organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl-1-(phenyl­sulfon­yl)naphtho[2,1-b]furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 24 January 2008; accepted 13 March 2008; online 20 March 2008)

The title compound, C19H14O3S, was prepared by the oxidation of 2-methyl-1-(phenyl­sulfan­yl)naphtho[2,1-b]furan with 3-chloro­peroxy­benzoic acid. The phenyl ring makes a dihedral angle of 87.13 (4)° with the plane of the naphthofuran fragment. The crystal structure is stabilized by ππ inter­actions between the furan and benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.850 (2) Å] and weak C—H⋯π inter­actions. In addition, there are also intra­molecular C—H⋯O inter­actions.

Related literature

For the crystal structures of similar 2-methyl­naphtho[2,1-b]furan compounds, see: Choi et al. (2006[Choi, H. D., Woo, H. M., Seo, P. J., Son, B. W. & Lee, U. (2006). Acta Cryst. E62, o3881-o3882.], 2007[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o1731-o1732.]).

[Scheme 1]

Experimental

Crystal data
  • C19H14O3S

  • Mr = 322.36

  • Monoclinic, P 21 /n

  • a = 10.7175 (4) Å

  • b = 7.7972 (3) Å

  • c = 18.0488 (7) Å

  • β = 97.797 (1)°

  • V = 1494.33 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 173 (2) K

  • 0.40 × 0.40 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 8784 measured reflections

  • 3222 independent reflections

  • 2785 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.098

  • S = 1.05

  • 3222 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2 0.95 2.35 3.190 (2) 147
C18—H18⋯O2 0.95 2.46 2.869 (2) 106
C19—H19B⋯O3 0.98 2.55 2.926 (2) 103
C19—H19CCg3i 0.98 3.03 3.735 (3) 130
C16—H16⋯Cg3ii 0.95 2.88 3.761 (3) 155
Symmetry codes: (i) -x+1, -y, -z; (ii) -x+2, -y+1, -z. Cg3 is the centroid of the benzene ring of the naphthofuran unit.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our ongoing studies on the synthesis and structure of 2-methylnaphtho[2,1-b]furan derivatives, the crystal structures of 2-methyl-1-(methylsulfinyl)naphtho[2,1-b]furan (Choi et al., 2006) and 2-methyl-1-(phenylsulfinyl)naphtho[2,1-b]furan (Choi et al., 2007) have already been described. Herein we report the molecular and the crystal structure of the title compound, 2-methyl-1-(phenylsulfonyl)naphtho[2,1-b]furan (Fig. 1).

The naphthofuran unit is essentially planar, with a mean deviation equal to 0.040 Å from the least-squares plane defined by thirteen constituent atoms. The crystal packing (Fig. 2) is stabilized by aromatic ππ stacking interactions between the furan and the benzene rings from the adjacent naphthofuran fragments. The Cg1···Cg2i distance is 3.850 (2) Å (Cg1 and Cg2 are the centroids of the O1/C12/C1/C2/C11 furan and the C2/C3/C8/C9/C10/C11 benzene rings, respectively, the symmetry code as in Fig. 2). The crystal packing (Fig. 2) is further stabilized by the C—H···π interactions; in both cases the benzene ring of the naphthofuran unit (Cg3) is involved. There are also intramolecular C—H···O interactions present in the structure.

Related literature top

For the crystal structures of similar 2-methylnaphtho[2,1-b]furan compounds, see: Choi et al. (2006, 2007).

Experimental top

3-Chloroperoxybenzoic acid (77%, 471 mg, 2.10 mmol) was added in small portions to a stirred solution of 2-methyl-1-(phenylsulfanyl)naphtho[2,1-b]furan (290 mg, 1.0 mmol) in dichloromethane (20 ml) at 273 K. After having been stirred for 4 h at room temperature, the mixture was washed with saturated sodium hydrogencarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 2:1 v/v) to afford the title compound as a colourless solid [yield 84%, m.p. 431–432 K; Rf = 0.63 (hexane-ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature. The average crystal size was approximately 1.0 × 1.0 × 0.5 mm. The crystals are colourless and soluble in polar solvents.

Refinement top

All the H atoms were discernible in the difference Fourier map. Nevertheless, during the refinement the H atoms were positioned into idealized positions and refined using a riding model with the distance constraints: C—H = 0.95 Å for aryl H atoms and 0.98 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C) for aryl and methyl H atoms, respectively.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoides drawn at the 50% probability level.
[Figure 2] Fig. 2. ππ, C—H···π and intramolecular C—H···O interactions (dotted lines) in the title compound. Cg denotes the ring centroids. [Symmetry code: (i) 1 - x, -y, -z; (ii) 2 - x, 1 - y, -z; (iii) x + 1, y + 1, z.]
2-Methyl-1-(phenylsulfonyl)naphtho[2,1-b]furan top
Crystal data top
C19H14O3SF(000) = 672
Mr = 322.36Dx = 1.433 Mg m3
Monoclinic, P21/nMelting point = 431–432 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 10.7175 (4) ÅCell parameters from 5468 reflections
b = 7.7972 (3) Åθ = 2.3–28.2°
c = 18.0488 (7) ŵ = 0.23 mm1
β = 97.797 (1)°T = 173 K
V = 1494.33 (10) Å3Block, colourless
Z = 40.40 × 0.40 × 0.20 mm
Data collection top
Bruker SMART CCD
diffractometer
2785 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 27.0°, θmin = 2.9°
Detector resolution: 10.0 pixels mm-1h = 1311
ϕ and ω scansk = 99
8784 measured reflectionsl = 2323
3222 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0464P)2 + 0.7406P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3222 reflectionsΔρmax = 0.33 e Å3
210 parametersΔρmin = 0.39 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
54 constraintsExtinction coefficient: 0.015 (2)
Primary atom site location: structure-invariant direct methods
Crystal data top
C19H14O3SV = 1494.33 (10) Å3
Mr = 322.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.7175 (4) ŵ = 0.23 mm1
b = 7.7972 (3) ÅT = 173 K
c = 18.0488 (7) Å0.40 × 0.40 × 0.20 mm
β = 97.797 (1)°
Data collection top
Bruker SMART CCD
diffractometer
2785 reflections with I > 2σ(I)
8784 measured reflectionsRint = 0.023
3222 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.05Δρmax = 0.33 e Å3
3222 reflectionsΔρmin = 0.39 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.78568 (4)0.07420 (5)0.11326 (2)0.02579 (13)
O10.44773 (10)0.27156 (15)0.07186 (6)0.0317 (3)
O20.81955 (11)0.07018 (14)0.07052 (7)0.0327 (3)
O30.78345 (12)0.05031 (17)0.19220 (6)0.0376 (3)
C10.63938 (14)0.1558 (2)0.07427 (8)0.0251 (3)
C20.59348 (14)0.19921 (19)0.00332 (8)0.0239 (3)
C30.63656 (14)0.18767 (19)0.07498 (8)0.0246 (3)
C40.74995 (16)0.1091 (2)0.08857 (9)0.0294 (3)
H40.80310.05750.04830.035*
C50.78480 (18)0.1059 (2)0.15919 (9)0.0360 (4)
H50.86120.05160.16710.043*
C60.70826 (19)0.1822 (3)0.21959 (9)0.0407 (4)
H60.73390.18200.26800.049*
C70.59747 (18)0.2564 (2)0.20867 (9)0.0383 (4)
H70.54600.30660.25000.046*
C80.55669 (15)0.2608 (2)0.13718 (9)0.0297 (4)
C90.43790 (16)0.3342 (2)0.12790 (10)0.0355 (4)
H90.38670.38090.17020.043*
C100.39621 (15)0.3389 (2)0.06035 (10)0.0335 (4)
H100.31640.38590.05430.040*
C110.47661 (14)0.2710 (2)0.00014 (9)0.0273 (3)
C120.54835 (15)0.2028 (2)0.11655 (9)0.0294 (3)
C130.89432 (14)0.24061 (19)0.10214 (8)0.0247 (3)
C140.87639 (16)0.4045 (2)0.12958 (9)0.0299 (4)
H140.80350.43080.15200.036*
C150.96700 (17)0.5283 (2)0.12344 (9)0.0351 (4)
H150.95500.64170.14030.042*
C161.07529 (17)0.4877 (2)0.09275 (9)0.0367 (4)
H161.13770.57300.08970.044*
C171.09280 (16)0.3244 (2)0.06666 (10)0.0360 (4)
H171.16750.29690.04630.043*
C181.00096 (15)0.2003 (2)0.07027 (9)0.0301 (4)
H181.01120.08860.05100.036*
C190.53353 (18)0.1975 (3)0.19698 (10)0.0414 (4)
H19A0.45970.26510.20540.062*
H19B0.60890.24550.22660.062*
H19C0.52220.07840.21210.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0269 (2)0.0252 (2)0.0241 (2)0.00073 (15)0.00082 (14)0.00240 (14)
O10.0246 (6)0.0341 (6)0.0373 (6)0.0007 (5)0.0076 (5)0.0014 (5)
O20.0342 (6)0.0231 (6)0.0394 (6)0.0013 (5)0.0005 (5)0.0007 (5)
O30.0411 (7)0.0446 (7)0.0259 (6)0.0008 (6)0.0007 (5)0.0089 (5)
C10.0243 (7)0.0255 (8)0.0250 (7)0.0014 (6)0.0017 (6)0.0009 (6)
C20.0226 (7)0.0204 (7)0.0276 (8)0.0032 (6)0.0001 (6)0.0003 (6)
C30.0267 (7)0.0214 (7)0.0245 (7)0.0049 (6)0.0012 (6)0.0004 (6)
C40.0317 (8)0.0298 (8)0.0261 (8)0.0004 (6)0.0017 (6)0.0011 (6)
C50.0386 (9)0.0395 (10)0.0307 (8)0.0018 (7)0.0074 (7)0.0055 (7)
C60.0503 (11)0.0482 (11)0.0236 (8)0.0117 (9)0.0056 (7)0.0026 (8)
C70.0438 (10)0.0421 (10)0.0262 (8)0.0096 (8)0.0061 (7)0.0056 (7)
C80.0308 (8)0.0282 (8)0.0278 (8)0.0075 (7)0.0046 (6)0.0032 (6)
C90.0304 (9)0.0335 (9)0.0386 (9)0.0035 (7)0.0093 (7)0.0097 (7)
C100.0220 (8)0.0305 (9)0.0463 (10)0.0009 (6)0.0017 (7)0.0061 (7)
C110.0240 (8)0.0245 (8)0.0331 (8)0.0040 (6)0.0030 (6)0.0009 (6)
C120.0271 (8)0.0302 (8)0.0311 (8)0.0032 (6)0.0043 (6)0.0011 (7)
C130.0249 (7)0.0249 (8)0.0228 (7)0.0008 (6)0.0024 (6)0.0007 (6)
C140.0316 (8)0.0280 (8)0.0293 (8)0.0053 (6)0.0015 (6)0.0006 (6)
C150.0471 (10)0.0254 (8)0.0311 (8)0.0008 (7)0.0009 (7)0.0016 (7)
C160.0410 (10)0.0359 (10)0.0318 (8)0.0107 (8)0.0003 (7)0.0023 (7)
C170.0304 (9)0.0425 (10)0.0355 (9)0.0028 (7)0.0065 (7)0.0031 (8)
C180.0290 (8)0.0297 (8)0.0309 (8)0.0021 (6)0.0015 (6)0.0058 (7)
C190.0415 (10)0.0521 (12)0.0335 (9)0.0013 (9)0.0154 (8)0.0001 (8)
Geometric parameters (Å, º) top
S—O21.4387 (12)C8—C91.426 (2)
S—O31.4403 (12)C9—C101.355 (2)
S—C11.7492 (15)C9—H90.9500
S—C131.7729 (16)C10—C111.400 (2)
O1—C121.366 (2)C10—H100.9500
O1—C111.3713 (19)C12—C191.482 (2)
C1—C121.367 (2)C13—C181.383 (2)
C1—C21.460 (2)C13—C141.393 (2)
C2—C111.381 (2)C14—C151.384 (2)
C2—C31.434 (2)C14—H140.9500
C3—C41.412 (2)C15—C161.389 (3)
C3—C81.434 (2)C15—H150.9500
C4—C51.376 (2)C16—C171.379 (3)
C4—H40.9500C16—H160.9500
C5—C61.405 (3)C17—C181.388 (2)
C5—H50.9500C17—H170.9500
C6—C71.359 (3)C18—H180.9500
C6—H60.9500C19—H19A0.9800
C7—C81.418 (2)C19—H19B0.9800
C7—H70.9500C19—H19C0.9800
Cg1···Cg2i3.850 (2)
O2—S—O3117.93 (7)C9—C10—C11116.63 (15)
O2—S—C1110.28 (7)C9—C10—H10121.7
O3—S—C1108.10 (7)C11—C10—H10121.7
O2—S—C13107.14 (7)O1—C11—C2111.47 (13)
O3—S—C13107.81 (7)O1—C11—C10122.77 (14)
C1—S—C13104.76 (7)C2—C11—C10125.75 (15)
C12—O1—C11107.16 (12)O1—C12—C1109.97 (14)
C12—C1—C2107.47 (14)O1—C12—C19114.10 (14)
C12—C1—S122.78 (12)C1—C12—C19135.93 (16)
C2—C1—S129.59 (11)C18—C13—C14121.17 (15)
C11—C2—C3118.11 (14)C18—C13—S118.24 (12)
C11—C2—C1103.91 (13)C14—C13—S120.44 (12)
C3—C2—C1137.99 (14)C15—C14—C13118.61 (15)
C4—C3—C2125.03 (14)C15—C14—H14120.7
C4—C3—C8118.22 (14)C13—C14—H14120.7
C2—C3—C8116.75 (14)C14—C15—C16120.44 (16)
C5—C4—C3121.14 (15)C14—C15—H15119.8
C5—C4—H4119.4C16—C15—H15119.8
C3—C4—H4119.4C17—C16—C15120.42 (16)
C4—C5—C6120.51 (17)C17—C16—H16119.8
C4—C5—H5119.7C15—C16—H16119.8
C6—C5—H5119.7C16—C17—C18119.82 (16)
C7—C6—C5119.84 (16)C16—C17—H17120.1
C7—C6—H6120.1C18—C17—H17120.1
C5—C6—H6120.1C13—C18—C17119.50 (16)
C6—C7—C8121.71 (16)C13—C18—H18120.2
C6—C7—H7119.1C17—C18—H18120.2
C8—C7—H7119.1C12—C19—H19A109.5
C7—C8—C9120.46 (15)C12—C19—H19B109.5
C7—C8—C3118.54 (16)H19A—C19—H19B109.5
C9—C8—C3120.99 (15)C12—C19—H19C109.5
C10—C9—C8121.70 (15)H19A—C19—H19C109.5
C10—C9—H9119.2H19B—C19—H19C109.5
C8—C9—H9119.2
O2—S—C1—C12136.48 (14)C12—O1—C11—C21.42 (17)
O3—S—C1—C126.22 (17)C12—O1—C11—C10177.49 (15)
C13—S—C1—C12108.55 (14)C3—C2—C11—O1179.31 (12)
O2—S—C1—C248.68 (16)C1—C2—C11—O11.14 (17)
O3—S—C1—C2178.93 (14)C3—C2—C11—C101.8 (2)
C13—S—C1—C266.30 (16)C1—C2—C11—C10177.73 (15)
C12—C1—C2—C110.43 (17)C9—C10—C11—O1178.28 (15)
S—C1—C2—C11175.02 (12)C9—C10—C11—C20.5 (3)
C12—C1—C2—C3179.84 (17)C11—O1—C12—C11.10 (18)
S—C1—C2—C34.4 (3)C11—O1—C12—C19178.68 (14)
C11—C2—C3—C4176.13 (15)C2—C1—C12—O10.41 (18)
C1—C2—C3—C44.5 (3)S—C1—C12—O1176.24 (11)
C11—C2—C3—C83.3 (2)C2—C1—C12—C19179.31 (19)
C1—C2—C3—C8176.09 (17)S—C1—C12—C193.5 (3)
C2—C3—C4—C5179.13 (15)O2—S—C13—C1812.25 (14)
C8—C3—C4—C51.5 (2)O3—S—C13—C18115.62 (13)
C3—C4—C5—C60.5 (3)C1—S—C13—C18129.41 (12)
C4—C5—C6—C71.6 (3)O2—S—C13—C14172.06 (12)
C5—C6—C7—C80.7 (3)O3—S—C13—C1460.06 (14)
C6—C7—C8—C9177.78 (17)C1—S—C13—C1454.91 (14)
C6—C7—C8—C31.3 (3)C18—C13—C14—C150.9 (2)
C4—C3—C8—C72.3 (2)S—C13—C14—C15176.46 (12)
C2—C3—C8—C7178.25 (14)C13—C14—C15—C162.1 (2)
C4—C3—C8—C9176.74 (15)C14—C15—C16—C171.3 (3)
C2—C3—C8—C92.7 (2)C15—C16—C17—C180.8 (3)
C7—C8—C9—C10179.50 (16)C14—C13—C18—C171.1 (2)
C3—C8—C9—C100.5 (3)S—C13—C18—C17174.55 (13)
C8—C9—C10—C111.1 (2)C16—C17—C18—C131.9 (3)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O20.952.353.190 (2)147
C18—H18···O20.952.462.869 (2)106
C19—H19B···O30.982.552.926 (2)103
C19—H19C···Cg3i0.983.033.735 (3)130
C16—H16···Cg3ii0.952.883.761 (3)155
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC19H14O3S
Mr322.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)10.7175 (4), 7.7972 (3), 18.0488 (7)
β (°) 97.797 (1)
V3)1494.33 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.40 × 0.40 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8784, 3222, 2785
Rint0.023
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.098, 1.05
No. of reflections3222
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.39

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Selected interatomic distances (Å) top
Cg1···Cg2i3.850 (2)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O20.952.353.190 (2)147
C18—H18···O20.952.462.869 (2)106
C19—H19B···O30.982.552.926 (2)103
C19—H19C···Cg3i0.983.033.735 (3)129.6
C16—H16···Cg3ii0.952.883.761 (3)155.4
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o1731–o1732.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Woo, H. M., Seo, P. J., Son, B. W. & Lee, U. (2006). Acta Cryst. E62, o3881–o3882.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds