organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1H-1,2,3-Benzotriazol-1-yl)-N′-cyclo­pentyl­ideneacetohydrazide

aDepartment of Chemistry, Taishan University, 271021 Taian, Shandong, People's Republic of China, and bDepartment of Materials Science and Chemical Engineering, Taishan University, 271021 Taian, Shandong, People's Republic of China
*Correspondence e-mail: jiningning16@163.com

(Received 11 December 2007; accepted 28 February 2008; online 5 March 2008)

The title compound, C13H15N5O, was synthesized by the reaction of 2-(1H-1,2,3-benzotriazol-1-yl)acetohydrazide with cyclo­penta­none. In the cyclopentane ring, two C atoms and their attached H atoms are disordered over two positions; the site occupancy factors are ca 0.63 and 0.37. In the crystal structure, mol­ecules are linked into infinite chains directed along the b axis by N—H⋯O hydrogen bonds. In addition, there are weak C—H⋯O and C—H⋯N hydrogen bonds, as well as C—H⋯π-ring inter­actions in the structure.

Related literature

For related literature, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Garnovskii et al. (1993[Garnovskii, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]); Anderson et al. (1997[Anderson, O. P., la Cour, A. L., Findeisen, M., Hennig, L., Simonsen, O., Taylor, L. & Toftlund, H. (1997). J. Chem. Soc. Dalton Trans. pp. 111-120.]); Müller et al. (2006[Müller, P., Herbst-Irmer, R., Spek, A., Schneider, T. & Wawaya, M. (2006). Crystal Structure Refinement. A Crystallographer's Guide to SHELXL, p. 64. Texts on Crystallography. IUCr/Oxford Univ. Press.]); Musie et al. (2001[Musie, G. T., Wei, M., Subramaniam, B. & Busch, D. H. (2001). Inorg. Chem. 40, 3336-3341.]); Xu et al. (2002[Xu, L.-Z., Zhang, S.-S., Li, H.-J. & Jiao, K. (2002). Chem. Res. Chin. Univ. 18, 284-286.]); Ghosh et al. (2002[Ghosh, A. K., Kamar, K. K., Paul, P., Peng, S. M., Lee, G. H. & Goswami, S. (2002). Inorg. Chem. 41, 6343-6350.]); Shi et al. (2007[Shi, Z.-Q., Ji, N.-N., Zheng, Z.-B. & Li, J.-K. (2007). Acta Cryst. E63, o4561.]); Yang (2006[Yang, D.-S. (2006). Acta Cryst. E62, o1591-o1592.]).

[Scheme 1]

Experimental

Crystal data
  • C13H15N5O

  • Mr = 257.30

  • Monoclinic, P 21 /c

  • a = 11.926 (3) Å

  • b = 9.126 (2) Å

  • c = 12.095 (3) Å

  • β = 93.174 (5)°

  • V = 1314.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 (2) K

  • 0.32 × 0.24 × 0.11 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.972, Tmax = 0.990

  • 6723 measured reflections

  • 2323 independent reflections

  • 1114 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.170

  • S = 1.01

  • 2323 reflections

  • 173 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯O1i 0.86 2.17 2.910 (3) 144
C7—H7B⋯O1i 0.97 2.58 3.435 (4) 147
C7—H7B⋯N5i 0.97 2.51 3.372 (4) 147
C13—H13ACg1ii 0.97 2.79 3.729 (4) 163
C12′—H12CCg2ii 0.97 2.99 3.820 (19) 145
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1 and Cg2 are the centroids of the N1,N2,N3,C1,C2 and C1–C6 rings, respectively.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, a number of Schiff-bases have been investigated because of their interesting coordination chemistry (Garnovskii et al., 1993; Musie et al., 2001; Ghosh et al., 2002; Shi et al., 2007) as well as due to their importance in biological systems (Anderson et al., 1997). The Schiff-bases containing the triazole group have attracted much attention because they exhibit potential bioactivities (Xu et al., 2002). In order to search for new triazole compounds with higher bioactivity, the title compound was synthesized and its crystal structure determined (Fig. 1 and Fig. 2). The bond lengths and angles are in good agreement with the expected values (Allen et al., 1987). In the crystal structure, the molecules are linked into infinite chains by the N—H···O hydrogen bonds. In addition, there are also present weak C—H···O and C—H···N hydrogen bonds as well as C—H···π-ring interactions (Tab. 1). Cg1 and Cg2 are the centroids pertinent to the rings N1\N2\N3\C1\C2 and C1\C2\···C6, respectively.

Related literature top

For related literature, see: Allen (2002); Allen et al. (1987); Garnovskii et al. (1993); Anderson et al. (1997); Müller et al. (2006); Musie et al. (2001); Xu et al. (2002); Ghosh et al. (2002); Shi et al. (2007); Yang (2006).

Experimental top

The title compound was synthesized by the reaction of 2-(1H-1,2,3-benzotriazol-1-yl)acetohydrazide (1 mmol, 191.2 mg) with cyclopentanone (1 mmol, 84.1 mg) in ethanol (25 ml). The mixture was refluxed at 338 K for 4 h until a clear solution occurred. After ten days, colourless block crystals with approx. size 0.3 × 0.2 × 0.1 mm suitable for X-ray diffraction study were obtained. Yield, 257.3 mg, 87%. m. p. 490–492 K.

Analysis calculated for C13H15N5O: C 60.69, H 5.88, N 27.22%; found: C 60.66, H 5.82, N 27.17%.

Refinement top

The majority of the H atoms could have been determined in the difference Fourier maps with exception of the disordered atoms C11, C11', C12 and C12'. During the refinement the H atoms were situated into idealized positions, constrained and refined as riding atoms. The constraints: Caryl—H = 0.93; Cmethylene—H = 0.97 Å, N—H = 0.86 Å; Uiso(H) = 1.2 Ueq(carrier atom). The disorder was treated with the following constraints and restraints: The anisotropic displacement parameters of the pairs of the atoms C11, C11' and C12, C12' were set equal by the command EADP (Sheldrick, 2008). The corresponding interatomic distances C11—C12 and C11'-C12' were restrained to 1.485 (10) Å while the distances C10—C11, C10—C11', C12—C13, C12'-C13 were restrained to 1.520 (10) Å. (The values of these distances were excerpted from the Cambridge Crystal Structure Database (Allen, 2002) for the structures that contained the similar fragment –N?cyclopentane as it is contained in the title structure. The searched structures were without disorder, errors and with R-factor < 0.05. 4 structures with the following REFCODES were found: HULJON, KERWUA, NAQSAZ and RAKHUH.) In addition, for the disordered parts the restrain SAME has been applied (Müller et al., 2006; Sheldrick, 2008). The respective occupancies were refined to 0.628 (9) and to 0.372 (9).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal structure of the title compounds showing the infinite chains interconnected via the H—H···O hydrogen bonds. The dashed lines indicate the hydrogen bonds.
2-(1H-1,2,3-Benzotriazol-1-yl)-N'-cyclopentylideneacetohydrazide top
Crystal data top
C13H15N5OF(000) = 544
Mr = 257.30Dx = 1.300 Mg m3
Monoclinic, P21/cMelting point = 490–492 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.926 (3) ÅCell parameters from 526 reflections
b = 9.126 (2) Åθ = 2.8–19.1°
c = 12.095 (3) ŵ = 0.09 mm1
β = 93.174 (5)°T = 295 K
V = 1314.4 (5) Å3Block, colorless
Z = 40.32 × 0.24 × 0.11 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2323 independent reflections
Radiation source: fine-focus sealed tube1114 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ϕ and ω scansθmax = 25.1°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.972, Tmax = 0.990k = 1010
6723 measured reflectionsl = 814
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.071P)2]
where P = (Fo2 + 2Fc2)/3
2323 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.17 e Å3
7 restraintsΔρmin = 0.26 e Å3
74 constraints
Crystal data top
C13H15N5OV = 1314.4 (5) Å3
Mr = 257.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.926 (3) ŵ = 0.09 mm1
b = 9.126 (2) ÅT = 295 K
c = 12.095 (3) Å0.32 × 0.24 × 0.11 mm
β = 93.174 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2323 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1114 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.990Rint = 0.065
6723 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0607 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 1.01Δρmax = 0.17 e Å3
2323 reflectionsΔρmin = 0.26 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.45566 (18)0.0903 (2)0.2935 (2)0.0720 (8)
N10.2040 (3)0.0346 (3)0.4948 (3)0.0758 (10)
N20.3131 (3)0.0413 (3)0.4947 (2)0.0687 (9)
N30.3419 (2)0.1243 (3)0.4072 (2)0.0525 (7)
N40.55577 (19)0.0916 (3)0.2198 (2)0.0533 (8)
H40.58280.17850.22870.064*
N50.5824 (2)0.0084 (3)0.1280 (2)0.0589 (8)
C10.2485 (3)0.1717 (3)0.3495 (3)0.0502 (9)
C20.1608 (3)0.1146 (4)0.4060 (3)0.0603 (10)
C30.0492 (3)0.1441 (5)0.3729 (4)0.0807 (12)
H30.01030.10540.40990.097*
C40.0325 (3)0.2335 (5)0.2823 (4)0.0862 (13)
H4A0.04070.25690.25790.103*
C50.1217 (3)0.2910 (4)0.2253 (3)0.0779 (12)
H50.10610.35110.16430.094*
C60.2317 (3)0.2607 (4)0.2572 (3)0.0613 (10)
H60.29120.29780.21920.074*
C70.4582 (2)0.1429 (3)0.3833 (3)0.0534 (9)
H7A0.50550.12610.44990.064*
H7B0.47060.24250.35870.064*
C80.4891 (2)0.0361 (3)0.2940 (3)0.0493 (8)
C90.6663 (3)0.0541 (3)0.0777 (3)0.0529 (9)
C100.7449 (3)0.1752 (4)0.1090 (3)0.0871 (13)
H10A0.77010.16830.18650.104*
H10B0.70940.26970.09590.104*
C130.7025 (3)0.0176 (4)0.0264 (3)0.0703 (11)
H13A0.72800.11700.01160.084*
H13B0.64090.02030.08230.084*
C110.8426 (3)0.1542 (4)0.0347 (3)0.116 (2)0.628 (9)
H11A0.87250.24790.01260.139*0.628 (9)
H11B0.90220.09820.07250.139*0.628 (9)
C120.7939 (3)0.0729 (4)0.0628 (3)0.122 (4)0.628 (9)
H12A0.76590.14120.11930.147*0.628 (9)
H12B0.85080.01190.09390.147*0.628 (9)
C11'0.8241 (12)0.1710 (16)0.0129 (13)0.116 (2)0.372 (9)
H11C0.79580.23370.04710.139*0.372 (9)
H11D0.89850.20440.03760.139*0.372 (9)
C12'0.8279 (9)0.0159 (18)0.0244 (18)0.122 (4)0.372 (9)
H12C0.87070.04540.02800.147*0.372 (9)
H12D0.85760.00680.09710.147*0.372 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0847 (17)0.0349 (13)0.100 (2)0.0061 (12)0.0413 (15)0.0016 (12)
N10.081 (2)0.061 (2)0.090 (3)0.0051 (17)0.037 (2)0.0106 (19)
N20.080 (2)0.0599 (19)0.068 (2)0.0112 (16)0.0267 (17)0.0135 (16)
N30.0573 (17)0.0441 (16)0.0577 (18)0.0037 (14)0.0164 (15)0.0029 (14)
N40.0522 (16)0.0376 (15)0.072 (2)0.0079 (12)0.0153 (15)0.0014 (14)
N50.0638 (19)0.0484 (17)0.0662 (19)0.0058 (14)0.0187 (16)0.0038 (15)
C10.050 (2)0.048 (2)0.054 (2)0.0047 (16)0.0128 (18)0.0080 (19)
C20.059 (2)0.053 (2)0.071 (3)0.0009 (19)0.023 (2)0.009 (2)
C30.061 (3)0.089 (3)0.095 (3)0.009 (2)0.029 (2)0.020 (3)
C40.050 (2)0.123 (4)0.086 (3)0.003 (2)0.006 (2)0.021 (3)
C50.071 (3)0.096 (3)0.066 (3)0.014 (2)0.005 (2)0.003 (2)
C60.060 (2)0.068 (2)0.056 (2)0.0048 (19)0.0079 (19)0.002 (2)
C70.053 (2)0.0397 (18)0.069 (2)0.0004 (16)0.0123 (17)0.0030 (18)
C80.0459 (19)0.0354 (18)0.068 (2)0.0037 (15)0.0118 (17)0.0063 (17)
C90.051 (2)0.048 (2)0.061 (2)0.0030 (16)0.0114 (18)0.0065 (18)
C100.075 (3)0.073 (3)0.117 (4)0.026 (2)0.042 (3)0.015 (2)
C130.069 (2)0.073 (3)0.071 (3)0.001 (2)0.015 (2)0.004 (2)
C110.090 (4)0.104 (4)0.159 (6)0.037 (3)0.068 (4)0.032 (4)
C120.105 (5)0.148 (9)0.119 (8)0.039 (5)0.058 (5)0.038 (7)
C11'0.090 (4)0.104 (4)0.159 (6)0.037 (3)0.068 (4)0.032 (4)
C12'0.105 (5)0.148 (9)0.119 (8)0.039 (5)0.058 (5)0.038 (7)
Geometric parameters (Å, º) top
O1—C81.220 (3)C7—H7B0.9700
N1—N21.302 (4)C9—C101.484 (4)
N1—C21.375 (4)C9—C131.503 (4)
N2—N31.361 (3)C10—C111.522 (4)
N3—C11.352 (4)C10—C11'1.538 (8)
N3—C71.443 (3)C10—H10A0.9700
N4—C81.332 (3)C10—H10B0.9700
N4—N51.397 (3)C13—C121.4555
N4—H40.8604C13—C12'1.526 (9)
N5—C91.270 (4)C13—H13A0.9700
C1—C21.383 (4)C13—H13B0.9700
C1—C61.387 (4)C11—C121.4841
C2—C31.395 (5)C11—H11A0.9700
C3—C41.372 (5)C11—H11B0.9700
C3—H30.9300C12—H12A0.9700
C4—C51.401 (5)C12—H12B0.9700
C4—H4A0.9300C11'—C12'1.487 (9)
C5—C61.374 (5)C11'—H11C0.9700
C5—H50.9300C11'—H11D0.9700
C6—H60.9300C12'—H12C0.9700
C7—C81.516 (4)C12'—H12D0.9700
C7—H7A0.9700
N2—N1—C2107.8 (3)C9—C10—C11'101.2 (6)
N1—N2—N3108.8 (3)C9—C10—H10A110.9
C1—N3—N2110.1 (3)C11—C10—H10A110.9
C1—N3—C7129.2 (3)C11'—C10—H10A123.9
N2—N3—C7120.6 (3)C9—C10—H10B110.9
C8—N4—N5120.0 (3)C11—C10—H10B110.9
C8—N4—H4120.0C11'—C10—H10B100.3
N5—N4—H4120.0H10A—C10—H10B108.9
C9—N5—N4115.0 (3)C12—C13—C9105.08 (18)
N3—C1—C2104.4 (3)C9—C13—C12'103.0 (7)
N3—C1—C6133.0 (3)C12—C13—H13A110.7
C2—C1—C6122.6 (3)C9—C13—H13A110.7
N1—C2—C1109.0 (3)C12'—C13—H13A83.5
N1—C2—C3129.6 (4)C12—C13—H13B110.7
C1—C2—C3121.4 (4)C9—C13—H13B110.7
C4—C3—C2116.0 (4)C12'—C13—H13B136.0
C4—C3—H3122.0H13A—C13—H13B108.8
C2—C3—H3122.0C12—C11—C10104.7 (2)
C3—C4—C5122.3 (4)C12—C11—H11A110.8
C3—C4—H4A118.9C10—C11—H11A111.0
C5—C4—H4A118.9C12—C11—H11B110.8
C6—C5—C4121.7 (4)C10—C11—H11B110.7
C6—C5—H5119.1H11A—C11—H11B108.9
C4—C5—H5119.1C13—C12—C11108.1
C5—C6—C1115.9 (3)C13—C12—H12A110.1
C5—C6—H6122.0C11—C12—H12A110.1
C1—C6—H6122.0C13—C12—H12B110.1
N3—C7—C8110.0 (2)C11—C12—H12B110.1
N3—C7—H7A109.7H12A—C12—H12B108.4
C8—C7—H7A109.7C12'—C11'—C10106.4 (10)
N3—C7—H7B109.7C12'—C11'—H11C110.4
C8—C7—H7B109.7C10—C11'—H11C110.4
H7A—C7—H7B108.2C12'—C11'—H11D110.4
O1—C8—N4124.3 (3)C10—C11'—H11D110.4
O1—C8—C7121.3 (3)H11C—C11'—H11D108.6
N4—C8—C7114.4 (3)C11'—C12'—C1398.6 (10)
N5—C9—C10128.7 (3)C11'—C12'—H12C112.1
N5—C9—C13121.9 (3)C11'—C12'—H12D112.1
C10—C9—C13109.4 (3)C13—C12'—H12D112.1
C9—C10—C11104.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O1i0.862.172.910 (3)144
C7—H7B···O1i0.972.583.435 (4)147
C7—H7B···N5i0.972.513.372 (4)147
C13—H13A···Cg1ii0.972.793.729 (4)163
C12—H12C···Cg2ii0.972.993.820 (19)145
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H15N5O
Mr257.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)11.926 (3), 9.126 (2), 12.095 (3)
β (°) 93.174 (5)
V3)1314.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.32 × 0.24 × 0.11
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.972, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
6723, 2323, 1114
Rint0.065
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.170, 1.01
No. of reflections2323
No. of parameters173
No. of restraints7
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.26

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O1i0.862.172.910 (3)144
C7—H7B···O1i0.972.583.435 (4)147
C7—H7B···N5i0.972.513.372 (4)147
C13—H13A···Cg1ii0.972.793.729 (4)163
C12'—H12C···Cg2ii0.972.993.820 (19)145
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

This project was supported by the Postgraduate Foundation of Taishan University (grant No. Y06-2-08).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAnderson, O. P., la Cour, A. L., Findeisen, M., Hennig, L., Simonsen, O., Taylor, L. & Toftlund, H. (1997). J. Chem. Soc. Dalton Trans. pp. 111–120.  CSD CrossRef Web of Science Google Scholar
First citationGarnovskii, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  CrossRef CAS Web of Science Google Scholar
First citationGhosh, A. K., Kamar, K. K., Paul, P., Peng, S. M., Lee, G. H. & Goswami, S. (2002). Inorg. Chem. 41, 6343–6350.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMüller, P., Herbst-Irmer, R., Spek, A., Schneider, T. & Wawaya, M. (2006). Crystal Structure Refinement. A Crystallographer's Guide to SHELXL, p. 64. Texts on Crystallography. IUCr/Oxford Univ. Press.  Google Scholar
First citationMusie, G. T., Wei, M., Subramaniam, B. & Busch, D. H. (2001). Inorg. Chem. 40, 3336–3341.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Z.-Q., Ji, N.-N., Zheng, Z.-B. & Li, J.-K. (2007). Acta Cryst. E63, o4561.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationXu, L.-Z., Zhang, S.-S., Li, H.-J. & Jiao, K. (2002). Chem. Res. Chin. Univ. 18, 284–286.  Google Scholar
First citationYang, D.-S. (2006). Acta Cryst. E62, o1591–o1592.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds