metal-organic compounds
cis-Bis(2,2′-bipyridyl)dicyanatocobalt(II)
aSchool of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China, bLiaocheng Vocational and Technical College, Liaocheng, Shandong 252000, People's Republic of China, and cDongchang College of Liaocheng University, Liaocheng, Shandong 252000, People's Republic of China
*Correspondence e-mail: lidacheng62@lcu.edu.cn
In the title complex, [Co(NCO)2(C10H8N2)2], the Co atom is coordinated by four N atoms from two 2,2′-bipyridyl ligands and two N atoms from two cyanate anions in a distorted octahedral geometry. The Co atom lies on a twofold rotation axis. The average Co—N bond length is 2.126 (7) Å. Weak intermolecular C—H⋯O interactions lead to the formation of a three-dimensional network.
Related literature
For the crystal structures of cobalt complexes with analogous ligands, see: Veidis et al. (1981); Tang et al. (2004). For related literature, see: Milani et al. (2003).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Siemens, 1996); cell SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808007617/fi2060sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808007617/fi2060Isup2.hkl
CoCl2.6H2O(0.0476 g 0.2 mmol) was dissolved in 10 ml MeOH, the solution was then added to an aqueous solution of 2,2'-bipyridyl(0.0316 g 0.2 mmol). The reaction mixture was stirred for 10 minutes until the solution color became red. NaOCN(0.0130 g 0.2 mmol) was added to the reaction mixture. The mixture was filtered and red single crystals were obtained by slow evaporation of the mother liquid for three weeks at room temperature. Elemental analysis for C22H16Co N6S2 calculated: C 58.03, H 3.54, N 18.45%; found: C 58.23, H 3.23, N 18.30%.
All H atoms were placed geometrically and treated as riding on their parent atoms with C—H 0.93 Å (2,2'-bipyridyl) [Uiso(H) = 1.2Ueq(C)].
Data collection: SMART (Siemens, 1996); cell
SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The crystal structure of the title compound showing the atomic numbering and 30% probability displacement ellipsoids. H atoms have been omitted for clarity. The second ligand is generated by i: –x+1, y, –z+3/2. |
[Co(NCO)2(C10H8N2)2] | F(000) = 932 |
Mr = 455.34 | Dx = 1.434 Mg m−3 |
Orthorhombic, Pbcn | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P2n2ab | Cell parameters from 1484 reflections |
a = 14.148 (12) Å | θ = 2.5–20.8° |
b = 9.774 (8) Å | µ = 0.85 mm−1 |
c = 15.253 (13) Å | T = 298 K |
V = 2109 (3) Å3 | Plate, red |
Z = 4 | 0.30 × 0.25 × 0.06 mm |
Bruker Smart 1000 diffractometer | 1870 independent reflections |
Radiation source: fine-focus sealed tube | 1009 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.078 |
ϕ & ω scans | θmax = 25.0°, θmin = 2.5° |
Absorption correction: multi-scan [SADABS; Sheldrick, 1996) | h = −16→14 |
Tmin = 0.786, Tmax = 0.951 | k = −11→9 |
10457 measured reflections | l = −18→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.078 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0386P)2 + 2.2714P] where P = (Fo2 + 2Fc2)/3 |
1870 reflections | (Δ/σ)max = 0.001 |
141 parameters | Δρmax = 0.25 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
[Co(NCO)2(C10H8N2)2] | V = 2109 (3) Å3 |
Mr = 455.34 | Z = 4 |
Orthorhombic, Pbcn | Mo Kα radiation |
a = 14.148 (12) Å | µ = 0.85 mm−1 |
b = 9.774 (8) Å | T = 298 K |
c = 15.253 (13) Å | 0.30 × 0.25 × 0.06 mm |
Bruker Smart 1000 diffractometer | 1870 independent reflections |
Absorption correction: multi-scan [SADABS; Sheldrick, 1996) | 1009 reflections with I > 2σ(I) |
Tmin = 0.786, Tmax = 0.951 | Rint = 0.078 |
10457 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.078 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.25 e Å−3 |
1870 reflections | Δρmin = −0.30 e Å−3 |
141 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.5000 | 1.02936 (6) | 0.7500 | 0.0514 (2) | |
N1 | 0.45099 (19) | 1.1668 (3) | 0.6615 (2) | 0.0780 (10) | |
N2 | 0.42837 (17) | 0.8651 (2) | 0.68223 (17) | 0.0525 (7) | |
N3 | 0.36432 (16) | 1.0105 (3) | 0.81603 (17) | 0.0538 (7) | |
O1 | 0.4129 (2) | 1.3351 (3) | 0.5593 (2) | 0.1331 (13) | |
C1 | 0.4337 (2) | 1.2469 (5) | 0.6118 (3) | 0.0737 (12) | |
C2 | 0.3390 (2) | 0.8363 (3) | 0.7088 (2) | 0.0501 (8) | |
C3 | 0.2898 (2) | 0.7277 (4) | 0.6735 (2) | 0.0655 (10) | |
H3 | 0.2289 | 0.7081 | 0.6927 | 0.079* | |
C4 | 0.3309 (3) | 0.6491 (4) | 0.6103 (3) | 0.0802 (12) | |
H4 | 0.2983 | 0.5754 | 0.5863 | 0.096* | |
C5 | 0.4205 (3) | 0.6794 (4) | 0.5821 (2) | 0.0738 (11) | |
H5 | 0.4496 | 0.6275 | 0.5388 | 0.089* | |
C6 | 0.4657 (2) | 0.7879 (4) | 0.6196 (2) | 0.0669 (10) | |
H6 | 0.5263 | 0.8090 | 0.6002 | 0.080* | |
C7 | 0.3019 (2) | 0.9245 (3) | 0.7788 (2) | 0.0511 (9) | |
C8 | 0.2077 (2) | 0.9216 (3) | 0.8059 (3) | 0.0676 (10) | |
H8 | 0.1645 | 0.8642 | 0.7784 | 0.081* | |
C9 | 0.1797 (3) | 1.0036 (4) | 0.8731 (3) | 0.0808 (13) | |
H9 | 0.1172 | 1.0020 | 0.8921 | 0.097* | |
C10 | 0.2434 (3) | 1.0881 (4) | 0.9122 (2) | 0.0804 (12) | |
H10 | 0.2256 | 1.1444 | 0.9585 | 0.096* | |
C11 | 0.3354 (2) | 1.0883 (3) | 0.8814 (2) | 0.0685 (10) | |
H11 | 0.3790 | 1.1460 | 0.9082 | 0.082* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0391 (3) | 0.0536 (4) | 0.0615 (4) | 0.000 | 0.0011 (3) | 0.000 |
N1 | 0.064 (2) | 0.078 (2) | 0.092 (3) | 0.0116 (17) | 0.0007 (18) | 0.0301 (19) |
N2 | 0.0402 (15) | 0.0601 (19) | 0.0573 (19) | 0.0020 (13) | 0.0000 (14) | −0.0038 (14) |
N3 | 0.0457 (15) | 0.0555 (19) | 0.0603 (19) | 0.0050 (14) | 0.0027 (14) | −0.0032 (14) |
O1 | 0.115 (2) | 0.152 (3) | 0.133 (3) | 0.055 (2) | 0.025 (2) | 0.070 (2) |
C1 | 0.052 (2) | 0.090 (4) | 0.079 (3) | 0.020 (2) | 0.018 (2) | 0.012 (2) |
C2 | 0.0385 (19) | 0.056 (2) | 0.056 (2) | −0.0010 (17) | −0.0047 (17) | 0.0121 (17) |
C3 | 0.051 (2) | 0.070 (3) | 0.076 (3) | −0.011 (2) | −0.0061 (19) | 0.004 (2) |
C4 | 0.087 (3) | 0.077 (3) | 0.077 (3) | −0.020 (2) | −0.011 (2) | −0.012 (2) |
C5 | 0.074 (3) | 0.074 (3) | 0.072 (3) | 0.001 (2) | 0.001 (2) | −0.019 (2) |
C6 | 0.053 (2) | 0.079 (3) | 0.069 (3) | −0.0057 (19) | −0.0008 (19) | −0.009 (2) |
C7 | 0.0420 (19) | 0.047 (2) | 0.064 (3) | 0.0030 (16) | 0.0052 (16) | 0.0113 (16) |
C8 | 0.046 (2) | 0.071 (3) | 0.086 (3) | −0.0028 (18) | 0.009 (2) | 0.010 (2) |
C9 | 0.053 (2) | 0.092 (4) | 0.097 (3) | 0.012 (2) | 0.028 (2) | 0.016 (3) |
C10 | 0.079 (3) | 0.077 (3) | 0.086 (3) | 0.014 (2) | 0.033 (3) | 0.002 (2) |
C11 | 0.062 (2) | 0.066 (3) | 0.078 (3) | 0.0021 (19) | 0.013 (2) | −0.009 (2) |
Co1—N1i | 2.027 (3) | C3—H3 | 0.9300 |
Co1—N1 | 2.027 (3) | C4—C5 | 1.371 (4) |
Co1—N2 | 2.162 (3) | C4—H4 | 0.9300 |
Co1—N2i | 2.162 (3) | C5—C6 | 1.364 (4) |
Co1—N3 | 2.176 (3) | C5—H5 | 0.9300 |
Co1—N3i | 2.176 (3) | C6—H6 | 0.9300 |
N1—C1 | 1.117 (4) | C7—C8 | 1.396 (4) |
N2—C6 | 1.327 (4) | C8—C9 | 1.360 (4) |
N2—C2 | 1.358 (3) | C8—H8 | 0.9300 |
N3—C11 | 1.319 (4) | C9—C10 | 1.361 (5) |
N3—C7 | 1.345 (3) | C9—H9 | 0.9300 |
O1—C1 | 1.213 (4) | C10—C11 | 1.384 (4) |
C2—C3 | 1.378 (4) | C10—H10 | 0.9300 |
C2—C7 | 1.469 (4) | C11—H11 | 0.9300 |
C3—C4 | 1.363 (4) | ||
N1i—Co1—N1 | 97.0 (2) | C4—C3—H3 | 120.2 |
N1i—Co1—N2 | 166.18 (11) | C2—C3—H3 | 120.2 |
N1—Co1—N2 | 90.76 (12) | C3—C4—C5 | 119.6 (4) |
N1i—Co1—N2i | 90.76 (12) | C3—C4—H4 | 120.2 |
N1—Co1—N2i | 166.18 (11) | C5—C4—H4 | 120.2 |
N2—Co1—N2i | 84.07 (14) | C6—C5—C4 | 118.1 (4) |
N1i—Co1—N3 | 92.83 (12) | C6—C5—H5 | 121.0 |
N1—Co1—N3 | 93.59 (11) | C4—C5—H5 | 121.0 |
N2—Co1—N3 | 75.22 (11) | N2—C6—C5 | 123.8 (3) |
N2i—Co1—N3 | 97.44 (10) | N2—C6—H6 | 118.1 |
N1i—Co1—N3i | 93.59 (11) | C5—C6—H6 | 118.1 |
N1—Co1—N3i | 92.83 (12) | N3—C7—C8 | 121.0 (3) |
N2—Co1—N3i | 97.44 (10) | N3—C7—C2 | 116.1 (3) |
N2i—Co1—N3i | 75.22 (11) | C8—C7—C2 | 123.0 (3) |
N3—Co1—N3i | 170.29 (13) | C9—C8—C7 | 119.3 (3) |
C1—N1—Co1 | 172.6 (3) | C9—C8—H8 | 120.3 |
C6—N2—C2 | 117.9 (3) | C7—C8—H8 | 120.3 |
C6—N2—Co1 | 125.4 (2) | C8—C9—C10 | 119.7 (3) |
C2—N2—Co1 | 116.6 (2) | C8—C9—H9 | 120.2 |
C11—N3—C7 | 118.4 (3) | C10—C9—H9 | 120.2 |
C11—N3—Co1 | 125.1 (2) | C9—C10—C11 | 118.4 (4) |
C7—N3—Co1 | 115.9 (2) | C9—C10—H10 | 120.8 |
N1—C1—O1 | 178.3 (5) | C11—C10—H10 | 120.8 |
N2—C2—C3 | 120.9 (3) | N3—C11—C10 | 123.2 (3) |
N2—C2—C7 | 115.3 (3) | N3—C11—H11 | 118.4 |
C3—C2—C7 | 123.7 (3) | C10—C11—H11 | 118.4 |
C4—C3—C2 | 119.6 (3) |
Symmetry code: (i) −x+1, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10···O1ii | 0.93 | 2.50 | 3.236 (5) | 137 |
C5—H5···O1iii | 0.93 | 2.48 | 3.198 (5) | 134 |
Symmetry codes: (ii) −x+1/2, −y+5/2, z+1/2; (iii) −x+1, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Co(NCO)2(C10H8N2)2] |
Mr | 455.34 |
Crystal system, space group | Orthorhombic, Pbcn |
Temperature (K) | 298 |
a, b, c (Å) | 14.148 (12), 9.774 (8), 15.253 (13) |
V (Å3) | 2109 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.85 |
Crystal size (mm) | 0.30 × 0.25 × 0.06 |
Data collection | |
Diffractometer | Bruker Smart 1000 diffractometer |
Absorption correction | Multi-scan [SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.786, 0.951 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10457, 1870, 1009 |
Rint | 0.078 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.078, 1.00 |
No. of reflections | 1870 |
No. of parameters | 141 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.25, −0.30 |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Co1—N1i | 2.027 (3) | Co1—N2i | 2.162 (3) |
Co1—N1 | 2.027 (3) | Co1—N3 | 2.176 (3) |
Co1—N2 | 2.162 (3) | Co1—N3i | 2.176 (3) |
N1i—Co1—N1 | 97.0 (2) | N2—Co1—N3 | 75.22 (11) |
N1i—Co1—N2 | 166.18 (11) | N2i—Co1—N3 | 97.44 (10) |
N1—Co1—N2 | 90.76 (12) | N1i—Co1—N3i | 93.59 (11) |
N1i—Co1—N2i | 90.76 (12) | N1—Co1—N3i | 92.83 (12) |
N1—Co1—N2i | 166.18 (11) | N2—Co1—N3i | 97.44 (10) |
N2—Co1—N2i | 84.07 (14) | N2i—Co1—N3i | 75.22 (11) |
N1i—Co1—N3 | 92.83 (12) | N3—Co1—N3i | 170.29 (13) |
N1—Co1—N3 | 93.59 (11) |
Symmetry code: (i) −x+1, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10···O1ii | 0.93 | 2.50 | 3.236 (5) | 136.7 |
C5—H5···O1iii | 0.93 | 2.48 | 3.198 (5) | 134.1 |
Symmetry codes: (ii) −x+1/2, −y+5/2, z+1/2; (iii) −x+1, −y+2, −z+1. |
Acknowledgements
We acknowledge the Natural Science Foundation of Liaocheng University (X051002).
References
Milani, B., Stabon, E., Zangrando, E., Mestroni, G., Sommazzi, A., Zannoni, C. (2003). Inorg. Chim. Acta, 349, 209–216. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Tang, X. F., Ma, Y. S., Liang, F. P., Hu, R. X. & Yu, K. B. (2004). Hua Xue Ying Yong Yu Yanjiu, 16, 459–462. CAS Google Scholar
Veidis, M. V., Dockum, B., Charron, F. F. & Reiff, W. M. (1981). Inorg. Chim. Acta, 53, L197–L199. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Organometallic Co derivatives are applied as catalysts in polymerization reactions of polar olefins and for the elucidation of the hypothetical mechanism of these polymerization reactions (Milani et al., 2003). In recent years the synthesis of the without bridge bonding mononucleate complexs was used to find out the information to design the multidimensional structure complexes, so the homologic ligands complex [Co(2,2'-bipy)2(N3)2].Cl.2H2O was reported(Tang et al., 2004). In this paper, Co(C10H8N2)2(NCO)2 was synthesized by the reaction of CoCl2.6H2O, 2,2'-bipyridyl and NaOCN at room temperature and the structure of the resulting complex is presented here (Fig. 1).
The Co atom lies on a special position (Wyckoff position 4c, site symmetry 2). It is formed by coordination of two 2,2'-bipyridyls ligands and two cyanate anions. The coordination gemotry of the central Co atom is distorted octahedral with four N atoms from two 2,2'-bipyridyls and two N atoms from two cyanate anions. The equatorial plane consists of N1, N2, N3 and N3iwith an average bond length of 2.135 (3) Å. The apical positions are occupied by a cyanate anion and a N atom from a 2,2'-bipyridyl with the bond length 2.027 (3) Å 2.162 (3) Å, respectively. The distances Co—N(2,2'-bipyridyl) in the title complex are significantly longer (2.176 (3) Å and 2.162 (3) Å) than those in the comparable bond length (1.950 (3) Å and 1.954 (3) Å, Tang et al.(2004)). The complexes arrange into a three-dimensional network via weak intermolecular C—H···O interactions (H···O distances: 2.499 (3) Å and 2.481 (4) Å; C···O distances: 3.417 (5) Å and 3.084 (7) Å)..