organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Methyl-N-phen­ylbenzamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, Darmstadt, D-64287, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 21 March 2008; accepted 26 March 2008; online 29 March 2008)

The conformation of the C=O bond in the structure of the title compound, C14H13NO, is anti to the meta-methyl substituent in the benzoyl ring. The conformations of the N—H and C=O bonds in the amide group are also anti to each other. The asymmetric unit of the structure contains two mol­ecules. The bond parameters are similar to those in N-(phen­yl)benzamide, 2-methyl-N-(phenyl)­benz­amide and other benzanilides. The amide group –NHCO– forms dihedral angles of 20.97 (34) and 45.65 (19)° with the benzoyl rings, and 41.54 (25) and 31.87 (29)° with the aniline rings, in the two independent mol­ecules. The benzoyl and aniline rings adopt dihedral angles of 22.17 (18) and 75.86 (12)° in the two independent mol­ecules. In the crystal structure, mol­ecules are linked into chains by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For related literature, see: Gowda et al. (2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225-230.], 2008a[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o383.],b[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o541.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13NO

  • Mr = 211.25

  • Monoclinic, P 21 /c

  • a = 16.947 (2) Å

  • b = 15.531 (1) Å

  • c = 8.623 (1) Å

  • β = 93.35 (1)°

  • V = 2265.7 (4) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.62 mm−1

  • T = 299 (2) K

  • 0.60 × 0.10 × 0.05 mm

Data collection
  • Enraf–Nonius CAD4 diffractometer

  • Absorption correction: none

  • 4339 measured reflections

  • 4039 independent reflections

  • 2466 reflections with I > 2σ(I)

  • Rint = 0.034

  • 3 standard reflections frequency: 120 min intensity decay: 1.5%

Refinement
  • R[F2 > 2σ(F2)] = 0.082

  • wR(F2) = 0.240

  • S = 1.03

  • 4039 reflections

  • 291 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 2.16 2.968 (4) 157
N2—H2N⋯O2ii 0.86 2.01 2.853 (3) 168
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4-PC Software (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC Software. Version 1.2. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC Software; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Version 6.2c. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of the substituent effects on the structures of benzanilides, in the present work, the structure of 3-methyl-N-(phenyl)benzamide (NP3MBA) has been determined (Gowda et al., 2003, 2008a,b).

The asymmetric unit of the structure of NP3MBA contains two molecules (Fig. 1). The conformation of the CO bonds are anti to the meta-methyl substituents in the benzoyl phenyl rings. The conformations of the N—H and CO bonds in the –NH—CO– groups are also anti to each other. The bond parameters in NP3MBA are similar to those in N-(phenyl)benzamide, 2-methyl-N-(phenyl)benzamide and other benzanilides (Gowda et al., 2003, 2008a,b). The amide group –NHCO– forms the dihedral angles of 20.97 (34)° (molecule 1) and 45.65(0.19) (molecule 2) with the benzoyl ring, and 41.54 (25)° (molecule 1), 31.87(0.29) (molecule 2) with the aniline ring. The benzoyl and the aniline rings have the dihedral angles of 22.17 (18)°) (molecule 1) and 75.86(0.12) (molecule 2).

The packing diagram of NP3MBA molecules showing the hydrogen bonds N1—H1N···O1, N2—H2N···O2 (Table 1) involved in the formation of molecular chain is shown in Fig. 2.

Related literature top

For related literature, see: Gowda et al. (2003, 2008a,b).

Experimental top

The title compound was prepared according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement top

The NH atom was located in difference map with N—H = 0.86 Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CAD-4-PC Software (Enraf–Nonius, 1996); cell refinement: CAD-4-PC Software (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
3-Methyl-N-phenylbenzamide top
Crystal data top
C14H13NOF(000) = 896
Mr = 211.25Dx = 1.239 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 16.947 (2) Åθ = 5.7–21.0°
b = 15.531 (1) ŵ = 0.62 mm1
c = 8.623 (1) ÅT = 299 K
β = 93.35 (1)°Long needle, colourless
V = 2265.7 (4) Å30.60 × 0.10 × 0.05 mm
Z = 8
Data collection top
Enraf–Nonius CAD4
diffractometer
Rint = 0.034
Radiation source: fine-focus sealed tubeθmax = 66.9°, θmin = 2.6°
Graphite monochromatorh = 2020
ω/2θ scansk = 118
4339 measured reflectionsl = 100
4039 independent reflections3 standard reflections every 120 min
2466 reflections with I > 2σ(I) intensity decay: 1.5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.082Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.241H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.153P)2]
where P = (Fo2 + 2Fc2)/3
4039 reflections(Δ/σ)max = 0.003
291 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C14H13NOV = 2265.7 (4) Å3
Mr = 211.25Z = 8
Monoclinic, P21/cCu Kα radiation
a = 16.947 (2) ŵ = 0.62 mm1
b = 15.531 (1) ÅT = 299 K
c = 8.623 (1) Å0.60 × 0.10 × 0.05 mm
β = 93.35 (1)°
Data collection top
Enraf–Nonius CAD4
diffractometer
Rint = 0.034
4339 measured reflections3 standard reflections every 120 min
4039 independent reflections intensity decay: 1.5%
2466 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0820 restraints
wR(F2) = 0.241H-atom parameters constrained
S = 1.03Δρmax = 0.36 e Å3
4039 reflectionsΔρmin = 0.39 e Å3
291 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.24023 (18)0.66029 (17)0.5392 (3)0.0558 (8)
N10.26569 (16)0.75059 (19)0.3424 (3)0.0399 (7)
H1N0.25620.76110.24520.048*
C10.3146 (2)0.8100 (2)0.4286 (3)0.0363 (7)
C20.3052 (2)0.8972 (2)0.3996 (4)0.0457 (9)
H20.26860.91590.32240.055*
C30.3502 (3)0.9564 (3)0.4849 (5)0.0559 (10)
H30.34351.01500.46600.067*
C40.4049 (3)0.9287 (3)0.5978 (5)0.0662 (12)
H40.43420.96870.65710.079*
C50.4163 (3)0.8422 (3)0.6235 (5)0.0611 (12)
H50.45450.82370.69800.073*
C60.3711 (2)0.7827 (3)0.5385 (4)0.0481 (9)
H60.37890.72410.55570.058*
C70.2328 (2)0.6791 (2)0.3997 (4)0.0378 (8)
C80.1875 (2)0.6216 (2)0.2875 (4)0.0382 (8)
C90.1563 (2)0.6497 (2)0.1438 (4)0.0395 (8)
H90.16200.70710.11580.047*
C100.1167 (2)0.5932 (3)0.0411 (4)0.0469 (9)
C110.1086 (2)0.5083 (3)0.0854 (5)0.0553 (10)
H110.08300.46950.01730.066*
C120.1378 (3)0.4802 (3)0.2293 (5)0.0598 (11)
H120.13080.42320.25870.072*
C130.1775 (2)0.5369 (2)0.3297 (5)0.0505 (9)
H130.19760.51770.42630.061*
C140.0866 (3)0.6228 (3)0.1174 (4)0.0639 (12)
H14A0.08740.68460.12130.077*
H14B0.03340.60270.13800.077*
H14C0.11970.60010.19420.077*
O20.26730 (16)0.32575 (17)0.0183 (3)0.0498 (7)
N20.22500 (17)0.24790 (19)0.1854 (3)0.0416 (7)
H2N0.23750.23350.27990.050*
C150.1546 (2)0.2116 (2)0.1191 (4)0.0396 (8)
C160.1310 (3)0.1321 (2)0.1709 (4)0.0538 (10)
H160.16380.10140.24130.065*
C170.0593 (3)0.0978 (3)0.1193 (5)0.0673 (13)
H170.04290.04530.15810.081*
C180.0117 (3)0.1414 (3)0.0100 (5)0.0664 (12)
H180.03650.11810.02580.080*
C190.0360 (3)0.2189 (3)0.0454 (5)0.0603 (11)
H190.00460.24770.12070.072*
C200.1070 (2)0.2549 (3)0.0098 (4)0.0453 (9)
H200.12260.30830.02680.054*
C210.2752 (2)0.3022 (2)0.1197 (4)0.0386 (8)
C220.3426 (2)0.3328 (2)0.2230 (4)0.0384 (8)
C230.3317 (2)0.3609 (2)0.3741 (4)0.0427 (8)
H230.28130.35990.41140.051*
C240.3942 (2)0.3902 (2)0.4689 (4)0.0458 (9)
C250.4691 (2)0.3895 (2)0.4135 (5)0.0503 (9)
H250.51210.40790.47720.060*
C260.4808 (2)0.3617 (3)0.2633 (5)0.0529 (10)
H260.53140.36140.22700.063*
C270.4178 (2)0.3347 (2)0.1686 (4)0.0462 (9)
H270.42570.31760.06730.055*
C280.3808 (3)0.4223 (3)0.6316 (5)0.0706 (14)
H28A0.36650.37480.69550.085*
H28B0.33910.46420.62700.085*
H28C0.42850.44830.67530.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.095 (2)0.0574 (16)0.0143 (12)0.0142 (14)0.0011 (12)0.0030 (10)
N10.0552 (17)0.0488 (16)0.0154 (12)0.0071 (14)0.0001 (12)0.0003 (11)
C10.0451 (18)0.0481 (19)0.0160 (14)0.0036 (15)0.0039 (13)0.0036 (13)
C20.056 (2)0.054 (2)0.0275 (18)0.0009 (17)0.0043 (16)0.0017 (15)
C30.076 (3)0.047 (2)0.044 (2)0.0084 (19)0.001 (2)0.0009 (17)
C40.087 (3)0.065 (3)0.045 (2)0.020 (2)0.006 (2)0.011 (2)
C50.068 (3)0.073 (3)0.040 (2)0.011 (2)0.016 (2)0.002 (2)
C60.056 (2)0.051 (2)0.037 (2)0.0034 (17)0.0014 (17)0.0017 (16)
C70.0488 (19)0.0458 (19)0.0191 (15)0.0027 (15)0.0043 (14)0.0037 (14)
C80.048 (2)0.0444 (19)0.0229 (16)0.0005 (15)0.0054 (14)0.0051 (13)
C90.0483 (19)0.0498 (19)0.0204 (16)0.0092 (16)0.0036 (14)0.0035 (14)
C100.050 (2)0.061 (2)0.0303 (19)0.0054 (17)0.0034 (16)0.0093 (16)
C110.059 (2)0.059 (2)0.047 (2)0.011 (2)0.0019 (19)0.0190 (19)
C120.079 (3)0.042 (2)0.058 (3)0.008 (2)0.005 (2)0.0042 (18)
C130.069 (3)0.045 (2)0.037 (2)0.0001 (18)0.0004 (18)0.0015 (16)
C140.069 (3)0.090 (3)0.031 (2)0.014 (2)0.0042 (19)0.008 (2)
O20.0733 (18)0.0608 (16)0.0150 (11)0.0113 (13)0.0008 (11)0.0021 (10)
N20.0548 (17)0.0534 (17)0.0163 (13)0.0067 (14)0.0002 (12)0.0036 (12)
C150.050 (2)0.050 (2)0.0192 (15)0.0040 (16)0.0036 (14)0.0074 (14)
C160.079 (3)0.052 (2)0.0304 (19)0.008 (2)0.0043 (18)0.0029 (16)
C170.088 (3)0.070 (3)0.044 (2)0.029 (3)0.006 (2)0.008 (2)
C180.066 (3)0.089 (3)0.044 (2)0.021 (2)0.003 (2)0.014 (2)
C190.062 (2)0.081 (3)0.037 (2)0.004 (2)0.0015 (19)0.008 (2)
C200.052 (2)0.058 (2)0.0252 (17)0.0003 (18)0.0017 (15)0.0019 (15)
C210.0509 (19)0.0455 (19)0.0197 (15)0.0023 (15)0.0041 (14)0.0045 (13)
C220.050 (2)0.0424 (19)0.0223 (16)0.0011 (15)0.0013 (14)0.0011 (13)
C230.052 (2)0.051 (2)0.0248 (17)0.0048 (16)0.0032 (15)0.0019 (15)
C240.060 (2)0.048 (2)0.0282 (18)0.0052 (17)0.0064 (17)0.0034 (15)
C250.054 (2)0.053 (2)0.043 (2)0.0016 (17)0.0085 (18)0.0002 (17)
C260.047 (2)0.060 (2)0.052 (2)0.0024 (18)0.0040 (18)0.0027 (19)
C270.054 (2)0.053 (2)0.0325 (19)0.0030 (17)0.0077 (16)0.0011 (16)
C280.085 (3)0.092 (3)0.034 (2)0.021 (3)0.002 (2)0.023 (2)
Geometric parameters (Å, º) top
O1—C71.237 (4)O2—C211.244 (4)
N1—C71.348 (4)N2—C211.347 (4)
N1—C11.421 (4)N2—C151.409 (4)
N1—H1N0.8600N2—H2N0.8600
C1—C61.373 (5)C15—C201.379 (5)
C1—C21.385 (5)C15—C161.382 (5)
C2—C31.379 (5)C16—C171.376 (6)
C2—H20.9300C16—H160.9300
C3—C41.373 (6)C17—C181.381 (7)
C3—H30.9300C17—H170.9300
C4—C51.373 (6)C18—C191.368 (6)
C4—H40.9300C18—H180.9300
C5—C61.384 (5)C19—C201.386 (5)
C5—H50.9300C19—H190.9300
C6—H60.9300C20—H200.9300
C7—C81.496 (5)C21—C221.484 (5)
C8—C131.378 (5)C22—C271.384 (5)
C8—C91.389 (5)C22—C231.397 (5)
C9—C101.391 (5)C23—C241.376 (5)
C9—H90.9300C23—H230.9300
C10—C111.382 (6)C24—C251.383 (6)
C10—C141.503 (5)C24—C281.519 (5)
C11—C121.380 (6)C25—C261.391 (6)
C11—H110.9300C25—H250.9300
C12—C131.382 (5)C26—C271.372 (5)
C12—H120.9300C26—H260.9300
C13—H130.9300C27—H270.9300
C14—H14A0.9600C28—H28A0.9600
C14—H14B0.9600C28—H28B0.9600
C14—H14C0.9600C28—H28C0.9600
C7—N1—C1125.7 (3)C21—N2—C15128.3 (3)
C7—N1—H1N117.1C21—N2—H2N115.8
C1—N1—H1N117.1C15—N2—H2N115.8
C6—C1—C2119.6 (3)C20—C15—C16119.2 (3)
C6—C1—N1121.5 (3)C20—C15—N2122.0 (3)
C2—C1—N1118.9 (3)C16—C15—N2118.8 (3)
C3—C2—C1120.2 (4)C17—C16—C15120.6 (4)
C3—C2—H2119.9C17—C16—H16119.7
C1—C2—H2119.9C15—C16—H16119.7
C4—C3—C2119.8 (4)C16—C17—C18120.0 (4)
C4—C3—H3120.1C16—C17—H17120.0
C2—C3—H3120.1C18—C17—H17120.0
C5—C4—C3120.3 (4)C19—C18—C17119.6 (4)
C5—C4—H4119.8C19—C18—H18120.2
C3—C4—H4119.8C17—C18—H18120.2
C4—C5—C6119.9 (4)C18—C19—C20120.6 (4)
C4—C5—H5120.0C18—C19—H19119.7
C6—C5—H5120.0C20—C19—H19119.7
C1—C6—C5120.1 (4)C15—C20—C19119.9 (4)
C1—C6—H6120.0C15—C20—H20120.0
C5—C6—H6120.0C19—C20—H20120.0
O1—C7—N1122.0 (3)O2—C21—N2123.4 (3)
O1—C7—C8120.4 (3)O2—C21—C22121.1 (3)
N1—C7—C8117.5 (3)N2—C21—C22115.5 (3)
C13—C8—C9119.3 (3)C27—C22—C23118.9 (3)
C13—C8—C7117.8 (3)C27—C22—C21119.7 (3)
C9—C8—C7123.0 (3)C23—C22—C21121.4 (3)
C8—C9—C10121.0 (3)C24—C23—C22121.2 (3)
C8—C9—H9119.5C24—C23—H23119.4
C10—C9—H9119.5C22—C23—H23119.4
C11—C10—C9118.5 (4)C23—C24—C25118.9 (3)
C11—C10—C14120.7 (4)C23—C24—C28120.4 (4)
C9—C10—C14120.8 (4)C25—C24—C28120.7 (4)
C12—C11—C10121.0 (4)C24—C25—C26120.5 (4)
C12—C11—H11119.5C24—C25—H25119.7
C10—C11—H11119.5C26—C25—H25119.7
C11—C12—C13119.9 (4)C27—C26—C25120.1 (4)
C11—C12—H12120.1C27—C26—H26120.0
C13—C12—H12120.1C25—C26—H26120.0
C8—C13—C12120.4 (4)C26—C27—C22120.4 (4)
C8—C13—H13119.8C26—C27—H27119.8
C12—C13—H13119.8C22—C27—H27119.8
C10—C14—H14A109.5C24—C28—H28A109.5
C10—C14—H14B109.5C24—C28—H28B109.5
H14A—C14—H14B109.5H28A—C28—H28B109.5
C10—C14—H14C109.5C24—C28—H28C109.5
H14A—C14—H14C109.5H28A—C28—H28C109.5
H14B—C14—H14C109.5H28B—C28—H28C109.5
C7—N1—C1—C640.6 (5)C21—N2—C15—C2032.3 (5)
C7—N1—C1—C2139.9 (4)C21—N2—C15—C16150.9 (4)
C6—C1—C2—C32.6 (5)C20—C15—C16—C172.7 (6)
N1—C1—C2—C3178.0 (3)N2—C15—C16—C17174.2 (4)
C1—C2—C3—C40.6 (6)C15—C16—C17—C182.7 (7)
C2—C3—C4—C51.6 (7)C16—C17—C18—C190.6 (7)
C3—C4—C5—C61.9 (7)C17—C18—C19—C201.5 (7)
C2—C1—C6—C52.3 (5)C16—C15—C20—C190.7 (5)
N1—C1—C6—C5178.2 (4)N2—C15—C20—C19176.2 (3)
C4—C5—C6—C10.1 (6)C18—C19—C20—C151.4 (6)
C1—N1—C7—O13.1 (6)C15—N2—C21—O23.5 (6)
C1—N1—C7—C8176.0 (3)C15—N2—C21—C22177.0 (3)
O1—C7—C8—C1321.2 (5)O2—C21—C22—C2744.0 (5)
N1—C7—C8—C13157.9 (3)N2—C21—C22—C27135.6 (3)
O1—C7—C8—C9159.5 (3)O2—C21—C22—C23135.1 (4)
N1—C7—C8—C921.4 (5)N2—C21—C22—C2345.3 (5)
C13—C8—C9—C101.4 (5)C27—C22—C23—C240.1 (5)
C7—C8—C9—C10177.9 (3)C21—C22—C23—C24179.2 (3)
C8—C9—C10—C110.4 (6)C22—C23—C24—C251.5 (6)
C8—C9—C10—C14176.9 (4)C22—C23—C24—C28178.6 (4)
C9—C10—C11—C121.1 (6)C23—C24—C25—C261.5 (6)
C14—C10—C11—C12178.4 (4)C28—C24—C25—C26178.7 (4)
C10—C11—C12—C131.6 (7)C24—C25—C26—C270.1 (6)
C9—C8—C13—C120.9 (6)C25—C26—C27—C221.7 (6)
C7—C8—C13—C12178.5 (4)C23—C22—C27—C261.7 (5)
C11—C12—C13—C80.6 (7)C21—C22—C27—C26179.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.162.968 (4)157
N2—H2N···O2ii0.862.012.853 (3)168
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H13NO
Mr211.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)299
a, b, c (Å)16.947 (2), 15.531 (1), 8.623 (1)
β (°) 93.35 (1)
V3)2265.7 (4)
Z8
Radiation typeCu Kα
µ (mm1)0.62
Crystal size (mm)0.60 × 0.10 × 0.05
Data collection
DiffractometerEnraf–Nonius CAD4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4339, 4039, 2466
Rint0.034
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.082, 0.241, 1.03
No. of reflections4039
No. of parameters291
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.39

Computer programs: CAD-4-PC Software (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.162.968 (4)156.5
N2—H2N···O2ii0.862.012.853 (3)167.7
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions to his research fellowship.

References

First citationEnraf–Nonius (1996). CAD-4-PC Software. Version 1.2. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o383.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o541.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Version 6.2c. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds