å3
3344 reflectionsΔρmin = 1.28 e Å3
176 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.07870 (6)0.24556 (4)0.76694 (4)0.02508 (15)
I10.07868 (4)0.15009 (3)0.60725 (2)0.03357 (11)
I20.19801 (4)0.41101 (3)0.79495 (2)0.03516 (11)
N110.1362 (4)0.2579 (3)0.7987 (3)0.0244 (9)
N120.4102 (4)0.2602 (3)0.8610 (3)0.0290 (10)
N210.1716 (4)0.1540 (3)0.8789 (3)0.0247 (9)
N220.3046 (4)0.0275 (3)1.0237 (3)0.0283 (10)
C110.2359 (5)0.1893 (4)0.7695 (3)0.0262 (11)
H110.21150.13870.72760.031*
C120.3750 (5)0.1903 (4)0.7992 (3)0.0274 (11)
C130.3120 (5)0.3282 (4)0.8896 (3)0.0280 (12)
C140.1739 (5)0.3274 (4)0.8575 (3)0.0278 (11)
H140.10580.37780.87810.033*
C150.4843 (5)0.1130 (4)0.7682 (4)0.0361 (13)
H15A0.50430.07680.82670.054*
H15B0.44500.06880.72220.054*
H15C0.57580.14220.73510.054*
C160.3539 (5)0.4070 (4)0.9555 (4)0.0438 (15)
H16A0.45660.42580.93400.066*
H16B0.28980.46310.95150.066*
H16C0.34290.38371.02410.066*
C210.1310 (5)0.0616 (4)0.8802 (3)0.0278 (12)
H210.05660.03850.82990.033*
C220.1950 (5)0.0025 (4)0.9535 (3)0.0302 (12)
C230.3442 (5)0.1193 (4)1.0219 (3)0.0277 (12)
C240.2793 (5)0.1839 (4)0.9502 (3)0.0265 (11)
H240.31120.24940.95150.032*
C250.1460 (6)0.1051 (4)0.9560 (4)0.0391 (14)
H25A0.19460.14360.90980.059*
H25B0.03900.10850.93660.059*
H25C0.17200.13081.02340.059*
C260.4667 (6)0.1544 (4)1.1002 (3)0.0406 (14)
H26A0.42610.17141.16060.061*
H26B0.51330.21151.07560.061*
H26C0.54010.10301.11520.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0246 (3)0.0250 (3)0.0258 (3)0.0006 (2)0.0044 (2)0.0019 (3)
I10.0398 (2)0.0359 (2)0.02578 (18)0.00179 (16)0.00728 (14)0.00169 (16)
I20.0342 (2)0.0259 (2)0.0448 (2)0.00311 (15)0.00379 (16)0.00327 (16)
N110.023 (2)0.027 (2)0.023 (2)0.0031 (18)0.0014 (17)0.0060 (19)
N120.028 (2)0.034 (3)0.026 (2)0.005 (2)0.0062 (18)0.001 (2)
N210.025 (2)0.027 (3)0.0217 (19)0.0010 (18)0.0039 (16)0.0008 (19)
N220.028 (2)0.030 (3)0.026 (2)0.002 (2)0.0014 (18)0.000 (2)
C110.022 (3)0.028 (3)0.027 (2)0.004 (2)0.001 (2)0.002 (2)
C120.023 (3)0.029 (3)0.028 (3)0.003 (2)0.000 (2)0.007 (2)
C130.029 (3)0.030 (3)0.025 (3)0.004 (2)0.004 (2)0.003 (2)
C140.028 (3)0.026 (3)0.028 (3)0.001 (2)0.000 (2)0.000 (2)
C150.024 (3)0.038 (3)0.045 (3)0.006 (3)0.003 (2)0.008 (3)
C160.032 (3)0.049 (4)0.051 (3)0.001 (3)0.009 (3)0.011 (3)
C210.029 (3)0.028 (3)0.026 (3)0.003 (2)0.004 (2)0.004 (2)
C220.032 (3)0.029 (3)0.030 (3)0.000 (2)0.008 (2)0.001 (2)
C230.030 (3)0.032 (3)0.021 (2)0.003 (2)0.004 (2)0.004 (2)
C240.023 (2)0.029 (3)0.029 (3)0.001 (2)0.008 (2)0.002 (2)
C250.050 (3)0.030 (3)0.034 (3)0.002 (3)0.003 (3)0.007 (3)
C260.041 (3)0.045 (4)0.033 (3)0.008 (3)0.006 (2)0.002 (3)
Geometric parameters (Å, º) top
Zn1—N212.068 (4)C15—H15A0.9800
Zn1—N112.088 (4)C15—H15B0.9800
Zn1—I22.5393 (7)C15—H15C0.9800
Zn1—I12.5442 (6)C16—H16A0.9800
N11—C141.328 (6)C16—H16B0.9800
N11—C111.337 (6)C16—H16C0.9800
N12—C131.321 (6)C21—C221.398 (7)
N12—C121.351 (6)C21—H210.9500
N21—C211.331 (6)C22—C251.489 (7)
N21—C241.346 (5)C23—C241.392 (6)
N22—C231.321 (6)C23—C261.513 (6)
N22—C221.348 (6)C24—H240.9500
C11—C121.395 (7)C25—H25A0.9800
C11—H110.9500C25—H25B0.9800
C12—C151.485 (7)C25—H25C0.9800
C13—C141.401 (7)C26—H26A0.9800
C13—C161.496 (7)C26—H26B0.9800
C14—H140.9500C26—H26C0.9800
N21—Zn1—N11101.39 (14)H15B—C15—H15C109.5
N21—Zn1—I2108.49 (11)C13—C16—H16A109.5
N11—Zn1—I2107.19 (12)C13—C16—H16B109.5
N21—Zn1—I1105.22 (11)H16A—C16—H16B109.5
N11—Zn1—I1109.72 (10)C13—C16—H16C109.5
I2—Zn1—I1122.78 (2)H16A—C16—H16C109.5
C14—N11—C11117.7 (4)H16B—C16—H16C109.5
C14—N11—Zn1121.4 (3)N21—C21—C22121.8 (4)
C11—N11—Zn1120.5 (3)N21—C21—H21119.1
C13—N12—C12118.6 (4)C22—C21—H21119.1
C21—N21—C24117.6 (4)N22—C22—C21120.3 (5)
C21—N21—Zn1120.7 (3)N22—C22—C25118.2 (4)
C24—N21—Zn1121.7 (3)C21—C22—C25121.5 (5)
C23—N22—C22117.5 (4)N22—C23—C24122.5 (4)
N11—C11—C12121.5 (5)N22—C23—C26118.2 (4)
N11—C11—H11119.2C24—C23—C26119.2 (5)
C12—C11—H11119.2N21—C24—C23120.3 (5)
N12—C12—C11120.0 (5)N21—C24—H24119.9
N12—C12—C15118.6 (4)C23—C24—H24119.9
C11—C12—C15121.3 (5)C22—C25—H25A109.5
N12—C13—C14120.8 (5)C22—C25—H25B109.5
N12—C13—C16118.1 (4)H25A—C25—H25B109.5
C14—C13—C16121.1 (5)C22—C25—H25C109.5
N11—C14—C13121.4 (5)H25A—C25—H25C109.5
N11—C14—H14119.3H25B—C25—H25C109.5
C13—C14—H14119.3C23—C26—H26A109.5
C12—C15—H15A109.5C23—C26—H26B109.5
C12—C15—H15B109.5H26A—C26—H26B109.5
H15A—C15—H15B109.5C23—C26—H26C109.5
C12—C15—H15C109.5H26A—C26—H26C109.5
H15A—C15—H15C109.5H26B—C26—H26C109.5

Experimental details

Crystal data
Chemical formula[ZnI2(C6H8N2)2]
Mr535.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)170
a, b, c (Å)9.1825 (7), 13.8144 (10), 13.6242 (10)
β (°) 98.381 (1)
V3)1709.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)5.04
Crystal size (mm)0.10 × 0.05 × 0.05
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9413, 3344, 2518
Rint0.109
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.069, 0.81
No. of reflections3344
No. of parameters176
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.81, 1.28

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

Financial support from the Environmental Technology Educational Innovation Program (2006) of the Ministry of Environment and the Seoul R & BD Program is gratefully acknowledged.

References

First citationBatten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494.  Web of Science CrossRef Google Scholar
First citationBlake, A. J., Brooks, N. R., Champness, N. R., Cooke, P. A., Deveson, A. M., Fenske, D., Hubberstey, P. & Schröder, M. (1999). J. Chem. Soc. Dalton Trans. pp. 2103–2110.  Web of Science CSD CrossRef Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChi, Y.-N., Huang, K.-L., Cui, F.-Y., Xu, Y.-Q. & Hu, C.-W. (2006). Inorg. Chem. 45, 10605–10612.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEvans, O. R. & Lin, W. (2002). Acc. Chem. Res. 35, 511–522.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHong, S. J., Ryu, J. Y., Lee, J. Y., Kim, C., Kim, S.-J. & Kim, Y. (2004). Dalton Trans. pp. 2697–2701.  Web of Science CSD CrossRef Google Scholar
First citationJanaik, C. & Scharmann, T. G. (2003). Polyhedron, 22, 1123–1133.  Web of Science CrossRef Google Scholar
First citationJaniak, C. (2003). Dalton Trans. pp. 2781–2804.  Web of Science CrossRef Google Scholar
First citationKasai, K., Aoyagi, M. & Fujita, M. (2000). J. Am. Chem. Soc. 122, 2140–2141.  Web of Science CSD CrossRef CAS Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S.-I. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationLuan, X.-J., Cai, X.-H., Wang, Y.-Y., Li, D.-S., Wang, C.-J., Liu, P., Hu, H.-M., Shi, Q.-Z. & Peng, S.-M. (2006). Chem. Eur. J. 12, 6281–6289.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLuan, X.-J., Wang, Y.-Y., Li, D.-S., Liu, P., Hu, H.-M., Shi, Q.-Z. & Peng, S.-M. (2005). Angew. Chem. Int. Ed. 44, 3864–3867.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoler, D. B., Chen, H., Li, B., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330.  Web of Science PubMed Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRyu, J. Y., Han, J. H., Lee, J. Y., Hong, S. J., Choi, S. H., Kim, C., Kim, S.-J. & Kim, Y. (2005). Inorg. Chim. Acta, 358, 3659–3670.  Web of Science CSD CrossRef CAS Google Scholar
First citationSaalfrank, R. W., Bernt, I., Chowdhry, M. M., Hampel, F. & Vaughan, G. B. M. (2001). Chem. Eur. J. 7, 2765–2769.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-Y., Wang, L., Wang, Z.-M. & Gao, S. (2006). J. Am. Chem. Soc. 128, 674–675.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds