organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(5-Chloro-2-hy­droxy­benzyl­­idene­amino)-N-(4,6-di­methyl­pyrimidin-2-yl)benzene­sulfonamide

aDepartment of Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and cDepartment of Chemistry, Government College University, Lahore, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 2 February 2008; accepted 27 February 2008; online 5 March 2008)

The title compound, C19H17ClN4O3S, is a Schiff base compound of 5-chloro­salicylaldehyde and sulfamethazine [4-amino-N-(4,6-dimethyl-2-pyrimidin­yl)benzene­sulfonamide]. The geometry around the S atom is distorted tetra­hedral, comprising two O atoms of the sulfonyl group, a C atom of a benzene ring and the amino N atom. The title compound has an intra­molecular O—H⋯N hydrogen bond and two inter­molecular C—H⋯O and N—H⋯O hydrogen bonds, which link neighbouring mol­ecules into 10-membered rings. As a result of an unavoidable conformational arrangement, a slightly short intra­molecular contact of distance 2.59 Å exists between an O atom of the sulfonyl group and an H atom of the sulfamethazine benzene ring.

Related literature

For related literature, see: Basak et al. (1983[Basak, A. K., Mazumdar, S. K. & Chaudhuri, S. (1983). Acta Cryst. C39, 492-494.]); Chohan & Shad (2007[Chohan, Z. H. & Shad, H. A. (2007). J. Enz. Inhib. Med. Chem. doi: 10.1080/14756360701585692.]); Yang (2006[Yang, D.-S. (2006). Acta Cryst. E62, o1591-o1592.]); Shad et al. (2008[Shad, H. A., Chohan, Z. H., Tahir, M. N. & Khan, I. U. (2008). Acta Cryst. E64, o635.]); Zareef et al. (2007[Zareef, M., Iqbal, R., De Dominguez, N. G., Rodrigues, J., Zaidi, J. H., Arfan, M. & Supuran, C. T. (2007). J. Enz. Inhib. Med. Chem. 22, 301-308.]).

[Scheme 1]

Experimental

Crystal data
  • C19H17ClN4O3S

  • Mr = 416.88

  • Orthorhombic, P b c a

  • a = 11.7332 (7) Å

  • b = 13.8506 (6) Å

  • c = 23.6635 (14) Å

  • V = 3845.6 (4) Å3

  • Z = 8

  • Mo Kα radiation radiation

  • μ = 0.34 mm−1

  • T = 296 (2) K

  • 0.22 × 0.18 × 0.14 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsion, USA.]) Tmin = 0.940, Tmax = 0.958

  • 21114 measured reflections

  • 4787 independent reflections

  • 2797 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.148

  • S = 1.05

  • 2797 reflections

  • 259 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.73 (5) 1.90 (4) 2.534 (3) 146 (5)
N2—H2⋯O1i 0.71 (3) 2.22 (3) 2.886 (3) 156 (3)
C9—H9⋯O2ii 0.93 2.48 3.398 (4) 171
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsion, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsion, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Sulfonamides have widely been recognized for their wide variety of pharmacological activities such as antibacterial, antitumor, anti-carbonic anhydrase, diuretic, hypoglycaemic, antithyroid and protease inhibitory activity. Sulfonamides have also been used clinically as antimalarial agents (Zareef et al., 2007), particularly sulfadiazine and sulfadoxine. Due to their significant pharmacology applications and widespread use in medicine, these compounds have also gained attention in bio-inorganic and metal-based (Chohan et al., 2007) drug chemistry. In continuation to the preparation of schiff base ligands with various sulfa drugs and halogen substituated aldehydes (Shad et al., 2008), we report herein the structure of the title compound.

The title compound (I), is a Schiff base ligand containing sulfamethazine and 5-chlorosalicylaldehyde. The crystal structure (Basak et al., 1983) of (II) sulfamethazine:[4-amino-N-(4,6-dimethyl-2-pyrimidinyl)benzenesulfonamide] have been reported. The search in Cambridge Crystallographic Data Center showed that no crystal structure of 5-chlorosalicylaldehyde as an individual moiety is reported. Few structures containing the later have been reported such as 5-chlorosalicylaldehyde salicylhydrazone (Yang, 2006). The mutual effect of sulfamethazine and the 5-chlorosalicylaldehyde in solid form is observed by enlarging the bond lengths N1—C8 [1.414 (3) Å], S1—C11 [1.759 (3) Å] compared to 1.367 (3)° and 1.746 (3) Å respectively as reported in (II). The bond distances in the 4,6-dimethyl-2-pyrimidinyl moiety of sulfamethazine remained same whithin experimental errors. The observed bond angles C11—S1—N2 and S1—N2—C14 have values of 106.75 (13)°, 126.2 (2)° in comparison to 108.2 (1)° and 128.0 (2)° respectively. The torsion angle C11—S1—N2—C14: -64.3 (3)° in the title compound compared to 83.0 (3)° shows that the 4,6-dimethyl-2-pyrimidinyl moiety becomes almost in trans position. The observed change in 5-chlorosalicylaldehyde moiety, is mainly of bond distances C6—O1 [1.328 (4) Å] and Cl1—C5 [1.736 (3) Å], whereas these values are 1.347 (5) Å and 1.746 (4) Å as reported in 5-chlorosalicylaldehyde salicylhydrazone. The coordinates of H-atoms attached to O1 and N2 were refined. The rings A(C14/N3/C15/C16/C17/N4), B(C1/C2/C3/C4/C5/C6) and C(C8/C9/C10/C11/C12/C13), make dihedral angles A/B[78.95 (8)°], A/C[83.50 (8)°] and B/C[4.57 (19)°] respectively. The sulfonyl group (O2/S1/O3) have a dihedral angle of 56.36 (11)° with ring (B) and with ring (A), it is 54.25 (14)°. An intramolecular H-bond of O—H···N type complete six-membered ring, as shown in Fig 1. The two intermolecular H-bonds of C—H···O and N—H···O form a ten membered ring by sharing a six membered ring due to intramolecular H-bond as in Fig 2. The detail of H-bonds is given in Table 1.

Related literature top

For related literature, see: Basak et al. (1983); Chohan & Shad (2007); Yang (2006); Shad et al. (2008); Zareef et al. (2007).

Experimental top

Sulfamethazine (0.5566 g, 2 mmol) in ethanol (15 ml) was reacted with ethanolic (10 ml) solution of 5-chlorosalicylaldehyde (0.3131 g, 2 mmol). The mixture was refluxed for 3 h. The colour of the solution gradually changed from colourless to orange-red. The solution was then cooled to room temperature, filtered and volume reduced to about one-third on rotary evaporator. After 10 days crystals of the title compound were obtained.

Refinement top

The coordinates of the hydroxy and amide H-atoms were freely refined. Other H-atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for aromatic and methyl carbons respectively. The Uiso(H) = xUeq(C, N, O), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. ORTEP-3 for Windows (Farrugia, 1997) drawing of the title compound, C19H17Cl1N4O3S, with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii. The intramolecular H-bonding is shown by dashed lines.
[Figure 2] Fig. 2. The unit cell packing of (I) (Spek, 2003), showing the intermolecular hydrogen bonding completing a ten-membered ring.
4-(5-Chloro-2-hydroxybenzylideneamino)-N-(4,6-dimethylpyrimidin-2- yl)benzenesulfonamide top
Crystal data top
C19H17ClN4O3SDx = 1.440 Mg m3
Mr = 416.88Melting point: 497 K
Orthorhombic, PbcaMo Kα radiation radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2797 reflections
a = 11.7332 (7) Åθ = 1.7–28.3°
b = 13.8506 (6) ŵ = 0.34 mm1
c = 23.6635 (14) ÅT = 296 K
V = 3845.6 (4) Å3Prismatic, red
Z = 80.22 × 0.18 × 0.14 mm
F(000) = 1728
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4787 independent reflections
Radiation source: fine-focus sealed tube2797 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 7.40 pixels mm-1θmax = 28.3°, θmin = 1.7°
ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1718
Tmin = 0.940, Tmax = 0.958l = 3130
21114 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0488P)2 + 2.8076P]
where P = (Fo2 + 2Fc2)/3
2797 reflections(Δ/σ)max < 0.001
259 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C19H17ClN4O3SV = 3845.6 (4) Å3
Mr = 416.88Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.7332 (7) ŵ = 0.34 mm1
b = 13.8506 (6) ÅT = 296 K
c = 23.6635 (14) Å0.22 × 0.18 × 0.14 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4787 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2797 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.958Rint = 0.043
21114 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.32 e Å3
2797 reflectionsΔρmin = 0.28 e Å3
259 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.17644 (10)0.26287 (7)0.12764 (5)0.0872 (3)
S10.40720 (6)0.12989 (5)0.10363 (3)0.04261 (19)
O10.9575 (2)0.11270 (16)0.10024 (12)0.0767 (8)
H10.902 (4)0.105 (3)0.0865 (19)0.092*
O20.34086 (18)0.19106 (14)0.06787 (9)0.0566 (6)
O30.35672 (17)0.04443 (14)0.12555 (9)0.0533 (5)
N10.82013 (19)0.03779 (16)0.03019 (10)0.0449 (6)
N20.4449 (2)0.20143 (17)0.15497 (11)0.0484 (6)
H20.442 (3)0.252 (2)0.1502 (14)0.058*
N30.5377 (2)0.25140 (17)0.23450 (10)0.0504 (6)
N40.5464 (2)0.08644 (17)0.20508 (10)0.0494 (6)
C10.9660 (2)0.05366 (19)0.07463 (12)0.0438 (6)
C21.0209 (3)0.1429 (2)0.08168 (13)0.0535 (8)
H2A0.99700.19600.06080.064*
C31.1091 (3)0.1523 (2)0.11879 (14)0.0546 (8)
C41.1463 (3)0.0739 (2)0.14968 (16)0.0685 (10)
H4A1.20670.08110.17480.082*
C51.0950 (3)0.0147 (2)0.14375 (16)0.0703 (10)
H51.12020.06680.16510.084*
C61.0057 (3)0.0265 (2)0.10596 (14)0.0543 (8)
C70.8701 (2)0.0437 (2)0.03688 (12)0.0479 (7)
H70.84420.09730.01710.058*
C80.7233 (2)0.05312 (19)0.00426 (11)0.0412 (6)
C90.6811 (3)0.1460 (2)0.00458 (14)0.0565 (8)
H90.71700.19350.01680.068*
C100.5868 (3)0.1695 (2)0.03601 (14)0.0561 (8)
H100.55970.23250.03640.067*
C110.5325 (2)0.09899 (18)0.06706 (11)0.0390 (6)
C120.5748 (2)0.00607 (19)0.06810 (12)0.0448 (7)
H120.53950.04090.09010.054*
C130.6696 (2)0.01695 (19)0.03636 (12)0.0479 (7)
H130.69760.07980.03650.057*
C140.5142 (2)0.1773 (2)0.20062 (11)0.0432 (6)
C150.6017 (3)0.2304 (2)0.27940 (13)0.0577 (8)
C160.6394 (3)0.1374 (3)0.28828 (14)0.0631 (9)
H160.68410.12290.31960.076*
C170.6107 (3)0.0666 (2)0.25061 (14)0.0552 (8)
C180.6497 (3)0.0362 (3)0.25674 (17)0.0825 (12)
H18A0.61980.07410.22620.124*
H18B0.62270.06180.29200.124*
H18C0.73140.03850.25600.124*
C190.6268 (4)0.3114 (3)0.31925 (16)0.0894 (13)
H19A0.59300.36980.30530.134*
H19B0.70780.31980.32230.134*
H19C0.59580.29660.35580.134*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0896 (8)0.0611 (5)0.1110 (9)0.0210 (5)0.0139 (6)0.0059 (5)
S10.0421 (4)0.0436 (4)0.0421 (4)0.0046 (3)0.0031 (3)0.0001 (3)
O10.0854 (19)0.0453 (12)0.099 (2)0.0069 (12)0.0452 (16)0.0174 (12)
O20.0549 (13)0.0587 (12)0.0562 (13)0.0154 (10)0.0166 (10)0.0013 (10)
O30.0474 (12)0.0526 (11)0.0601 (13)0.0030 (9)0.0087 (10)0.0007 (10)
N10.0447 (13)0.0476 (13)0.0424 (14)0.0036 (11)0.0031 (11)0.0003 (10)
N20.0594 (16)0.0417 (12)0.0442 (14)0.0095 (12)0.0076 (12)0.0026 (11)
N30.0539 (15)0.0534 (14)0.0440 (14)0.0051 (12)0.0003 (12)0.0005 (11)
N40.0525 (15)0.0515 (14)0.0442 (14)0.0134 (11)0.0001 (11)0.0037 (11)
C10.0435 (16)0.0447 (14)0.0433 (16)0.0046 (12)0.0021 (13)0.0001 (12)
C20.060 (2)0.0440 (15)0.0562 (19)0.0030 (14)0.0014 (15)0.0036 (14)
C30.0499 (18)0.0502 (16)0.064 (2)0.0036 (14)0.0001 (15)0.0047 (14)
C40.056 (2)0.068 (2)0.081 (3)0.0001 (17)0.0257 (18)0.0003 (19)
C50.068 (2)0.0556 (19)0.087 (3)0.0026 (17)0.030 (2)0.0141 (18)
C60.0564 (19)0.0460 (16)0.060 (2)0.0028 (14)0.0102 (16)0.0026 (14)
C70.0500 (17)0.0491 (15)0.0447 (16)0.0117 (13)0.0008 (14)0.0043 (13)
C80.0442 (15)0.0434 (14)0.0360 (14)0.0049 (12)0.0003 (12)0.0006 (12)
C90.063 (2)0.0436 (16)0.063 (2)0.0043 (14)0.0172 (16)0.0136 (14)
C100.065 (2)0.0387 (14)0.064 (2)0.0033 (14)0.0120 (17)0.0105 (14)
C110.0428 (15)0.0409 (13)0.0334 (14)0.0002 (11)0.0030 (11)0.0017 (11)
C120.0522 (17)0.0375 (14)0.0446 (16)0.0021 (12)0.0090 (13)0.0071 (12)
C130.0533 (18)0.0386 (14)0.0517 (18)0.0031 (12)0.0073 (14)0.0044 (13)
C140.0405 (15)0.0512 (16)0.0378 (15)0.0043 (13)0.0040 (12)0.0023 (12)
C150.0516 (19)0.076 (2)0.0454 (18)0.0206 (16)0.0016 (15)0.0042 (16)
C160.0472 (18)0.093 (2)0.0489 (19)0.0113 (17)0.0124 (15)0.0199 (18)
C170.0459 (17)0.0693 (19)0.0504 (18)0.0065 (15)0.0032 (14)0.0173 (16)
C180.081 (3)0.081 (2)0.086 (3)0.026 (2)0.007 (2)0.027 (2)
C190.105 (3)0.096 (3)0.068 (2)0.046 (3)0.019 (2)0.004 (2)
Geometric parameters (Å, º) top
Cl1—C31.736 (3)C5—H50.9300
S1—O31.422 (2)C7—H70.9300
S1—O21.4282 (19)C8—C91.379 (4)
S1—N21.629 (3)C8—C131.384 (4)
S1—C111.759 (3)C9—C101.371 (4)
O1—C61.328 (4)C9—H90.9300
O1—H10.74 (4)C10—C111.378 (4)
N1—C71.282 (4)C10—H100.9300
N1—C81.414 (3)C11—C121.379 (3)
N2—C141.393 (4)C12—C131.380 (4)
N2—H20.71 (3)C12—H120.9300
N3—C141.332 (3)C13—H130.9300
N3—C151.333 (4)C15—C161.378 (5)
N4—C141.318 (3)C15—C191.495 (5)
N4—C171.343 (4)C16—C171.368 (5)
C1—C21.404 (4)C16—H160.9300
C1—C61.414 (4)C17—C181.503 (4)
C1—C71.443 (4)C18—H18A0.9600
C2—C31.363 (4)C18—H18B0.9600
C2—H2A0.9300C18—H18C0.9600
C3—C41.380 (4)C19—H19A0.9600
C4—C51.373 (4)C19—H19B0.9600
C4—H4A0.9300C19—H19C0.9600
C5—C61.388 (4)
O3—S1—O2118.89 (13)C10—C9—H9119.6
O3—S1—N2110.33 (13)C8—C9—H9119.6
O2—S1—N2103.22 (12)C9—C10—C11119.6 (3)
O3—S1—C11108.98 (12)C9—C10—H10120.2
O2—S1—C11107.97 (13)C11—C10—H10120.2
N2—S1—C11106.75 (13)C10—C11—C12120.3 (3)
C6—O1—H1107 (3)C10—C11—S1118.5 (2)
C7—N1—C8124.8 (2)C12—C11—S1121.3 (2)
C14—N2—S1126.2 (2)C11—C12—C13119.7 (2)
C14—N2—H2113 (3)C11—C12—H12120.1
S1—N2—H2118 (3)C13—C12—H12120.1
C14—N3—C15115.3 (3)C12—C13—C8120.2 (3)
C14—N4—C17114.9 (3)C12—C13—H13119.9
C2—C1—C6118.5 (3)C8—C13—H13119.9
C2—C1—C7121.1 (3)N4—C14—N3128.9 (3)
C6—C1—C7120.4 (3)N4—C14—N2117.3 (3)
C3—C2—C1120.6 (3)N3—C14—N2113.8 (2)
C3—C2—H2A119.7N3—C15—C16120.5 (3)
C1—C2—H2A119.7N3—C15—C19116.7 (3)
C2—C3—C4120.4 (3)C16—C15—C19122.8 (3)
C2—C3—Cl1120.5 (2)C17—C16—C15119.4 (3)
C4—C3—Cl1119.1 (3)C17—C16—H16120.3
C5—C4—C3120.7 (3)C15—C16—H16120.3
C5—C4—H4A119.7N4—C17—C16120.9 (3)
C3—C4—H4A119.7N4—C17—C18116.3 (3)
C4—C5—C6120.1 (3)C16—C17—C18122.8 (3)
C4—C5—H5119.9C17—C18—H18A109.5
C6—C5—H5119.9C17—C18—H18B109.5
O1—C6—C5119.5 (3)H18A—C18—H18B109.5
O1—C6—C1120.8 (3)C17—C18—H18C109.5
C5—C6—C1119.6 (3)H18A—C18—H18C109.5
N1—C7—C1121.2 (3)H18B—C18—H18C109.5
N1—C7—H7119.4C15—C19—H19A109.5
C1—C7—H7119.4C15—C19—H19B109.5
C9—C8—C13119.2 (3)H19A—C19—H19B109.5
C9—C8—N1115.6 (2)C15—C19—H19C109.5
C13—C8—N1125.2 (2)H19A—C19—H19C109.5
C10—C9—C8120.9 (3)H19B—C19—H19C109.5
O3—S1—N2—C1454.0 (3)O3—S1—C11—C10171.4 (2)
O2—S1—N2—C14178.0 (3)O2—S1—C11—C1041.0 (3)
C11—S1—N2—C1464.3 (3)N2—S1—C11—C1069.4 (3)
C6—C1—C2—C31.3 (4)O3—S1—C11—C127.1 (3)
C7—C1—C2—C3177.9 (3)O2—S1—C11—C12137.5 (2)
C1—C2—C3—C40.6 (5)N2—S1—C11—C12112.0 (2)
C1—C2—C3—Cl1179.7 (2)C10—C11—C12—C132.2 (4)
C2—C3—C4—C50.3 (6)S1—C11—C12—C13176.3 (2)
Cl1—C3—C4—C5180.0 (3)C11—C12—C13—C81.0 (4)
C3—C4—C5—C60.7 (6)C9—C8—C13—C120.2 (4)
C4—C5—C6—O1179.4 (4)N1—C8—C13—C12179.4 (3)
C4—C5—C6—C11.5 (6)C17—N4—C14—N30.9 (4)
C2—C1—C6—O1179.1 (3)C17—N4—C14—N2178.4 (3)
C7—C1—C6—O11.7 (5)C15—N3—C14—N40.9 (4)
C2—C1—C6—C51.8 (5)C15—N3—C14—N2178.4 (3)
C7—C1—C6—C5177.4 (3)S1—N2—C14—N44.9 (4)
C8—N1—C7—C1177.5 (2)S1—N2—C14—N3175.7 (2)
C2—C1—C7—N1179.7 (3)C14—N3—C15—C160.4 (4)
C6—C1—C7—N11.1 (4)C14—N3—C15—C19178.2 (3)
C7—N1—C8—C9178.6 (3)N3—C15—C16—C170.1 (5)
C7—N1—C8—C131.1 (4)C19—C15—C16—C17178.4 (3)
C13—C8—C9—C100.2 (5)C14—N4—C17—C160.5 (4)
N1—C8—C9—C10179.4 (3)C14—N4—C17—C18179.5 (3)
C8—C9—C10—C110.9 (5)C15—C16—C17—N40.2 (5)
C9—C10—C11—C122.2 (5)C15—C16—C17—C18179.1 (3)
C9—C10—C11—S1176.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.73 (5)1.90 (4)2.534 (3)146 (5)
N2—H2···O1i0.71 (3)2.22 (3)2.886 (3)156 (3)
C9—H9···O2ii0.932.483.398 (4)171
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC19H17ClN4O3S
Mr416.88
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)11.7332 (7), 13.8506 (6), 23.6635 (14)
V3)3845.6 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.22 × 0.18 × 0.14
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.940, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
21114, 4787, 2797
Rint0.043
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.148, 1.05
No. of reflections2797
No. of parameters259
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.28

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.73 (5)1.90 (4)2.534 (3)146 (5)
N2—H2···O1i0.71 (3)2.22 (3)2.886 (3)156 (3)
C9—H9···O2ii0.932.483.398 (4)171
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+1/2, z.
 

Acknowledgements

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, for funding the purchase of the diffractometer.

References

First citationBasak, A. K., Mazumdar, S. K. & Chaudhuri, S. (1983). Acta Cryst. C39, 492–494.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsion, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsion, USA.  Google Scholar
First citationChohan, Z. H. & Shad, H. A. (2007). J. Enz. Inhib. Med. Chem. doi: 10.1080/14756360701585692.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationShad, H. A., Chohan, Z. H., Tahir, M. N. & Khan, I. U. (2008). Acta Cryst. E64, o635.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, D.-S. (2006). Acta Cryst. E62, o1591–o1592.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZareef, M., Iqbal, R., De Dominguez, N. G., Rodrigues, J., Zaidi, J. H., Arfan, M. & Supuran, C. T. (2007). J. Enz. Inhib. Med. Chem. 22, 301–308.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds