organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Phenyl-3-{4-[4-(4-undecyl­oxybenzoyl­­oxy)phenyl­oxycarbon­yl]phen­yl}triazene 1-oxide

aDepartment of Chemistry, University of North Bengal, Siliguri 734 013, India, bDepartment of Chemistry, Indian Institute of Technology, Delhi, New Delhi 110 016, India, and cDepartment of Physics, University of North Bengal, Siliguri 734 013, India
*Correspondence e-mail: pbchem@rediffmail.com

(Received 25 February 2008; accepted 3 March 2008; online 7 March 2008)

The X-ray crystallographic study of the title compound, C37H41N3O6, at 150 K establishes the N-oxide form of the triazene 1-oxide unit. There is one intra­molecular N—H⋯O hydrogen-bonding inter­action and the crystal packing is stabilized by one N—H⋯O, three C—H⋯O and three C—H⋯π inter­molecular inter­actions. The dihedral angles between pairs of adjacent benzene rings are 14.9 (3), 56.3 (1) and 56.0 (1)°

Related literature

For related literature, see: Ciunik et al. (2002[Ciunik, Z., Wolny, J. A., Rudolf, M. F. & Wołowiec, S. (2002). J. Chem. Soc. Dalton Trans. pp. 885-895.]); Das et al. (2005[Das, P., Neogi, D. N., Upreti, S., Mandal, P. K. & Bandyopadhyay, P. (2005). Acta Cryst. E61, o3602-o3604.]); Hörner et al. (2002[Hörner, M., de Oliveira, J. S., Bordinhao, J. & Beck, J. (2002). Acta Cryst. C58, m586-m587.]); Rapta et al. (1996[Rapta, P., Omelka, L., Stasko, A., Dauth, J., Deubzer, B. & Weis, J. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 255-261.]); Samanta et al. (1997[Samanta, C., Saha, S. C. & Mukherjee, A. K. (1997). Acta Cryst. C53, 1657-1658.]); Vaughan et al. (1992[Vaughan, K., Cameron, L. M., Christie, S. & Zaworotko, M. J. (1992). Acta Cryst. C48, 1985-1988.]); Wilman (1988[Wilman, D. E. V. (1988). Cancer Treat. Rev. 15, 69-72.]).

[Scheme 1]

Experimental

Crystal data
  • C37H41N3O6

  • Mr = 623.73

  • Triclinic, [P \overline 1]

  • a = 5.674 (3) Å

  • b = 12.039 (7) Å

  • c = 24.931 (15) Å

  • α = 101.779 (10)°

  • β = 92.826 (11)°

  • γ = 96.565 (10)°

  • V = 1651.6 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 (2) K

  • 0.33 × 0.09 × 0.04 mm

Data collection
  • Bruker SMART APEX CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.988, Tmax = 0.995

  • 11715 measured reflections

  • 5812 independent reflections

  • 3464 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.096

  • wR(F2) = 0.212

  • S = 1.08

  • 5812 reflections

  • 420 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1 0.88 (5) 2.16 (5) 2.501 (5) 103 (4)
N3—H3A⋯O1i 0.88 (5) 2.10 (5) 2.909 (5) 153 (5)
C12—H12⋯O1i 0.95 2.44 3.225 (6) 140
C16—H16⋯O5ii 0.95 2.51 3.436 (5) 166
C19—H19⋯O2iii 0.95 2.37 3.260 (5) 157
C4—H4⋯Cg3iv 0.95 2.71 3.486 (5) 139
C15—H15⋯Cg1v 0.95 2.60 3.342 (5) 135
C28—H28ACg3v 0.99 2.69 3.642 (5) 161
Symmetry codes: (i) -x+1, -y, -z+2; (ii) x+1, y, z; (iii) x-1, y, z; (iv) x-1, y+1, z; (v) x, y-1, z. Cg1 and Cg3 are the centroids of the C1–C6 and C14–C19 rings, respectively).

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Triazene-1-oxides are well known for their chelating ability (Ciunik et al., 2002 & Hörner et al., 2002), antitumour activity (Wilman, 1988) and also for initiating radical polymerization (Rapta et al., 1996). In this communication the molecular structure of a triazene-1-oxide derivative has been reported. The molecular structure of the title compound, (I), has been shown in Figure 1, with the atom-numbering scheme. The planar phenyl moiety and trigonal planar geometry of the triazene N3 atom strongly suggest a resonance interaction extending over the C6, N1, N2 and N3 atoms. The N1—N2 and N2—N3 distances are in good agreement with the reported values of other triazene-1-oxides (Samanta et al., 1997; Vaughan et al., 1992). The shorter length of N1—N2 indicates its double-bond character and the longer N2—N3 distance is still shorter than a pure single-bond. The deviation of O1 from the molecular plane causes conjugation between N1—C6 to be less effective and is reflected in the longer N1—C6 than N3—C7 distance. There is an intramolecular N–H···O interaction within the triazene-1-oxide moiety (Figure 1, Table 1). The intramolecular hydrogen bondings result almost planar conformation of the triazene fragment of the molecule. The molecular packing of (I) has been shown in Figure 2. The intermolecular hydrogen bonding causes dimer formation of (I) (Figure 3). The crystal packing is stabilized by intermolecular one N–H···O (Figure 3, Table 1), three C–H···O (Figure 3, Figure 4, Table 1)and three C–H···π (Figure 5, Table 1) interactions (Das et al., 2005). The intermolecular hydrogen bonding and intermolecular C—H··· π interactions makes the phenyltriazene-1-oxide fragments of (I) in layer arrangement (Figure 2) in the molecular assembly.

Related literature top

For related literature, see: Ciunik et al. (2002); Das et al. (2005); Hörner et al. (2002); Rapta et al. (1996); Samanta et al. (1997); Vaughan et al. (1992); Wilman (1988).

Experimental top

The title compound has been synthesized from nitobenzene, p-aminobenzoic acid, hydroquinone, p-hydroxybenzoic acid and n-bromoundecane using standard coupling processes involving multiple steps. The final product was crystallized by slow diffusion of ethanol into the dichloromethane solution of the title compound to yield crystals suitable for x-ray crystallography.

Refinement top

The N-bound H atom was located in a difference Fourier map and its coordinates and isotropic displacement parameter were freely refined. C-bound H atoms were included at calculated positions as riding atoms with C–H set to 0.95 Å for (aromatic), 0.98 Å for (CH3) and 0.99 Å for (CH2) H atoms, with Uiso(H) = 1.2Ueq(C) (1.5Ueq for methyl group). Some low-angle reflections were excluded from the refinement, as they were probably obscured by the beam stop.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), with displacement ellipsoids drawn at the 75% probability level. Dotted lines indicate the intramolecular N–H···O interaction.
[Figure 2] Fig. 2. The molecular packing of (I) showing the arrangements of the molecules in the bc-plane.
[Figure 3] Fig. 3. Dimerization of two molecules (I)through intermolecular N–H···O and C–H···O hydrogen bonding interactions shown by dotted lines (Symmetry code: (i) -x + 1, -y, -z + 2).
[Figure 4] Fig. 4. Parallel arrangement of (I) through intermolecular C–H···O interactions shown by dotted lines (Symmetry codes: (ii) x + 1, y, z; (iii) x - 1, y, z).
[Figure 5] Fig. 5. Parallel arrangement of (I) through intermolecular C—H···π interactions shown by dotted lines (Symmetry codes: (iv) x - 1, y + 1, z; (v) x, y - 1, z. Cg1 and Cg3 are the centroids of the C1–C6 and C14–C19 rings, respectively).
1-Phenyl-3-{4-[4-(4-undecyloxybenzoyloxy)phenyloxycarbonyl]phenyl}triazene 1-oxide top
Crystal data top
C37H41N3O6Z = 2
Mr = 623.73F(000) = 664
Triclinic, P1Dx = 1.254 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.674 (3) ÅCell parameters from 5812 reflections
b = 12.039 (7) Åθ = 1.7–25.5°
c = 24.931 (15) ŵ = 0.09 mm1
α = 101.779 (10)°T = 150 K
β = 92.826 (11)°Needle, pale yellow
γ = 96.565 (10)°0.33 × 0.09 × 0.04 mm
V = 1651.6 (17) Å3
Data collection top
Bruker SMART APEX CCD area detector
diffractometer
5812 independent reflections
Radiation source: fine-focus sealed tube3464 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ϕ and ω scansθmax = 25.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 66
Tmin = 0.988, Tmax = 0.995k = 1414
11715 measured reflectionsl = 2930
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.096Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.212H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.082P)2 + 0.0843P]
where P = (Fo2 + 2Fc2)/3
5812 reflections(Δ/σ)max < 0.001
420 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C37H41N3O6γ = 96.565 (10)°
Mr = 623.73V = 1651.6 (17) Å3
Triclinic, P1Z = 2
a = 5.674 (3) ÅMo Kα radiation
b = 12.039 (7) ŵ = 0.09 mm1
c = 24.931 (15) ÅT = 150 K
α = 101.779 (10)°0.33 × 0.09 × 0.04 mm
β = 92.826 (11)°
Data collection top
Bruker SMART APEX CCD area detector
diffractometer
5812 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3464 reflections with I > 2σ(I)
Tmin = 0.988, Tmax = 0.995Rint = 0.072
11715 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0960 restraints
wR(F2) = 0.212H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.31 e Å3
5812 reflectionsΔρmin = 0.31 e Å3
420 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H3A0.607 (9)0.051 (4)0.963 (2)0.052 (16)*
O10.6978 (5)0.0912 (2)0.99661 (11)0.0257 (7)
O20.9170 (5)0.4217 (2)0.78920 (11)0.0230 (7)
O30.5858 (5)0.4763 (2)0.82795 (11)0.0214 (7)
O40.5943 (5)0.8656 (2)0.74197 (12)0.0266 (8)
O50.3127 (6)0.9292 (2)0.79658 (13)0.0349 (9)
O60.5596 (5)1.3488 (2)0.68317 (11)0.0246 (7)
N10.8297 (6)0.0997 (3)0.95643 (14)0.0217 (9)
N20.8428 (6)0.0295 (3)0.92334 (13)0.0205 (8)
N30.6991 (7)0.0500 (3)0.93561 (15)0.0221 (9)
C10.9117 (9)0.2881 (4)0.96356 (18)0.0310 (12)
H10.77350.29540.98320.037*
C21.0507 (10)0.3763 (4)0.9521 (2)0.0403 (14)
H21.00600.44590.96340.048*
C31.2551 (9)0.3635 (4)0.92428 (19)0.0358 (12)
H31.35200.42350.91750.043*
C41.3173 (8)0.2634 (4)0.90638 (17)0.0297 (11)
H41.45470.25570.88650.036*
C51.1826 (8)0.1756 (4)0.91715 (17)0.0257 (11)
H51.22660.10630.90540.031*
C60.9815 (7)0.1889 (3)0.94531 (16)0.0185 (10)
C70.7176 (8)0.1385 (3)0.90689 (16)0.0227 (11)
C80.8969 (8)0.1530 (4)0.87256 (18)0.0289 (11)
H81.01380.10190.86780.035*
C90.9056 (8)0.2408 (3)0.84549 (18)0.0266 (11)
H91.02870.24940.82160.032*
C100.7403 (8)0.3177 (3)0.85173 (16)0.0233 (10)
C110.5577 (8)0.3021 (3)0.88585 (17)0.0241 (11)
H110.43950.35250.89010.029*
C120.5485 (8)0.2143 (4)0.91320 (17)0.0263 (11)
H120.42490.20500.93690.032*
C130.7644 (7)0.4083 (3)0.81940 (16)0.0167 (9)
C140.5992 (7)0.5729 (3)0.80380 (16)0.0172 (9)
C150.7954 (7)0.6542 (3)0.81402 (16)0.0176 (9)
H150.93270.64320.83470.021*
C160.7896 (7)0.7526 (3)0.79363 (16)0.0168 (10)
H160.92360.80990.80000.020*
C170.5872 (7)0.7667 (3)0.76399 (17)0.0188 (10)
C180.3911 (7)0.6858 (3)0.75446 (17)0.0190 (10)
H180.25260.69740.73440.023*
C190.3974 (7)0.5858 (3)0.77461 (16)0.0198 (10)
H190.26420.52800.76810.024*
C200.4459 (8)0.9433 (3)0.76209 (17)0.0239 (10)
C210.4854 (7)1.0462 (3)0.73795 (16)0.0177 (10)
C220.6686 (8)1.0670 (3)0.70587 (18)0.0277 (11)
H220.77471.01150.69680.033*
C230.7018 (8)1.1675 (4)0.68634 (17)0.0273 (11)
H230.83021.18100.66450.033*
C240.5457 (8)1.2473 (3)0.69914 (17)0.0219 (10)
C250.3546 (8)1.2251 (3)0.72996 (17)0.0226 (10)
H250.24531.27930.73810.027*
C260.3238 (8)1.1258 (3)0.74858 (17)0.0226 (10)
H260.19111.11060.76900.027*
C270.7669 (8)1.3862 (3)0.65780 (18)0.0249 (11)
H27A0.77101.33790.62070.030*
H27B0.91271.38090.68010.030*
C280.7526 (8)1.5068 (3)0.65407 (18)0.0261 (11)
H28A0.75161.55310.69170.031*
H28B0.59921.51030.63420.031*
C290.9515 (8)1.5615 (3)0.62570 (18)0.0275 (11)
H29A0.94331.52170.58660.033*
H29B1.10711.55310.64320.033*
C300.9318 (8)1.6876 (3)0.62928 (18)0.0287 (11)
H30A0.94621.72620.66860.034*
H30B0.77061.69440.61420.034*
C311.1121 (9)1.7520 (4)0.5999 (2)0.0328 (12)
H31A1.27441.74880.61550.039*
H31B1.10101.71410.56050.039*
C321.0726 (8)1.8755 (4)0.60495 (18)0.0291 (11)
H32A1.09651.91360.64430.035*
H32B0.90451.87740.59290.035*
C331.2298 (9)1.9452 (3)0.57279 (18)0.0304 (12)
H33A1.39781.94880.58650.037*
H33B1.21381.90560.53360.037*
C341.1690 (8)2.0658 (4)0.57715 (18)0.0286 (11)
H34A1.18432.10480.61640.034*
H34B1.00062.06170.56360.034*
C351.3232 (9)2.1382 (4)0.54541 (18)0.0331 (12)
H35A1.49122.14470.55970.040*
H35B1.31172.09850.50630.040*
C361.2542 (9)2.2568 (3)0.5491 (2)0.0367 (13)
H36A1.26912.29690.58820.044*
H36B1.08502.25010.53560.044*
C371.4037 (10)2.3293 (4)0.5165 (2)0.0529 (16)
H37A1.39812.28820.47810.079*
H37B1.56882.34390.53220.079*
H37C1.34022.40210.51810.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0294 (19)0.0308 (18)0.0201 (16)0.0072 (15)0.0124 (14)0.0086 (14)
O20.0202 (18)0.0129 (15)0.0377 (18)0.0026 (13)0.0121 (14)0.0070 (13)
O30.0252 (18)0.0126 (15)0.0298 (17)0.0039 (13)0.0115 (14)0.0098 (13)
O40.0294 (19)0.0198 (16)0.0383 (18)0.0104 (14)0.0163 (15)0.0166 (14)
O50.033 (2)0.0234 (17)0.056 (2)0.0066 (15)0.0228 (17)0.0189 (16)
O60.0303 (19)0.0099 (15)0.0358 (17)0.0013 (13)0.0065 (15)0.0115 (13)
N10.023 (2)0.0153 (19)0.025 (2)0.0037 (16)0.0046 (17)0.0024 (16)
N20.027 (2)0.0101 (18)0.027 (2)0.0056 (16)0.0115 (17)0.0065 (16)
N30.025 (2)0.020 (2)0.025 (2)0.0096 (17)0.0082 (18)0.0086 (17)
C10.045 (3)0.022 (3)0.029 (3)0.010 (2)0.007 (2)0.008 (2)
C20.061 (4)0.027 (3)0.049 (3)0.029 (3)0.018 (3)0.028 (2)
C30.035 (3)0.032 (3)0.043 (3)0.021 (2)0.000 (2)0.006 (2)
C40.029 (3)0.028 (3)0.028 (3)0.003 (2)0.002 (2)0.003 (2)
C50.021 (3)0.022 (2)0.029 (2)0.003 (2)0.001 (2)0.007 (2)
C60.015 (2)0.015 (2)0.024 (2)0.0011 (18)0.0017 (19)0.0015 (18)
C70.030 (3)0.016 (2)0.019 (2)0.004 (2)0.004 (2)0.0008 (19)
C80.026 (3)0.023 (2)0.045 (3)0.011 (2)0.009 (2)0.018 (2)
C90.024 (3)0.025 (3)0.035 (3)0.004 (2)0.013 (2)0.012 (2)
C100.027 (3)0.017 (2)0.023 (2)0.005 (2)0.000 (2)0.0015 (19)
C110.021 (3)0.022 (2)0.035 (3)0.009 (2)0.014 (2)0.013 (2)
C120.029 (3)0.030 (3)0.024 (2)0.008 (2)0.012 (2)0.012 (2)
C130.015 (2)0.011 (2)0.022 (2)0.0009 (18)0.0038 (19)0.0020 (18)
C140.018 (2)0.010 (2)0.024 (2)0.0005 (18)0.0022 (19)0.0087 (18)
C150.014 (2)0.015 (2)0.024 (2)0.0005 (18)0.0001 (18)0.0059 (18)
C160.006 (2)0.011 (2)0.030 (2)0.0058 (17)0.0013 (18)0.0000 (18)
C170.014 (2)0.016 (2)0.027 (2)0.0025 (18)0.0104 (19)0.0034 (19)
C180.010 (2)0.015 (2)0.033 (2)0.0012 (18)0.0071 (19)0.0068 (19)
C190.014 (2)0.008 (2)0.034 (2)0.0077 (17)0.004 (2)0.0001 (19)
C200.022 (3)0.021 (2)0.028 (2)0.001 (2)0.003 (2)0.006 (2)
C210.016 (2)0.0035 (19)0.032 (2)0.0044 (17)0.0011 (19)0.0044 (18)
C220.031 (3)0.014 (2)0.041 (3)0.002 (2)0.010 (2)0.011 (2)
C230.025 (3)0.028 (3)0.029 (3)0.003 (2)0.008 (2)0.004 (2)
C240.025 (3)0.016 (2)0.026 (2)0.000 (2)0.008 (2)0.0074 (19)
C250.021 (3)0.010 (2)0.035 (3)0.0000 (19)0.002 (2)0.0002 (19)
C260.017 (2)0.020 (2)0.030 (2)0.0018 (19)0.009 (2)0.005 (2)
C270.032 (3)0.015 (2)0.029 (2)0.000 (2)0.012 (2)0.0089 (19)
C280.027 (3)0.022 (2)0.031 (3)0.007 (2)0.010 (2)0.006 (2)
C290.032 (3)0.026 (3)0.025 (2)0.001 (2)0.004 (2)0.007 (2)
C300.029 (3)0.022 (3)0.037 (3)0.002 (2)0.005 (2)0.012 (2)
C310.034 (3)0.027 (3)0.041 (3)0.005 (2)0.007 (2)0.012 (2)
C320.029 (3)0.032 (3)0.028 (2)0.003 (2)0.010 (2)0.011 (2)
C330.037 (3)0.020 (2)0.033 (3)0.006 (2)0.008 (2)0.005 (2)
C340.018 (3)0.030 (3)0.036 (3)0.010 (2)0.003 (2)0.010 (2)
C350.041 (3)0.030 (3)0.029 (3)0.002 (2)0.005 (2)0.011 (2)
C360.046 (3)0.015 (2)0.046 (3)0.013 (2)0.004 (3)0.009 (2)
C370.073 (4)0.031 (3)0.055 (4)0.013 (3)0.011 (3)0.024 (3)
Geometric parameters (Å, º) top
O1—N11.274 (4)C19—H190.9500
O2—C131.193 (4)C20—C211.484 (6)
O3—C131.372 (5)C21—C221.373 (5)
O3—C141.410 (4)C21—C261.397 (6)
O4—C201.366 (5)C22—C231.391 (6)
O4—C171.407 (5)C22—H220.9500
O5—C201.197 (5)C23—C241.381 (6)
O6—C241.356 (5)C23—H230.9500
O6—C271.433 (5)C24—C251.392 (5)
N1—N21.295 (4)C25—C261.365 (6)
N1—C61.444 (5)C25—H250.9500
N2—N31.326 (5)C26—H260.9500
N3—C71.397 (5)C27—C281.485 (6)
N3—H3A0.89 (5)C27—H27A0.9900
C1—C21.385 (6)C27—H27B0.9900
C1—C61.386 (6)C28—C291.518 (6)
C1—H10.9500C28—H28A0.9900
C2—C31.390 (6)C28—H28B0.9900
C2—H20.9500C29—C301.520 (6)
C3—C41.384 (6)C29—H29A0.9900
C3—H30.9500C29—H29B0.9900
C4—C51.365 (6)C30—C311.520 (6)
C4—H40.9500C30—H30A0.9900
C5—C61.379 (5)C30—H30B0.9900
C5—H50.9500C31—C321.509 (6)
C7—C81.380 (6)C31—H31A0.9900
C7—C121.391 (6)C31—H31B0.9900
C8—C91.363 (6)C32—C331.522 (5)
C8—H80.9500C32—H32A0.9900
C9—C101.384 (6)C32—H32B0.9900
C9—H90.9500C33—C341.514 (6)
C10—C111.393 (5)C33—H33A0.9900
C10—C131.482 (6)C33—H33B0.9900
C11—C121.368 (6)C34—C351.525 (6)
C11—H110.9500C34—H34A0.9900
C12—H120.9500C34—H34B0.9900
C14—C191.367 (6)C35—C361.510 (6)
C14—C151.373 (6)C35—H35A0.9900
C15—C161.384 (5)C35—H35B0.9900
C15—H150.9500C36—C371.527 (6)
C16—C171.381 (6)C36—H36A0.9900
C16—H160.9500C36—H36B0.9900
C17—C181.369 (6)C37—H37A0.9800
C18—C191.399 (5)C37—H37B0.9800
C18—H180.9500C37—H37C0.9800
C13—O3—C14117.5 (3)C24—C23—H23120.4
C20—O4—C17117.0 (3)C22—C23—H23120.4
C24—O6—C27119.1 (3)O6—C24—C23125.0 (4)
O1—N1—N2123.7 (3)O6—C24—C25115.1 (4)
O1—N1—C6121.5 (3)C23—C24—C25119.9 (4)
N2—N1—C6114.9 (3)C26—C25—C24120.2 (4)
N1—N2—N3111.9 (3)C26—C25—H25119.9
N2—N3—C7117.2 (4)C24—C25—H25119.9
N2—N3—H3A121 (3)C25—C26—C21120.6 (4)
C7—N3—H3A122 (3)C25—C26—H26119.7
C2—C1—C6117.6 (4)C21—C26—H26119.7
C2—C1—H1121.2O6—C27—C28107.1 (3)
C6—C1—H1121.2O6—C27—H27A110.3
C1—C2—C3120.5 (4)C28—C27—H27A110.3
C1—C2—H2119.7O6—C27—H27B110.3
C3—C2—H2119.7C28—C27—H27B110.3
C4—C3—C2119.9 (4)H27A—C27—H27B108.6
C4—C3—H3120.0C27—C28—C29115.6 (4)
C2—C3—H3120.0C27—C28—H28A108.4
C5—C4—C3120.4 (4)C29—C28—H28A108.4
C5—C4—H4119.8C27—C28—H28B108.4
C3—C4—H4119.8C29—C28—H28B108.4
C4—C5—C6119.0 (4)H28A—C28—H28B107.4
C4—C5—H5120.5C28—C29—C30110.8 (4)
C6—C5—H5120.5C28—C29—H29A109.5
C5—C6—C1122.4 (4)C30—C29—H29A109.5
C5—C6—N1121.1 (4)C28—C29—H29B109.5
C1—C6—N1116.5 (4)C30—C29—H29B109.5
C8—C7—C12119.1 (4)H29A—C29—H29B108.1
C8—C7—N3122.3 (4)C29—C30—C31116.6 (4)
C12—C7—N3118.6 (4)C29—C30—H30A108.1
C9—C8—C7119.7 (4)C31—C30—H30A108.1
C9—C8—H8120.1C29—C30—H30B108.1
C7—C8—H8120.1C31—C30—H30B108.1
C8—C9—C10122.0 (4)H30A—C30—H30B107.3
C8—C9—H9119.0C32—C31—C30112.1 (4)
C10—C9—H9119.0C32—C31—H31A109.2
C9—C10—C11118.3 (4)C30—C31—H31A109.2
C9—C10—C13117.2 (4)C32—C31—H31B109.2
C11—C10—C13124.4 (4)C30—C31—H31B109.2
C12—C11—C10120.0 (4)H31A—C31—H31B107.9
C12—C11—H11120.0C31—C32—C33116.4 (4)
C10—C11—H11120.0C31—C32—H32A108.2
C11—C12—C7121.0 (4)C33—C32—H32A108.2
C11—C12—H12119.5C31—C32—H32B108.2
C7—C12—H12119.5C33—C32—H32B108.2
O2—C13—O3123.2 (4)H32A—C32—H32B107.3
O2—C13—C10125.4 (4)C34—C33—C32113.2 (4)
O3—C13—C10111.4 (3)C34—C33—H33A108.9
C19—C14—C15122.5 (4)C32—C33—H33A108.9
C19—C14—O3115.9 (3)C34—C33—H33B108.9
C15—C14—O3121.3 (4)C32—C33—H33B108.9
C14—C15—C16118.8 (4)H33A—C33—H33B107.7
C14—C15—H15120.6C33—C34—C35114.7 (4)
C16—C15—H15120.6C33—C34—H34A108.6
C17—C16—C15119.4 (4)C35—C34—H34A108.6
C17—C16—H16120.3C33—C34—H34B108.6
C15—C16—H16120.3C35—C34—H34B108.6
C18—C17—C16121.6 (4)H34A—C34—H34B107.6
C18—C17—O4121.3 (4)C36—C35—C34113.5 (4)
C16—C17—O4117.1 (4)C36—C35—H35A108.9
C17—C18—C19119.2 (4)C34—C35—H35A108.9
C17—C18—H18120.4C36—C35—H35B108.9
C19—C18—H18120.4C34—C35—H35B108.9
C14—C19—C18118.6 (4)H35A—C35—H35B107.7
C14—C19—H19120.7C35—C36—C37114.0 (4)
C18—C19—H19120.7C35—C36—H36A108.7
O5—C20—O4122.6 (4)C37—C36—H36A108.7
O5—C20—C21126.5 (4)C35—C36—H36B108.7
O4—C20—C21110.8 (3)C37—C36—H36B108.7
C22—C21—C26118.6 (4)H36A—C36—H36B107.6
C22—C21—C20124.1 (4)C36—C37—H37A109.5
C26—C21—C20117.2 (4)C36—C37—H37B109.5
C21—C22—C23121.3 (4)H37A—C37—H37B109.5
C21—C22—H22119.3C36—C37—H37C109.5
C23—C22—H22119.3H37A—C37—H37C109.5
C24—C23—C22119.1 (4)H37B—C37—H37C109.5
O1—N1—N2—N31.5 (5)C15—C16—C17—C180.3 (6)
C6—N1—N2—N3179.8 (3)C15—C16—C17—O4177.1 (3)
N1—N2—N3—C7172.8 (3)C20—O4—C17—C1867.9 (5)
C6—C1—C2—C31.2 (7)C20—O4—C17—C16114.7 (4)
C1—C2—C3—C41.8 (8)C16—C17—C18—C190.9 (6)
C2—C3—C4—C51.7 (7)O4—C17—C18—C19176.4 (3)
C3—C4—C5—C61.1 (7)C15—C14—C19—C180.0 (6)
C4—C5—C6—C10.5 (7)O3—C14—C19—C18173.5 (3)
C4—C5—C6—N1178.3 (4)C17—C18—C19—C140.7 (6)
C2—C1—C6—C50.6 (7)C17—O4—C20—O50.6 (6)
C2—C1—C6—N1178.3 (4)C17—O4—C20—C21176.0 (3)
O1—N1—C6—C5155.3 (4)O5—C20—C21—C22168.0 (5)
N2—N1—C6—C523.4 (6)O4—C20—C21—C228.5 (6)
O1—N1—C6—C125.8 (6)O5—C20—C21—C2612.5 (7)
N2—N1—C6—C1155.5 (4)O4—C20—C21—C26171.1 (4)
N2—N3—C7—C88.6 (6)C26—C21—C22—C233.2 (6)
N2—N3—C7—C12171.3 (4)C20—C21—C22—C23177.3 (4)
C12—C7—C8—C90.0 (7)C21—C22—C23—C240.6 (7)
N3—C7—C8—C9179.9 (4)C27—O6—C24—C239.4 (6)
C7—C8—C9—C100.7 (7)C27—O6—C24—C25171.6 (4)
C8—C9—C10—C111.5 (7)C22—C23—C24—O6179.3 (4)
C8—C9—C10—C13178.8 (4)C22—C23—C24—C251.7 (7)
C9—C10—C11—C121.6 (6)O6—C24—C25—C26179.6 (4)
C13—C10—C11—C12178.7 (4)C23—C24—C25—C261.4 (6)
C10—C11—C12—C71.0 (7)C24—C25—C26—C211.2 (6)
C8—C7—C12—C110.2 (7)C22—C21—C26—C253.5 (6)
N3—C7—C12—C11179.7 (4)C20—C21—C26—C25176.9 (4)
C14—O3—C13—O26.4 (5)C24—O6—C27—C28170.1 (4)
C14—O3—C13—C10174.1 (3)O6—C27—C28—C29177.2 (4)
C9—C10—C13—O21.4 (6)C27—C28—C29—C30174.4 (4)
C11—C10—C13—O2178.5 (4)C28—C29—C30—C31176.8 (4)
C9—C10—C13—O3178.0 (4)C29—C30—C31—C32178.6 (4)
C11—C10—C13—O30.9 (6)C30—C31—C32—C33174.8 (4)
C13—O3—C14—C19130.4 (4)C31—C32—C33—C34176.4 (4)
C13—O3—C14—C1556.0 (5)C32—C33—C34—C35180.0 (4)
C19—C14—C15—C160.6 (6)C33—C34—C35—C36178.3 (4)
O3—C14—C15—C16173.7 (3)C34—C35—C36—C37178.7 (4)
C14—C15—C16—C170.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.88 (5)2.16 (5)2.501 (5)103 (4)
N3—H3A···O1i0.88 (5)2.10 (5)2.909 (5)153 (5)
C12—H12···O1i0.952.443.225 (6)140
C16—H16···O5ii0.952.513.436 (5)166
C19—H19···O2iii0.952.373.260 (5)157
C4—H4···Cg3iv0.952.713.486 (5)139
C15—H15···Cg1v0.952.603.342 (5)135
C28—H28A···Cg3v0.992.693.642 (5)161
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y, z; (iii) x1, y, z; (iv) x1, y+1, z; (v) x, y1, z.

Experimental details

Crystal data
Chemical formulaC37H41N3O6
Mr623.73
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)5.674 (3), 12.039 (7), 24.931 (15)
α, β, γ (°)101.779 (10), 92.826 (11), 96.565 (10)
V3)1651.6 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.33 × 0.09 × 0.04
Data collection
DiffractometerBruker SMART APEX CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.988, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
11715, 5812, 3464
Rint0.072
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.096, 0.212, 1.08
No. of reflections5812
No. of parameters420
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.31

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.88 (5)2.16 (5)2.501 (5)103 (4)
N3—H3A···O1i0.88 (5)2.10 (5)2.909 (5)153 (5)
C12—H12···O1i0.952.443.225 (6)140
C16—H16···O5ii0.952.513.436 (5)166
C19—H19···O2iii0.952.373.260 (5)157
C4—H4···Cg3iv0.952.713.486 (5)139
C15—H15···Cg1v0.952.603.342 (5)135
C28—H28A···Cg3v0.992.693.642 (5)161
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y, z; (iii) x1, y, z; (iv) x1, y+1, z; (v) x, y1, z.
 

Acknowledgements

Financial support (SR/S1/IC-08/2007) from the DST, Government of India, is gratefully acknowledged. We thank the CSIR (India) for the award of a fellowship (PD) and the UGC (New Delhi) for the Special Assistance Programme to our Department. We also thank Professor A. Ramanan, IIT Delhi, for the X-ray crystallographic data collection.

References

First citationBruker (1998). SMART. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2000). SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationCiunik, Z., Wolny, J. A., Rudolf, M. F. & Wołowiec, S. (2002). J. Chem. Soc. Dalton Trans. pp. 885–895.  Web of Science CSD CrossRef Google Scholar
First citationDas, P., Neogi, D. N., Upreti, S., Mandal, P. K. & Bandyopadhyay, P. (2005). Acta Cryst. E61, o3602–o3604.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHörner, M., de Oliveira, J. S., Bordinhao, J. & Beck, J. (2002). Acta Cryst. C58, m586–m587.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRapta, P., Omelka, L., Stasko, A., Dauth, J., Deubzer, B. & Weis, J. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 255–261.  CrossRef Google Scholar
First citationSamanta, C., Saha, S. C. & Mukherjee, A. K. (1997). Acta Cryst. C53, 1657–1658.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVaughan, K., Cameron, L. M., Christie, S. & Zaworotko, M. J. (1992). Acta Cryst. C48, 1985–1988.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWilman, D. E. V. (1988). Cancer Treat. Rev. 15, 69–72.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds