metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m566-m567

Di­aqua­(nitrato-κ2O,O′)bis­­(L-phenyl­alaninato-κ2O,O′)lead(II) nitrate

aDEP Facultad de Ciencias Químicas, UANL, Guerrero y Progreso S/N, Col. Treviño, 64570 Monterrey, NL, Mexico, and bDepartamento de Química Inorgánica y Nuclear, Facultad de Química, UNAM, 04510 México, DF, Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com

(Received 21 February 2008; accepted 12 March 2008; online 20 March 2008)

In the title complex, [Pb(C9H11NO2)2(NO3)(H2O)2]NO3, the cation is a monomeric species including zwitterionic amino­acids. In both zwitterions, rotation of the NH3+ groups about their C—N bonds is blocked by inter­molecular N—H⋯O hydrogen bonds. Assuming a limit for Pb—O bond lengths of 3 Å, the PbII ion is coordinated by eight O atoms. Each phenyl­alaninate ligand coordinates asymmetrically, with one short and one long Pb—O bond. Coordinated water mol­ecules are also found at significantly different distances, while the bidentate nitrate ion coordinates symmetrically. The resulting [PbIIO8] core is hemi-directed, with a void placed almost trans to a carboxyl­ate group. However, the 6s2 lone pair of the metal center can not be considered as stereochemically active, as a non-coordinating O atom of a nitrate belonging to a symmetry-related cation is placed in the empty hemisphere, with a short Pb⋯O separation of 3.035 (10) Å.

Related literature

A useful classification of Pb complexes into holo- and hemi-directed arrangements of ligands has been proposed by Shimoni-Livny et al. (1998[Shimoni-Livny, L., Glusker, J. P. & Bock, C. W. (1998). Inorg. Chem. 37, 1853-1867.]), which allows the prediction of the character of the Pb lone pair. A complex containing zwitterionic phenyl­alaninate has been reported (Apfelbaum-Tibika & Bino, 1984[Apfelbaum-Tibika, F. & Bino, A. (1984). Inorg. Chem. 23, 2902-2905.]). Recently, a polymeric PbII complex of neutral phenyl­alanine has been described (Marandi & Shahbakhsh, 2007[Marandi, F. & Shahbakhsh, N. (2007). Z. Anorg. Allg. Chem. 633, 1137-1139.]).

[Scheme 1]

Experimental

Crystal data
  • [Pb(C9H11NO2)2(NO3)(H2O)2]NO3

  • Mr = 697.62

  • Orthorhombic, P 21 21 21

  • a = 5.3851 (9) Å

  • b = 13.5599 (17) Å

  • c = 34.235 (4) Å

  • V = 2499.9 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.82 mm−1

  • T = 298 (1) K

  • 0.60 × 0.20 × 0.18 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: ψ scan (XSCANS; Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.160, Tmax = 0.294

  • 5243 measured reflections

  • 4948 independent reflections

  • 4026 reflections with I > 2σ(I)

  • Rint = 0.027

  • 3 standard reflections every 97 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.110

  • S = 1.06

  • 4948 reflections

  • 319 parameters

  • 18 restraints

  • H-atom parameters constrained

  • Δρmax = 1.61 e Å−3

  • Δρmin = −2.35 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1153 Friedel pairs

  • Flack parameter: −0.024 (14)

Table 1
Selected bond lengths (Å)

Pb1—O1 2.354 (7)
Pb1—O2 2.979 (6)
Pb1—O11 2.453 (7)
Pb1—O12 2.791 (7)
Pb1—O3 2.628 (8)
Pb1—O4 2.886 (6)
Pb1—O21 2.927 (12)
Pb1—O22 2.994 (11)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.92 2.25 2.956 (11) 134
N1—H1B⋯O33 0.92 2.07 2.932 (11) 155
N1—H1C⋯O32ii 0.92 1.87 2.786 (11) 173
N11—H11A⋯O22iii 0.92 1.95 2.800 (12) 152
N11—H11B⋯O33iv 0.92 1.95 2.749 (9) 145
N11—H11C⋯O12v 0.92 1.96 2.833 (11) 158
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x, y+1, z; (v) x-1, y, z.

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL-Plus; molecular graphics: SHELXTL-Plus and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL-Plus.

Supporting information


Comment top

A particular feature characterizing PbII is the role of the 6s2 lone pair, which determines the arrangement of ligands coordinating to this metal ion. A stereochemically active lone pair is reflected in a hemidirected disposition of ligands around PbII, i.e. with all coordination bonds directed throughout only one hemisphere of an encompassing globe. In such a case, the lone pair is assumed to be localized in the empty hemisphere. The opposite situation is found in holodirected PbII complexes, in which the bonds to ligand atoms are distributed isotropically around the metal center (Shimoni-Livny et al., 1998). For coordination number 8, examples of either type of stereochemistry have been found. The complex reported here, (I), may be considered as a borderline case: although the coordination geometry seems to be hemidirected, the lone pair is probably not stereochemically active.

Complex (I) was prepared and crystallized from water (see Experimental) and is a part of our general research dealing with interactions between aminoacids and PbII. The naturally occurring aminoacid L-phenlyalanine is found in its zwitterionic form, and coordinates through O atoms of the carboxylate group. The coordination is asymmetric, however, all carboxylic O atoms may be considered as bonded to the metal ion, assuming a limit for Pb—O bond lengths of 3 Å. To date, only one complex that includes zwitterionic phenylalaninate has been characterized by X-ray diffraction (Apfelbaum-Tibika & Bino, 1984). This aminoacid, in its neutral form, was recently coordinated to PbII, forming a polymeric structure (Marandi & Shahbakhsh, 2007). In (I), rotation of NH3+ groups about their C—N bonds is blocked by intermolecular N—H···O hydrogen bonds, involving nitrate and water O atoms. The cation is completed by two water molecules, found at significantly different distances, and a bidentate nitrate ion, which coordinates in a symmetric manner. The asymmetric unit contains one cation and one nitrate counter-ion (Fig. 1).

The [PbIIO8] core structure in the cation is best described as hemidirected. The equatorial plane defining the encompassing globe contains atoms Pb1/O1/O3/O4/O21 (Fig. 2, top molecule). Although atoms O2 and O22 are placed in the anti-hemisphere, they are close to the equatorial plane, since they belong to carboxylate groups forming bite angles [O1—Pb1—O2: 47.3 (2)°; O21—Pb1—O22: 42.6 (2)]. Deviations of these atoms from the mean plane Pb1/O1/O3/O4/O21 are 1.81 (O2) and 1.84 Å (O22). This arrangement for O atoms around PbII is thus consistent with the presence of a stereochemically active lone pair 6s2, placed roughly trans to the carboxylate group O11/O12. However, a careful examination of the packing structure reveals a short Pb···O intermolecular contact, involving a nitrate group of a neighboring cation (Fig. 2, bottom molecule). The contact distance is sufficiently short, 3.035 (10) Å, to impede activity for the lone pair, which is thus expected to have little p character.

Related literature top

A useful classification of Pb complexes into holo- and hemi-directed arrangements of ligands has been proposed by Shimoni-Livny et al. (1998), which allows the prediction of the character of the Pb lone pair. A complex containing zwitterionic phenylalaninate has been reported (Apfelbaum-Tibika & Bino, 1984). Recently, a polymeric PbII complex of neutral phenylalanine has been described (Marandi & Shahbakhsh, 2007).

Experimental top

An amount of Pb(NO3)2 (1 mmol, 0.331 g) was dissolved in 80 ml of previously degassed and distilled water. Solid L-phenylalanine (2 mmol, 0.330 g, Sigma) was added in small fractions with magnetic stirring, dissolving upon coordination to the metal ion. After the complete addition with continuous stirring, pH was adjusted to 5.3 by dropwise addition of 0.01 M NaOH. The solution was left to rest, and colourless needles were collected after one week.

Refinement top

In order to avoid too large differences between displacement parameters in the coordinated nitrate anion, atoms N21, O21, O22 and O23 were restrained, with a standard deviation of 0.01 Å2, to have the same Uij components. Almost all H atoms were detected in a difference map. They were however placed in idealized positions, and refined as riding to their parent atoms. Bond lengths were fixed to 0.85 (OH), 0.92 (NH), 0.93 (aromatic CH), 0.97 (methylene CH2) and 0.98 Å (methine CH). Isotropic displacement parameters were calculated as Uiso(H) = 1.2 Ueq(carrier C) for C-bonded H atoms, and Uiso(H) = 1.5 Ueq(carrier atom) otherwise. Rigid NH3 groups were allowed to rotate about their C—N bonds.

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXTL-Plus (Sheldrick, 2008); program(s) used to refine structure: SHELXTL-Plus (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL-Plus (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) showing the atom numbering scheme, with displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. Two symmetry-related molecules in the crystal structure, omitting H atoms and non-coordinated nitrate ions. The blue plane is calculated using atoms Pb1/O1/O3/O4/O21 (spheres of arbitrary radii) and corresponds to the equatorial plane defining the hemidirected ligand arrangement. The short inter-cation contact is shown as a dashed line. Symmetry code: (i) 1 + x, y, z.
Diaqua(nitrato-κ2O,O')bis(L-phenylalaninato- κ2O,O')lead(II) nitrate top
Crystal data top
[Pb(C9H11NO2)2(NO3)(H2O)2]NO3F(000) = 1360
Mr = 697.62Dx = 1.854 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 83 reflections
a = 5.3851 (9) Åθ = 4.7–14.1°
b = 13.5599 (17) ŵ = 6.82 mm1
c = 34.235 (4) ÅT = 298 K
V = 2499.9 (6) Å3Needle, colourless
Z = 40.60 × 0.20 × 0.18 mm
Data collection top
Bruker P4
diffractometer
4026 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 29.0°, θmin = 1.6°
ω scansh = 72
Absorption correction: ψ scan
(XSCANS; Siemens, 1996)
k = 118
Tmin = 0.160, Tmax = 0.294l = 146
5243 measured reflections3 standard reflections every 97 reflections
4948 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.044P)2 + 6.7647P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.110(Δ/σ)max = 0.001
S = 1.06Δρmax = 1.61 e Å3
4948 reflectionsΔρmin = 2.35 e Å3
319 parametersExtinction correction: SHELXTL-Plus (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
18 restraintsExtinction coefficient: 0.0034 (3)
0 constraintsAbsolute structure: Flack (1983), 1153 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.024 (14)
Secondary atom site location: difference Fourier map
Crystal data top
[Pb(C9H11NO2)2(NO3)(H2O)2]NO3V = 2499.9 (6) Å3
Mr = 697.62Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.3851 (9) ŵ = 6.82 mm1
b = 13.5599 (17) ÅT = 298 K
c = 34.235 (4) Å0.60 × 0.20 × 0.18 mm
Data collection top
Bruker P4
diffractometer
4026 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XSCANS; Siemens, 1996)
Rint = 0.027
Tmin = 0.160, Tmax = 0.2943 standard reflections every 97 reflections
5243 measured reflections intensity decay: 1%
4948 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.110Δρmax = 1.61 e Å3
S = 1.06Δρmin = 2.35 e Å3
4948 reflectionsAbsolute structure: Flack (1983), 1153 Friedel pairs
319 parametersAbsolute structure parameter: 0.024 (14)
18 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.77229 (7)0.50814 (2)0.280652 (9)0.04579 (14)
C10.586 (2)0.3234 (7)0.3200 (3)0.044 (2)
N10.4874 (15)0.1511 (5)0.3341 (2)0.0444 (18)
H1A0.47670.14810.30740.067*
H1B0.36830.11090.34500.067*
H1C0.64230.13030.34200.067*
O10.5070 (14)0.4129 (4)0.3202 (2)0.0543 (19)
C20.4473 (19)0.2538 (6)0.3472 (3)0.040 (2)
H2A0.26950.26890.34600.047*
O20.7618 (16)0.2944 (4)0.3007 (2)0.063 (2)
C30.542 (2)0.2689 (7)0.3900 (3)0.049 (2)
H3A0.71030.24410.39200.059*
H3B0.54570.33890.39570.059*
C40.383 (2)0.2178 (8)0.4199 (3)0.052 (3)
C50.424 (3)0.1204 (9)0.4308 (3)0.072 (3)
H5A0.55680.08610.41990.086*
C60.274 (3)0.0743 (11)0.4570 (4)0.092 (4)
H6A0.30580.00910.46380.110*
C70.081 (4)0.1218 (18)0.4732 (4)0.113 (8)
H7A0.01910.08920.49120.135*
C80.030 (3)0.2169 (18)0.4634 (4)0.105 (7)
H8A0.10510.24940.47460.127*
C90.182 (2)0.2651 (10)0.4365 (3)0.067 (3)
H9A0.14760.33000.42960.080*
C110.5983 (19)0.6746 (6)0.3283 (3)0.037 (2)
N110.2477 (15)0.7919 (4)0.3286 (2)0.0433 (16)
H11A0.29420.81340.30420.065*
H11B0.17140.84250.34190.065*
H11C0.13920.73990.32620.065*
O110.4650 (14)0.6227 (4)0.3079 (2)0.0532 (18)
C120.4715 (18)0.7594 (6)0.3506 (2)0.035 (2)
H12A0.58750.81480.35270.042*
O120.8305 (13)0.6650 (5)0.3327 (2)0.0514 (18)
C130.390 (2)0.7277 (8)0.3918 (2)0.049 (2)
H13A0.30700.78290.40430.059*
H13B0.26970.67470.38950.059*
C140.597 (2)0.6940 (8)0.4175 (3)0.055 (3)
C150.644 (3)0.5949 (10)0.4225 (4)0.085 (4)
H15A0.54480.54890.40990.102*
C160.837 (4)0.5621 (15)0.4461 (5)0.119 (6)
H16A0.87060.49510.44840.143*
C170.979 (4)0.631 (2)0.4661 (4)0.117 (8)
H17A1.10480.60920.48260.140*
C180.936 (3)0.7289 (17)0.4620 (4)0.096 (6)
H18A1.03410.77490.47500.115*
C190.742 (3)0.7592 (10)0.4377 (3)0.075 (3)
H19A0.71030.82640.43520.090*
O31.0478 (14)0.4723 (5)0.3424 (3)0.076 (2)
H311.01780.50140.36390.114*
H321.18270.44020.34020.114*
O40.8220 (16)0.6871 (5)0.23573 (17)0.0556 (18)
H410.76850.68390.21240.083*
H420.96340.71480.23710.083*
N210.290 (2)0.4320 (7)0.2286 (3)0.069 (2)
O210.314 (2)0.5177 (6)0.2350 (3)0.095 (2)
O220.465 (2)0.3712 (8)0.2319 (3)0.097 (3)
O230.0891 (19)0.3971 (8)0.2220 (3)0.094 (3)
N310.0031 (15)0.0127 (6)0.3617 (3)0.057 (2)
O310.1845 (18)0.0373 (6)0.3673 (3)0.089 (3)
O320.0270 (14)0.1025 (5)0.3546 (3)0.075 (3)
O330.2098 (14)0.0227 (5)0.3605 (3)0.074 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.0489 (2)0.03533 (16)0.05312 (19)0.00897 (17)0.01081 (17)0.00091 (13)
C10.035 (6)0.038 (4)0.057 (6)0.001 (4)0.009 (5)0.000 (4)
N10.044 (5)0.030 (3)0.059 (5)0.000 (3)0.003 (4)0.001 (3)
O10.047 (4)0.033 (3)0.082 (5)0.011 (3)0.017 (4)0.012 (3)
C20.038 (6)0.030 (4)0.051 (5)0.004 (4)0.004 (5)0.000 (4)
O20.065 (5)0.043 (3)0.080 (4)0.001 (4)0.029 (5)0.006 (3)
C30.043 (6)0.055 (5)0.047 (5)0.001 (5)0.004 (5)0.006 (4)
C40.049 (6)0.066 (6)0.041 (5)0.007 (5)0.005 (5)0.009 (4)
C50.080 (9)0.072 (7)0.064 (7)0.004 (7)0.009 (7)0.006 (6)
C60.107 (13)0.100 (9)0.068 (7)0.026 (12)0.000 (9)0.022 (7)
C70.089 (14)0.18 (2)0.073 (10)0.043 (16)0.007 (9)0.033 (12)
C80.069 (11)0.21 (2)0.042 (7)0.006 (14)0.005 (7)0.022 (10)
C90.048 (7)0.096 (8)0.057 (6)0.019 (7)0.002 (6)0.013 (5)
C110.028 (5)0.031 (4)0.051 (5)0.001 (4)0.006 (4)0.008 (4)
N110.036 (4)0.034 (3)0.060 (4)0.007 (4)0.001 (4)0.001 (3)
O110.049 (5)0.036 (3)0.075 (5)0.001 (3)0.002 (4)0.016 (3)
C120.035 (5)0.028 (3)0.043 (5)0.005 (4)0.001 (4)0.003 (3)
O120.041 (4)0.051 (4)0.062 (4)0.020 (3)0.009 (3)0.001 (3)
C130.049 (6)0.061 (6)0.037 (4)0.006 (5)0.013 (5)0.002 (4)
C140.054 (7)0.071 (7)0.039 (5)0.005 (6)0.011 (5)0.007 (5)
C150.089 (11)0.088 (9)0.078 (8)0.022 (9)0.005 (8)0.021 (7)
C160.125 (16)0.128 (14)0.103 (12)0.057 (14)0.013 (12)0.032 (11)
C170.088 (13)0.21 (3)0.049 (8)0.052 (16)0.009 (7)0.029 (11)
C180.068 (11)0.167 (18)0.052 (8)0.016 (12)0.004 (7)0.009 (9)
C190.069 (9)0.104 (8)0.052 (6)0.019 (9)0.014 (7)0.000 (5)
O30.053 (4)0.051 (4)0.124 (7)0.006 (4)0.001 (5)0.004 (5)
O40.064 (5)0.057 (4)0.046 (3)0.009 (4)0.014 (4)0.007 (3)
N210.077 (5)0.058 (4)0.071 (4)0.001 (4)0.004 (5)0.015 (3)
O210.109 (6)0.062 (4)0.113 (5)0.016 (5)0.013 (5)0.018 (4)
O220.097 (7)0.108 (6)0.086 (5)0.035 (6)0.003 (5)0.019 (5)
O230.076 (5)0.108 (6)0.099 (6)0.032 (5)0.009 (5)0.021 (5)
N310.046 (5)0.042 (4)0.083 (6)0.002 (4)0.004 (4)0.017 (4)
O310.069 (5)0.059 (4)0.137 (7)0.024 (5)0.011 (6)0.003 (5)
O320.041 (4)0.033 (3)0.151 (8)0.007 (3)0.002 (5)0.002 (4)
O330.042 (4)0.041 (3)0.138 (7)0.011 (4)0.006 (4)0.015 (4)
Geometric parameters (Å, º) top
Pb1—O12.354 (7)C11—O121.266 (12)
Pb1—O22.979 (6)C11—C121.540 (12)
Pb1—O112.453 (7)N11—C121.488 (11)
Pb1—O122.791 (7)N11—H11A0.9200
Pb1—O32.628 (8)N11—H11B0.9200
Pb1—O42.886 (6)N11—H11C0.9200
Pb1—O212.927 (12)C12—C131.541 (12)
Pb1—O222.994 (11)C12—H12A0.9800
C1—O21.217 (12)C13—C141.490 (15)
C1—O11.287 (11)C13—H13A0.9700
C1—C21.522 (13)C13—H13B0.9700
N1—C21.479 (10)C14—C191.370 (16)
N1—H1A0.9200C14—C151.380 (16)
N1—H1B0.9200C15—C161.39 (2)
N1—H1C0.9200C15—H15A0.9300
C2—C31.566 (13)C16—C171.38 (3)
C2—H2A0.9800C16—H16A0.9300
C3—C41.503 (15)C17—C181.36 (3)
C3—H3A0.9700C17—H17A0.9300
C3—H3B0.9700C18—C191.40 (2)
C4—C91.379 (15)C18—H18A0.9300
C4—C51.390 (16)C19—H19A0.9300
C5—C61.359 (18)O3—H310.8500
C5—H5A0.9300O3—H320.8500
C6—C71.34 (3)O4—H410.8501
C6—H6A0.9300O4—H420.8500
C7—C81.36 (3)N21—O211.189 (11)
C7—H7A0.9300N21—O231.203 (14)
C8—C91.40 (2)N21—O221.257 (13)
C8—H8A0.9300N31—O311.204 (11)
C9—H9A0.9300N31—O331.243 (11)
C11—O111.225 (12)N31—O321.249 (11)
O1—Pb1—O1173.7 (2)C8—C7—H7A119.7
O1—Pb1—O377.2 (3)C7—C8—C9119.1 (18)
O11—Pb1—O3101.1 (2)C7—C8—H8A120.5
O1—Pb1—O1296.8 (2)C9—C8—H8A120.5
O11—Pb1—O1249.5 (2)C4—C9—C8121.0 (14)
O3—Pb1—O1264.2 (2)C4—C9—H9A119.5
O1—Pb1—O4145.5 (2)C8—C9—H9A119.5
O11—Pb1—O474.5 (2)O11—C11—O12126.0 (10)
O3—Pb1—O4122.1 (2)O11—C11—C12116.9 (9)
O12—Pb1—O471.87 (19)O12—C11—C12117.2 (10)
O1—Pb1—O2179.6 (3)C12—N11—H11A109.5
O11—Pb1—O2166.8 (2)C12—N11—H11B109.5
O3—Pb1—O21156.2 (3)H11A—N11—H11B109.5
O12—Pb1—O21113.7 (2)C12—N11—H11C109.5
O4—Pb1—O2175.9 (2)H11A—N11—H11C109.5
O1—Pb1—O247.3 (2)H11B—N11—H11C109.5
O11—Pb1—O2121.0 (2)C11—O11—Pb1100.7 (6)
O3—Pb1—O269.2 (2)N11—C12—C13108.4 (8)
O12—Pb1—O2126.6 (2)N11—C12—C11109.3 (7)
O4—Pb1—O2160.55 (19)C13—C12—C11111.9 (7)
O21—Pb1—O298.6 (2)N11—C12—H12A109.1
O1—Pb1—O2269.2 (3)C13—C12—H12A109.1
O11—Pb1—O22103.4 (3)C11—C12—H12A109.1
O3—Pb1—O22130.2 (3)C11—O12—Pb183.8 (7)
O12—Pb1—O22152.9 (2)C14—C13—C12114.3 (9)
O4—Pb1—O22106.0 (3)C14—C13—H13A108.7
O21—Pb1—O2242.6 (2)C12—C13—H13A108.7
O2—Pb1—O2261.0 (3)C14—C13—H13B108.7
O2—C1—O1124.4 (9)C12—C13—H13B108.7
O2—C1—C2120.9 (8)H13A—C13—H13B107.6
O1—C1—C2114.7 (9)C19—C14—C15117.3 (12)
C2—N1—H1A109.5C19—C14—C13121.9 (11)
C2—N1—H1B109.5C15—C14—C13120.8 (12)
H1A—N1—H1B109.5C14—C15—C16121.6 (17)
C2—N1—H1C109.5C14—C15—H15A119.2
H1A—N1—H1C109.5C16—C15—H15A119.2
H1B—N1—H1C109.5C17—C16—C15119.1 (18)
C1—O1—Pb1108.2 (6)C17—C16—H16A120.5
N1—C2—C1109.1 (7)C15—C16—H16A120.5
N1—C2—C3111.0 (8)C18—C17—C16120.9 (19)
C1—C2—C3109.3 (8)C18—C17—H17A119.6
N1—C2—H2A109.1C16—C17—H17A119.6
C1—C2—H2A109.1C17—C18—C19118.5 (18)
C3—C2—H2A109.1C17—C18—H18A120.8
C1—O2—Pb180.0 (5)C19—C18—H18A120.8
C4—C3—C2113.2 (9)C14—C19—C18122.6 (14)
C4—C3—H3A108.9C14—C19—H19A118.7
C2—C3—H3A108.9C18—C19—H19A118.7
C4—C3—H3B108.9Pb1—O3—H31120.1
C2—C3—H3B108.9Pb1—O3—H32120.5
H3A—C3—H3B107.8H31—O3—H32118.4
C9—C4—C5117.2 (12)Pb1—O4—H41115.2
C9—C4—C3120.8 (11)Pb1—O4—H42115.0
C5—C4—C3121.9 (11)H41—O4—H42112.3
C6—C5—C4121.3 (13)O21—N21—O23120.9 (13)
C6—C5—H5A119.4O21—N21—O22123.0 (14)
C4—C5—H5A119.4O23—N21—O22115.8 (10)
C7—C6—C5120.8 (16)N21—O21—Pb198.3 (9)
C7—C6—H6A119.6N21—O22—Pb193.3 (7)
C5—C6—H6A119.6O31—N31—O33122.4 (9)
C6—C7—C8120.7 (17)O31—N31—O32119.8 (9)
C6—C7—H7A119.7O33—N31—O32117.7 (9)
O2—C1—O1—Pb13.4 (14)O11—C11—C12—N1128.1 (11)
C2—C1—O1—Pb1174.9 (7)O12—C11—C12—N11151.7 (9)
O11—Pb1—O1—C1177.6 (8)O11—C11—C12—C1391.9 (11)
O3—Pb1—O1—C171.9 (7)O12—C11—C12—C1388.3 (11)
O12—Pb1—O1—C1133.3 (7)O11—C11—O12—Pb10.7 (11)
O4—Pb1—O1—C1158.9 (6)C12—C11—O12—Pb1179.1 (7)
O21—Pb1—O1—C1113.7 (7)O1—Pb1—O12—C1162.1 (6)
O2—Pb1—O1—C11.6 (6)O11—Pb1—O12—C110.4 (6)
O22—Pb1—O1—C170.7 (7)O3—Pb1—O12—C11134.3 (7)
O2—C1—C2—N122.5 (14)O4—Pb1—O12—C1184.4 (6)
O1—C1—C2—N1159.1 (9)O21—Pb1—O12—C1119.5 (7)
O2—C1—C2—C399.1 (11)O2—Pb1—O12—C11102.5 (6)
O1—C1—C2—C379.4 (12)O22—Pb1—O12—C115.4 (9)
O1—C1—O2—Pb12.6 (11)N11—C12—C13—C14179.4 (8)
C2—C1—O2—Pb1175.7 (10)C11—C12—C13—C1460.0 (11)
O1—Pb1—O2—C11.6 (7)C12—C13—C14—C1982.9 (12)
O11—Pb1—O2—C10.7 (7)C12—C13—C14—C1599.1 (12)
O3—Pb1—O2—C190.0 (7)C19—C14—C15—C162.2 (19)
O12—Pb1—O2—C159.6 (7)C13—C14—C15—C16179.6 (12)
O4—Pb1—O2—C1140.7 (8)C14—C15—C16—C172 (2)
O21—Pb1—O2—C168.7 (7)C15—C16—C17—C182 (3)
O22—Pb1—O2—C189.3 (7)C16—C17—C18—C191 (3)
N1—C2—C3—C470.6 (11)C15—C14—C19—C181.6 (18)
C1—C2—C3—C4169.0 (9)C13—C14—C19—C18179.8 (11)
C2—C3—C4—C989.2 (11)C17—C18—C19—C141 (2)
C2—C3—C4—C587.8 (13)O23—N21—O21—Pb1155.0 (10)
C9—C4—C5—C60.8 (18)O22—N21—O21—Pb118.1 (12)
C3—C4—C5—C6177.9 (11)O1—Pb1—O21—N2161.2 (8)
C4—C5—C6—C70 (2)O11—Pb1—O21—N21137.8 (8)
C5—C6—C7—C81 (2)O3—Pb1—O21—N2174.7 (9)
C6—C7—C8—C90 (2)O12—Pb1—O21—N21154.2 (7)
C5—C4—C9—C80.9 (17)O4—Pb1—O21—N21143.3 (8)
C3—C4—C9—C8178.1 (11)O2—Pb1—O21—N2117.7 (8)
C7—C8—C9—C40 (2)O22—Pb1—O21—N219.3 (7)
O12—C11—O11—Pb10.8 (12)O21—N21—O22—Pb117.6 (12)
C12—C11—O11—Pb1179.0 (6)O23—N21—O22—Pb1155.9 (9)
O1—Pb1—O11—C11114.7 (6)O1—Pb1—O22—N2188.6 (7)
O3—Pb1—O11—C1141.7 (6)O11—Pb1—O22—N2122.1 (7)
O12—Pb1—O11—C110.4 (6)O3—Pb1—O22—N21139.5 (7)
O4—Pb1—O11—C1178.8 (6)O12—Pb1—O22—N2126.0 (11)
O21—Pb1—O11—C11159.8 (7)O4—Pb1—O22—N2155.3 (7)
O2—Pb1—O11—C11114.0 (6)O21—Pb1—O22—N218.7 (6)
O22—Pb1—O11—C11178.0 (6)O2—Pb1—O22—N21140.4 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.922.252.956 (11)134
N1—H1B···O330.922.072.932 (11)155
N1—H1C···O32ii0.921.872.786 (11)173
N11—H11A···O22iii0.921.952.800 (12)152
N11—H11B···O33iv0.921.952.749 (9)145
N11—H11C···O12v0.921.962.833 (11)158
O3—H32···O1ii0.851.912.710 (11)156
O4—H42···O2vi0.852.242.949 (10)140
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y+1/2, z+1/2; (iv) x, y+1, z; (v) x1, y, z; (vi) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Pb(C9H11NO2)2(NO3)(H2O)2]NO3
Mr697.62
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)5.3851 (9), 13.5599 (17), 34.235 (4)
V3)2499.9 (6)
Z4
Radiation typeMo Kα
µ (mm1)6.82
Crystal size (mm)0.60 × 0.20 × 0.18
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionψ scan
(XSCANS; Siemens, 1996)
Tmin, Tmax0.160, 0.294
No. of measured, independent and
observed [I > 2σ(I)] reflections
5243, 4948, 4026
Rint0.027
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.110, 1.06
No. of reflections4948
No. of parameters319
No. of restraints18
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.61, 2.35
Absolute structureFlack (1983), 1153 Friedel pairs
Absolute structure parameter0.024 (14)

Computer programs: XSCANS (Siemens, 1996), SHELXTL-Plus (Sheldrick, 2008) and Mercury (Macrae et al., 2006).

Selected bond lengths (Å) top
Pb1—O12.354 (7)Pb1—O32.628 (8)
Pb1—O22.979 (6)Pb1—O42.886 (6)
Pb1—O112.453 (7)Pb1—O212.927 (12)
Pb1—O122.791 (7)Pb1—O222.994 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.922.252.956 (11)133.6
N1—H1B···O330.922.072.932 (11)155.2
N1—H1C···O32ii0.921.872.786 (11)172.6
N11—H11A···O22iii0.921.952.800 (12)151.9
N11—H11B···O33iv0.921.952.749 (9)144.6
N11—H11C···O12v0.921.962.833 (11)157.7
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y+1/2, z+1/2; (iv) x, y+1, z; (v) x1, y, z.
 

Acknowledgements

SB is grateful to Universidad Autónoma de Puebla (Mexico) for diffractometer time.

References

First citationApfelbaum-Tibika, F. & Bino, A. (1984). Inorg. Chem. 23, 2902–2905.  CSD CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarandi, F. & Shahbakhsh, N. (2007). Z. Anorg. Allg. Chem. 633, 1137–1139.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimoni-Livny, L., Glusker, J. P. & Bock, C. W. (1998). Inorg. Chem. 37, 1853–1867.  Web of Science CrossRef CAS Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m566-m567
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds