organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,6-Bis(di­phenyl­phosphino)phenoxazine (nixantphos)

aSchool of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
*Correspondence e-mail: bala@ukzn.ac.za

(Received 3 March 2008; accepted 10 March 2008; online 14 March 2008)

The title compound, C36H27NOP2, has been reported as a ligand on rhodium for the catalysis of hydro­formyl­ation reactions. The key feature of the compound is the intra­molecular P⋯P distance of 4.255 (2) Å. The bond angles at the P atoms range from 99.93 (10) to 103.02 (10)°. The phenoxazine ring system is essentially planar and a non-crystallographic mirror plane through the N⋯O vector bis­ects the mol­ecule. The C—O bond lengths range from 1.388 (2) to 1.392 (2) Å and the C—N bond lengths range from 1.398 (3) to 1.403 (3) Å.

Related literature

For related literature, see: Antonio et al. (1989[Antonio, Y., Barrera, P., Contreas, O., Verlarde, E. & Muchowski, J. M. (1989). J. Am. Chem. Soc. 54, 2159-2165.]); Claver & van Leeuwen (2000[Claver, C. & van Leeuwen, P. W. N. M. (2000). Rhodium Catalyzed Hydroformylation. Dordrecht: Kluwer Academic Publishers.]); Deprele & Montchamp (2004[Deprele, S. & Montchamp, J.-L. (2004). Org. Lett. 6, 3805-3808.]); van Leeuwen et al. (2002[Leeuwen, P. W. N. M. van, Sandee, A. J., Reek, J. N. H. & Kamer, P. C. J. (2002). J. Mol. Catal. A, 182-183, 107-123.]); Osiński et al. (2005[Osiński, P. W., Schürmann, M., Preut, H., Haag, R. & Eilbracht, P. (2005). Acta Cryst. E61, o3115-o3116.]); Petrassi et al. (2000[Petrassi, H. M., Klabunde, T., Sacchettini, J. & Kelly, J. W. (2000). J. Am. Chem. Soc. 122, 2178-2192.]); Ricken et al. (2006a[Ricken, S., Osiński, P. W., Eilbracht, P. & Haag, R. (2006a). J. Mol. Catal. A. 257, 78-88.],b[Ricken, S., Osinski, P. W., Schürmann, M., Preut, H. & Eilbracht, P. (2006b). Acta Cryst. E62, o1807-o1808.],c[Ricken, S., Schürmann, M., Preut, H. & Eilbracht, P. (2006c). Acta Cryst. E62, o2637-o2638.]); Sandee et al. (1999[Sandee, A. J., van der Veen, L. A., Reek, J. N. H., Kamer, P. C. J., Lutz, M., Spek, A. L. & van Leeuwen, P. W. N. M. (1999). Angew. Chem. Int. Ed. 38, 3231-3235.], 2001[Sandee, A. J., Reek, J. N. H., Kamer, P. C. J. & van Leeuwen, P. W. N. M. (2001). J. Am. Chem. Soc. 123, 8468-8476.]); Tolman (1977[Tolman, C. A. (1977). Chem. Rev. 77, 313-348.]); van der Veen et al. (2000[Veen, L. A. van der, Keeven, P. H., Schoemaker, G. C., Reek, J. N. H., Kamer, P. C. J., van Leeuwen, P., Lutz, M. & Spek, A. L. (2000). Organometallics, 19, 872-883.]).

[Scheme 1]

Experimental

Crystal data
  • C36H27NOP2

  • Mr = 551.53

  • Triclinic, [P \overline 1]

  • a = 10.4233 (3) Å

  • b = 10.9113 (3) Å

  • c = 12.9940 (4) Å

  • α = 104.055 (2)°

  • β = 102.555 (2)°

  • γ = 97.459 (2)°

  • V = 1373.04 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 173 (2) K

  • 0.40 × 0.18 × 0.12 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: none

  • 15968 measured reflections

  • 5396 independent reflections

  • 3646 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.105

  • S = 0.95

  • 5396 reflections

  • 365 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-NT (Bruker, 2005[Bruker (2005). APEX2 and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-NT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The titled compound, (1) (Fig. 1), is a xanthene based diphenylphosphine ligand. The synthesis of the ligand has been reported in literature (van der Veen et al., 2000; Petrassi et al., 2000; Antonio et al., 1989), in addition it is commercially available and has been used extensively in synthesis and as a precursor for the synthesis of substituted bis(diphenylphoshino)phenoxazine ligands (Osiński et al., 2005; Ricken et al., 2006a,b). However, this is the first time that the crystal structure is being reported. This ligand and similar xantphos based ligands have been used on Rh as catalysts for the regioselective hydroformylation of 1-octene to octanal (Claver & van Leeuwen, 2000; van der Veen et al., 2000). Moreover, (1) has been successfully immobilized on silica (Sandee et al., 2001, 1999; van Leeuwen et al., 2002), polystyrene (Deprele & Montchamp, 2004), and dendritic supports (Ricken et al., 2006a).

The title compound (1) was prepared following literature procedures (Antonio et al., 1989; Petrassi et al., 2000) as part of our ongoing investigation of scorpionate-type ligands by the alkylation of the amine. The structural elucidation of this compound allows for the determination of important ligand factors such as the cone angle (Tolman, 1977), and the flexibility range of the natural bite angle (van der Veen et al., 2000). It is also useful for studies of the coordination chemistry and catalytic applications of xantphos-type ligands. For example, the intramolecular P···P distance of 4.255 Å for (1) is similar to values reported for nixantphos-type ligands functionalized at the nitrogen (Osiński, et al., 2005; Ricken et al., 2006a,c) indicating that a functionality at N has little influence on the bite angle of the ligand.

Related literature top

For related literature, see: Antonio et al. (1989); Claver & van Leeuwen (2000); Deprele & Montchamp (2004); van Leeuwen et al. (2002); Osiński et al. (2005); Petrassi et al. (2000); Ricken et al. (2006a,b,c); Sandee et al. (1999, 2001); Tolman (1977); van der Veen et al. (2000).

Experimental top

The compound was synthesized via a three step procedure adapted from literature (Antonio et al., 1989; Petrassi et al., 2000; van der Veen et al., 2000). Yield: 70% of yellow crystals of (1), m.p. 457–459 K. Spectroscopic analysis: 1H NMR (600 MHz, CDCl3, δ, p.p.m): 5.16 (s, 1H; NH), 5.97 (d, 2H; J(H,H) = 6.4 Hz,), 6.34 (bd, 2H;J(H,H) = 7.3 Hz,), 6.58 (t, 2H J(H,H) = 7.7 Hz), 7.17–7.23 (bs, 20H). 13C NMR (600 MHz, CDCl3, δ, p.p.m): 113.7(CH), 123.7(CH), 125.8(CH), 128.1(CH), 128.2(CH), 128.3(C), 128.3 (C), 131.3(bs,CN), 133.9(CH), 134.0(C), 136.7 (C). 31P NMR (600 MHz, CDCl3, δ, p.p.m): -19.0 MS m/z (%): 552.1633 (M + H) calculated = 552.1648 for C36H27NOP2 Elemental Analysis: C, 78.01; H, 4.95; N, 2.47. Found: C, 77.61; H, 4.91; N,2.41. FTIR: cm-1 = 3408(w), (NH), 1565(s), 1452(s), 1398(s), 1286, CN,1256(m), 1206(m), 1090(m), 766(m), 739(m), (NH), 723(m), 690(s).

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). H atom attached to nitrogen was freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-NT (Bruker, 2005); data reduction: SAINT-NT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title complex with the atom labelling scheme. Ellipsoids are drawn at the 50% probability level.
4,6-Bis(diphenylphosphino)phenoxazine top
Crystal data top
C36H27NOP2Z = 2
Mr = 551.53F(000) = 576
Triclinic, P1Dx = 1.334 Mg m3
Hall symbol: -P 1Melting point: 457(2) K
a = 10.4233 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.9113 (3) ÅCell parameters from 3152 reflections
c = 12.9940 (4) Åθ = 2.2–25.5°
α = 104.055 (2)°µ = 0.19 mm1
β = 102.555 (2)°T = 173 K
γ = 97.459 (2)°Triangular, yellow
V = 1373.04 (7) Å30.40 × 0.18 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3646 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.055
Graphite monochromatorθmax = 26.0°, θmin = 1.7°
ϕ and ω scansh = 1012
15968 measured reflectionsk = 1313
5396 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.048P)2]
where P = (Fo2 + 2Fc2)/3
5396 reflections(Δ/σ)max = 0.001
365 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C36H27NOP2γ = 97.459 (2)°
Mr = 551.53V = 1373.04 (7) Å3
Triclinic, P1Z = 2
a = 10.4233 (3) ÅMo Kα radiation
b = 10.9113 (3) ŵ = 0.19 mm1
c = 12.9940 (4) ÅT = 173 K
α = 104.055 (2)°0.40 × 0.18 × 0.12 mm
β = 102.555 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3646 reflections with I > 2σ(I)
15968 measured reflectionsRint = 0.055
5396 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.38 e Å3
5396 reflectionsΔρmin = 0.30 e Å3
365 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0632 (2)0.3597 (2)0.56267 (18)0.0339 (5)
C20.1275 (2)0.4755 (2)0.63818 (19)0.0391 (6)
H20.11110.49680.70890.047*
C30.2159 (2)0.5608 (2)0.61113 (19)0.0401 (6)
H30.25930.64070.66330.048*
C40.2414 (2)0.5308 (2)0.50922 (19)0.0347 (5)
H40.30290.59000.49210.042*
C50.1780 (2)0.41454 (19)0.43100 (17)0.0288 (5)
C60.0885 (2)0.33272 (19)0.45990 (18)0.0300 (5)
C70.0601 (2)0.1287 (2)0.40544 (18)0.0307 (5)
C80.1125 (2)0.0139 (2)0.32431 (18)0.0311 (5)
C90.1946 (2)0.0809 (2)0.34914 (19)0.0350 (5)
H90.23230.16120.29540.042*
C100.2214 (2)0.0594 (2)0.4502 (2)0.0393 (6)
H100.27650.12500.46600.047*
C110.1690 (2)0.0565 (2)0.5287 (2)0.0395 (6)
H110.18970.07090.59780.047*
C120.0863 (2)0.1525 (2)0.50796 (19)0.0341 (5)
C210.3147 (2)0.50031 (19)0.28652 (17)0.0283 (5)
C220.2595 (2)0.6054 (2)0.2703 (2)0.0390 (6)
H220.16800.60490.26920.047*
C230.3343 (2)0.7100 (2)0.2558 (2)0.0415 (6)
H230.29500.78180.24700.050*
C240.4657 (2)0.7113 (2)0.25396 (19)0.0400 (6)
H240.51710.78290.24240.048*
C250.5217 (2)0.6081 (2)0.2690 (2)0.0423 (6)
H250.61260.60840.26790.051*
C260.4479 (2)0.5037 (2)0.28585 (19)0.0351 (5)
H260.48880.43350.29710.042*
C310.3144 (2)0.24846 (18)0.31367 (17)0.0280 (5)
C320.4063 (2)0.26320 (19)0.41242 (18)0.0329 (5)
H320.41260.33450.47340.040*
C330.4891 (2)0.1757 (2)0.4233 (2)0.0401 (6)
H330.55160.18670.49160.048*
C340.4812 (2)0.0733 (2)0.3362 (2)0.0450 (6)
H340.53830.01310.34400.054*
C350.3916 (3)0.0568 (2)0.2377 (2)0.0479 (7)
H350.38720.01420.17700.057*
C360.3075 (2)0.1434 (2)0.2262 (2)0.0385 (6)
H360.24450.13090.15790.046*
C410.1440 (2)0.1688 (2)0.12171 (18)0.0346 (5)
C420.0664 (3)0.2619 (2)0.1300 (2)0.0457 (6)
H420.02340.23670.17380.055*
C430.1170 (3)0.3900 (2)0.0759 (2)0.0570 (8)
H430.06270.45250.08310.068*
C440.2466 (3)0.4270 (2)0.0113 (2)0.0568 (8)
H440.28200.51520.02630.068*
C450.3243 (3)0.3372 (2)0.0015 (2)0.0567 (7)
H450.41370.36290.04320.068*
C460.2737 (2)0.2084 (2)0.0563 (2)0.0465 (6)
H460.32880.14670.04880.056*
C510.1711 (2)0.09115 (19)0.13194 (18)0.0325 (5)
C520.1280 (2)0.1525 (2)0.0605 (2)0.0459 (6)
H520.04390.14410.04550.055*
C530.2058 (3)0.2257 (3)0.0107 (2)0.0557 (7)
H530.17460.26800.03750.067*
C540.3276 (3)0.2372 (2)0.0307 (2)0.0525 (7)
H540.38190.28580.00520.063*
C550.3718 (3)0.1792 (2)0.1020 (2)0.0453 (6)
H550.45590.18870.11660.054*
C560.2939 (2)0.1070 (2)0.15255 (19)0.0386 (6)
H560.32490.06740.20250.046*
N10.0284 (2)0.27159 (19)0.58580 (18)0.0414 (5)
H10.018 (3)0.277 (3)0.655 (2)0.079 (11)*
O10.02287 (15)0.21948 (13)0.37894 (12)0.0384 (4)
P10.20112 (5)0.36083 (5)0.29234 (5)0.03016 (16)
P20.06220 (6)0.00273 (5)0.19630 (5)0.03407 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0333 (13)0.0373 (13)0.0362 (14)0.0149 (10)0.0118 (11)0.0126 (10)
C20.0404 (14)0.0482 (14)0.0305 (14)0.0187 (11)0.0101 (11)0.0078 (11)
C30.0358 (13)0.0364 (13)0.0387 (15)0.0118 (11)0.0014 (11)0.0018 (11)
C40.0260 (12)0.0330 (12)0.0406 (14)0.0056 (9)0.0035 (10)0.0066 (10)
C50.0252 (11)0.0298 (11)0.0323 (13)0.0114 (9)0.0042 (10)0.0100 (9)
C60.0275 (11)0.0285 (11)0.0325 (13)0.0092 (9)0.0058 (10)0.0057 (9)
C70.0253 (11)0.0354 (12)0.0376 (14)0.0088 (9)0.0108 (10)0.0177 (10)
C80.0231 (11)0.0348 (12)0.0363 (13)0.0068 (9)0.0041 (10)0.0142 (10)
C90.0246 (12)0.0394 (13)0.0404 (14)0.0024 (9)0.0038 (10)0.0161 (10)
C100.0285 (12)0.0452 (14)0.0503 (16)0.0036 (10)0.0099 (11)0.0267 (12)
C110.0325 (13)0.0562 (16)0.0419 (15)0.0157 (11)0.0179 (11)0.0251 (12)
C120.0312 (12)0.0396 (13)0.0378 (14)0.0139 (10)0.0113 (11)0.0167 (11)
C210.0295 (12)0.0278 (11)0.0261 (12)0.0030 (9)0.0050 (9)0.0077 (9)
C220.0348 (13)0.0386 (13)0.0498 (16)0.0118 (10)0.0137 (11)0.0188 (11)
C230.0503 (15)0.0314 (13)0.0462 (15)0.0139 (11)0.0113 (12)0.0151 (11)
C240.0403 (14)0.0307 (12)0.0446 (15)0.0036 (10)0.0051 (11)0.0130 (11)
C250.0273 (12)0.0406 (14)0.0569 (17)0.0009 (10)0.0057 (11)0.0174 (12)
C260.0293 (12)0.0290 (12)0.0462 (15)0.0044 (9)0.0051 (11)0.0141 (10)
C310.0272 (11)0.0237 (11)0.0336 (13)0.0002 (8)0.0110 (10)0.0085 (9)
C320.0359 (13)0.0277 (11)0.0355 (14)0.0068 (9)0.0093 (11)0.0091 (9)
C330.0360 (13)0.0389 (13)0.0486 (16)0.0067 (10)0.0092 (12)0.0201 (12)
C340.0409 (14)0.0321 (13)0.0689 (19)0.0132 (11)0.0205 (14)0.0182 (12)
C350.0511 (16)0.0307 (13)0.0604 (19)0.0103 (11)0.0233 (14)0.0007 (12)
C360.0361 (13)0.0352 (13)0.0388 (14)0.0006 (10)0.0091 (11)0.0040 (10)
C410.0373 (13)0.0336 (12)0.0352 (14)0.0092 (10)0.0109 (11)0.0112 (10)
C420.0488 (15)0.0455 (15)0.0458 (16)0.0169 (12)0.0128 (13)0.0140 (12)
C430.080 (2)0.0410 (16)0.0562 (19)0.0263 (14)0.0215 (16)0.0142 (13)
C440.088 (2)0.0299 (14)0.0496 (18)0.0051 (14)0.0203 (16)0.0068 (12)
C450.0572 (17)0.0420 (15)0.0559 (18)0.0010 (13)0.0041 (14)0.0000 (13)
C460.0469 (15)0.0356 (14)0.0483 (16)0.0065 (11)0.0024 (13)0.0055 (11)
C510.0355 (13)0.0271 (11)0.0303 (13)0.0020 (9)0.0055 (10)0.0062 (9)
C520.0444 (15)0.0511 (15)0.0436 (16)0.0021 (12)0.0138 (12)0.0174 (12)
C530.0628 (19)0.0604 (18)0.0529 (18)0.0077 (14)0.0145 (15)0.0351 (14)
C540.0589 (18)0.0488 (16)0.0542 (18)0.0128 (13)0.0074 (14)0.0275 (13)
C550.0464 (15)0.0447 (14)0.0494 (17)0.0136 (12)0.0121 (13)0.0192 (12)
C560.0408 (14)0.0406 (13)0.0399 (14)0.0094 (11)0.0126 (11)0.0189 (11)
N10.0534 (13)0.0434 (12)0.0354 (13)0.0145 (10)0.0226 (11)0.0132 (10)
O10.0460 (10)0.0326 (8)0.0359 (9)0.0022 (7)0.0180 (8)0.0069 (7)
P10.0261 (3)0.0298 (3)0.0338 (3)0.0032 (2)0.0063 (3)0.0100 (2)
P20.0288 (3)0.0356 (3)0.0365 (4)0.0035 (2)0.0078 (3)0.0096 (3)
Geometric parameters (Å, º) top
C1—C21.379 (3)C31—C361.386 (3)
C1—C61.386 (3)C31—P11.836 (2)
C1—N11.398 (3)C32—C331.379 (3)
C2—C31.384 (3)C32—H320.9500
C2—H20.9500C33—C341.363 (3)
C3—C41.377 (3)C33—H330.9500
C3—H30.9500C34—C351.366 (3)
C4—C51.394 (3)C34—H340.9500
C4—H40.9500C35—C361.383 (3)
C5—C61.381 (3)C35—H350.9500
C5—P11.833 (2)C36—H360.9500
C6—O11.392 (2)C41—C461.381 (3)
C7—C81.382 (3)C41—C421.387 (3)
C7—O11.386 (2)C41—P21.826 (2)
C7—C121.387 (3)C42—C431.377 (3)
C8—C91.400 (3)C42—H420.9500
C8—P21.825 (2)C43—C441.376 (4)
C9—C101.372 (3)C43—H430.9500
C9—H90.9500C44—C451.362 (3)
C10—C111.374 (3)C44—H440.9500
C10—H100.9500C45—C461.384 (3)
C11—C121.384 (3)C45—H450.9500
C11—H110.9500C46—H460.9500
C12—N11.403 (3)C51—C521.384 (3)
C21—C261.385 (3)C51—C561.388 (3)
C21—C221.388 (3)C51—P21.828 (2)
C21—P11.831 (2)C52—C531.380 (3)
C22—C231.372 (3)C52—H520.9500
C22—H220.9500C53—C541.365 (3)
C23—C241.374 (3)C53—H530.9500
C23—H230.9500C54—C551.366 (3)
C24—C251.369 (3)C54—H540.9500
C24—H240.9500C55—C561.377 (3)
C25—C261.380 (3)C55—H550.9500
C25—H250.9500C56—H560.9500
C26—H260.9500N1—H10.86 (3)
C31—C321.384 (3)
C2—C1—C6118.3 (2)C31—C32—H32119.6
C2—C1—N1122.0 (2)C34—C33—C32120.0 (2)
C6—C1—N1119.7 (2)C34—C33—H33120.0
C1—C2—C3120.1 (2)C32—C33—H33120.0
C1—C2—H2119.9C33—C34—C35120.3 (2)
C3—C2—H2119.9C33—C34—H34119.8
C4—C3—C2120.6 (2)C35—C34—H34119.8
C4—C3—H3119.7C34—C35—C36120.1 (2)
C2—C3—H3119.7C34—C35—H35120.0
C3—C4—C5120.7 (2)C36—C35—H35120.0
C3—C4—H4119.7C35—C36—C31120.5 (2)
C5—C4—H4119.7C35—C36—H36119.8
C6—C5—C4117.2 (2)C31—C36—H36119.8
C6—C5—P1116.86 (15)C46—C41—C42117.8 (2)
C4—C5—P1125.91 (18)C46—C41—P2125.83 (17)
C5—C6—C1123.1 (2)C42—C41—P2116.31 (18)
C5—C6—O1116.04 (19)C43—C42—C41121.4 (2)
C1—C6—O1120.89 (19)C43—C42—H42119.3
C8—C7—O1115.78 (19)C41—C42—H42119.3
C8—C7—C12122.8 (2)C44—C43—C42119.7 (2)
O1—C7—C12121.38 (19)C44—C43—H43120.2
C7—C8—C9117.3 (2)C42—C43—H43120.2
C7—C8—P2116.80 (16)C45—C44—C43120.0 (2)
C9—C8—P2125.87 (17)C45—C44—H44120.0
C10—C9—C8120.8 (2)C43—C44—H44120.0
C10—C9—H9119.6C44—C45—C46120.4 (3)
C8—C9—H9119.6C44—C45—H45119.8
C9—C10—C11120.5 (2)C46—C45—H45119.8
C9—C10—H10119.7C41—C46—C45120.8 (2)
C11—C10—H10119.7C41—C46—H46119.6
C10—C11—C12120.6 (2)C45—C46—H46119.6
C10—C11—H11119.7C52—C51—C56117.8 (2)
C12—C11—H11119.7C52—C51—P2118.61 (18)
C11—C12—C7118.0 (2)C56—C51—P2123.61 (18)
C11—C12—N1122.9 (2)C53—C52—C51120.9 (2)
C7—C12—N1119.1 (2)C53—C52—H52119.6
C26—C21—C22117.61 (19)C51—C52—H52119.6
C26—C21—P1124.86 (16)C54—C53—C52120.0 (2)
C22—C21—P1117.19 (16)C54—C53—H53120.0
C23—C22—C21121.4 (2)C52—C53—H53120.0
C23—C22—H22119.3C53—C54—C55120.4 (2)
C21—C22—H22119.3C53—C54—H54119.8
C22—C23—C24120.3 (2)C55—C54—H54119.8
C22—C23—H23119.8C54—C55—C56119.7 (2)
C24—C23—H23119.8C54—C55—H55120.1
C25—C24—C23119.1 (2)C56—C55—H55120.1
C25—C24—H24120.4C55—C56—C51121.2 (2)
C23—C24—H24120.4C55—C56—H56119.4
C24—C25—C26120.8 (2)C51—C56—H56119.4
C24—C25—H25119.6C1—N1—C12119.7 (2)
C26—C25—H25119.6C1—N1—H1115 (2)
C25—C26—C21120.7 (2)C12—N1—H1119.0 (19)
C25—C26—H26119.7C7—O1—C6118.82 (17)
C21—C26—H26119.7C21—P1—C5101.96 (10)
C32—C31—C36118.29 (19)C21—P1—C31102.20 (9)
C32—C31—P1123.48 (15)C5—P1—C3199.98 (9)
C36—C31—P1118.23 (17)C8—P2—C41100.81 (10)
C33—C32—C31120.8 (2)C8—P2—C5199.93 (10)
C33—C32—H32119.6C41—P2—C51103.02 (10)
C6—C1—C2—C30.8 (3)C41—C42—C43—C440.6 (4)
N1—C1—C2—C3178.9 (2)C42—C43—C44—C450.2 (4)
C1—C2—C3—C40.5 (3)C43—C44—C45—C460.1 (4)
C2—C3—C4—C50.5 (3)C42—C41—C46—C450.4 (4)
C3—C4—C5—C60.7 (3)P2—C41—C46—C45178.5 (2)
C3—C4—C5—P1179.98 (16)C44—C45—C46—C410.0 (4)
C4—C5—C6—C12.0 (3)C56—C51—C52—C530.7 (3)
P1—C5—C6—C1178.60 (16)P2—C51—C52—C53179.29 (19)
C4—C5—C6—O1177.72 (17)C51—C52—C53—C540.7 (4)
P1—C5—C6—O11.7 (2)C52—C53—C54—C551.6 (4)
C2—C1—C6—C52.1 (3)C53—C54—C55—C561.0 (4)
N1—C1—C6—C5179.71 (19)C54—C55—C56—C510.4 (4)
C2—C1—C6—O1177.62 (18)C52—C51—C56—C551.3 (3)
N1—C1—C6—O10.6 (3)P2—C51—C56—C55179.79 (18)
O1—C7—C8—C9178.75 (17)C2—C1—N1—C12177.0 (2)
C12—C7—C8—C90.3 (3)C6—C1—N1—C124.9 (3)
O1—C7—C8—P21.3 (2)C11—C12—N1—C1174.5 (2)
C12—C7—C8—P2177.74 (16)C7—C12—N1—C15.5 (3)
C7—C8—C9—C100.1 (3)C8—C7—O1—C6174.40 (17)
P2—C8—C9—C10177.27 (16)C12—C7—O1—C64.7 (3)
C8—C9—C10—C110.7 (3)C5—C6—O1—C7174.95 (17)
C9—C10—C11—C121.3 (3)C1—C6—O1—C75.3 (3)
C10—C11—C12—C71.0 (3)C26—C21—P1—C5109.83 (19)
C10—C11—C12—N1178.9 (2)C22—C21—P1—C577.11 (18)
C8—C7—C12—C110.2 (3)C26—C21—P1—C316.7 (2)
O1—C7—C12—C11179.27 (18)C22—C21—P1—C31179.77 (17)
C8—C7—C12—N1179.68 (19)C6—C5—P1—C21175.90 (15)
O1—C7—C12—N10.7 (3)C4—C5—P1—C213.4 (2)
C26—C21—C22—C231.0 (3)C6—C5—P1—C3179.23 (17)
P1—C21—C22—C23174.60 (19)C4—C5—P1—C31101.45 (18)
C21—C22—C23—C241.9 (4)C32—C31—P1—C2173.74 (19)
C22—C23—C24—C251.3 (4)C36—C31—P1—C21106.18 (18)
C23—C24—C25—C260.0 (4)C32—C31—P1—C530.94 (19)
C24—C25—C26—C210.8 (4)C36—C31—P1—C5149.14 (17)
C22—C21—C26—C250.3 (3)C7—C8—P2—C41176.03 (16)
P1—C21—C26—C25172.73 (18)C9—C8—P2—C411.1 (2)
C36—C31—C32—C330.1 (3)C7—C8—P2—C5178.53 (17)
P1—C31—C32—C33179.82 (17)C9—C8—P2—C51104.31 (19)
C31—C32—C33—C340.2 (3)C46—C41—P2—C887.2 (2)
C32—C33—C34—C350.1 (4)C42—C41—P2—C894.69 (19)
C33—C34—C35—C360.6 (4)C46—C41—P2—C5115.8 (2)
C34—C35—C36—C310.9 (4)C42—C41—P2—C51162.34 (18)
C32—C31—C36—C350.7 (3)C52—C51—P2—C8151.05 (18)
P1—C31—C36—C35179.27 (18)C56—C51—P2—C827.4 (2)
C46—C41—C42—C430.7 (4)C52—C51—P2—C41105.31 (19)
P2—C41—C42—C43179.0 (2)C56—C51—P2—C4176.2 (2)

Experimental details

Crystal data
Chemical formulaC36H27NOP2
Mr551.53
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)10.4233 (3), 10.9113 (3), 12.9940 (4)
α, β, γ (°)104.055 (2), 102.555 (2), 97.459 (2)
V3)1373.04 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.40 × 0.18 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15968, 5396, 3646
Rint0.055
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.106, 0.95
No. of reflections5396
No. of parameters365
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.30

Computer programs: APEX2 (Bruker, 2005), SAINT-NT (Bruker, 2005), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2003) and ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

We thank Dr Manuel Fernandez for the data collection, and SASOL, THRIP and the University of KwaZulu-Natal for financial support.

References

First citationAntonio, Y., Barrera, P., Contreas, O., Verlarde, E. & Muchowski, J. M. (1989). J. Am. Chem. Soc. 54, 2159–2165.  CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClaver, C. & van Leeuwen, P. W. N. M. (2000). Rhodium Catalyzed Hydroformylation. Dordrecht: Kluwer Academic Publishers.  Google Scholar
First citationDeprele, S. & Montchamp, J.-L. (2004). Org. Lett. 6, 3805–3808.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLeeuwen, P. W. N. M. van, Sandee, A. J., Reek, J. N. H. & Kamer, P. C. J. (2002). J. Mol. Catal. A, 182–183, 107–123.  Web of Science CrossRef Google Scholar
First citationOsiński, P. W., Schürmann, M., Preut, H., Haag, R. & Eilbracht, P. (2005). Acta Cryst. E61, o3115–o3116.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPetrassi, H. M., Klabunde, T., Sacchettini, J. & Kelly, J. W. (2000). J. Am. Chem. Soc. 122, 2178–2192.  Web of Science CrossRef CAS Google Scholar
First citationRicken, S., Osiński, P. W., Eilbracht, P. & Haag, R. (2006a). J. Mol. Catal. A. 257, 78–88.  Web of Science CrossRef CAS Google Scholar
First citationRicken, S., Osinski, P. W., Schürmann, M., Preut, H. & Eilbracht, P. (2006b). Acta Cryst. E62, o1807–o1808.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRicken, S., Schürmann, M., Preut, H. & Eilbracht, P. (2006c). Acta Cryst. E62, o2637–o2638.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSandee, A. J., Reek, J. N. H., Kamer, P. C. J. & van Leeuwen, P. W. N. M. (2001). J. Am. Chem. Soc. 123, 8468–8476.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSandee, A. J., van der Veen, L. A., Reek, J. N. H., Kamer, P. C. J., Lutz, M., Spek, A. L. & van Leeuwen, P. W. N. M. (1999). Angew. Chem. Int. Ed. 38, 3231–3235.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTolman, C. A. (1977). Chem. Rev. 77, 313–348.  CrossRef CAS Web of Science Google Scholar
First citationVeen, L. A. van der, Keeven, P. H., Schoemaker, G. C., Reek, J. N. H., Kamer, P. C. J., van Leeuwen, P., Lutz, M. & Spek, A. L. (2000). Organometallics, 19, 872–883.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds