organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­nitro­benzaldehyde hydrazone

aKey Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China, bDepartment of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China, cKey Laboratory of Chemical Biology, Guangdong Province, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, People's Republic of China, and dSchool of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
*Correspondence e-mail: jiangyy@sz.tsinghua.edu.cn

(Received 17 March 2008; accepted 19 March 2008; online 29 March 2008)

The title compound, C7H6N4O4, plays an important role in the synthesis of biologically active compounds. The planar hydrazone group is oriented at a dihedral angle of 8.27 (3)° with respect to the benzene ring. In the crystal structure, inter­molecular N—H⋯O and N—H⋯N hydrogen bonds link the mol­ecules.

Related literature

For related literature, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Chaulk et al. (2007[Chaulk, S. G. & MacMillan, A. M. (2007). Nat. Protoc. 2, 1052-1058.]); Kawakami et al. (2000[Kawakami, T., Uehata, K. & Suzuki, H. (2000). Org. Lett. 2, 413-415.]); Moreno-Mañas et al. (2001[Moreno-Mañas, M., Pleixats, R., Andreu, R., Garín, J., Orduna, J., Villacampa, B., Levillain, E. & Sallé, M. (2001). J. Mater. Chem. 11, 374-380.]).

[Scheme 1]

Experimental

Crystal data
  • C7H6N4O4

  • Mr = 210.16

  • Triclinic, [P \overline 1]

  • a = 4.5839 (7) Å

  • b = 9.6840 (16) Å

  • c = 9.9287 (15) Å

  • α = 90.785 (12)°

  • β = 96.149 (11)°

  • γ = 98.955 (13)°

  • V = 432.66 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 295 (2) K

  • 0.4 × 0.3 × 0.2 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: none

  • 2238 measured reflections

  • 1616 independent reflections

  • 1160 reflections with I > 2σ(I)

  • Rint = 0.026

  • 3 standard reflections every 97 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.116

  • S = 1.07

  • 1616 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O1i 0.90 2.52 3.305 (3) 146
N1—H1C⋯N2ii 0.90 2.34 3.123 (4) 146
Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+2, -y, -z.

Data collection: XSCANS (Bruker, 1997[Bruker (1997). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzaldehyde hydrazone and its analogues are important intermediates in heterocyclic chemistry, and they have been widely used for the synthesis of biologically active compounds such as [1,2,4]triazino[6,5-f]quinolines, pyrazolo[3,4-f]quinolines (Kawakami et al., 2000), 1,3-dithiol-2-ylidene derivatives (Moreno-Mañas et al., 2001), and oligo-RNAs with photocaged adenosine 2'-hydroxyls (Chaulk et al., 2007). Here we report the synthesis and crystal structure of a nitro-analogue: 2,4-dinitrobenzaldehyde hydrazone. The molecule of the title compound (Fig. 1) contains a benzene ring, a hydrazone chain and two nitryl groups. Most of the bond lengths and angles are within normal ranges (Allen et al., 1987). Because of the pi-pi conjugation and two nitryl groups electron withdrawing effect, the distance of C=N bond (1.282 (3) Å) is obviously shorter than that of the normal range (1.34–1.38 Å). The molecule is essentially planar, with a dihedral angle of 8.27° between the hydrazone group and the benzene ring. In the crystal structure, the molecules are linked by intermolecular N—H···O and N—H···N hydrogen bonds (Table 1, Fig. 2), which seem to be effective in the stabilization of the structure.

Related literature top

For related literature, see: Allen et al. (1987); Chaulk et al. (2007); Kawakami et al. (2000); Moreno-Mañas et al. (2001).

Experimental top

2,4-Dinitrobenzaldehyde (1.96 g, 10 mmol) was dissolved in 100 ml absolute ethanol, after which hydrazine hydrate (0.96 ml, 20 mmol) was added. The mixture was stirred at about 353 K for 5 h. The solution was cooled and kept at about 279 K overnight. Brown powder was collected by filtration (1.41 g, yield 67%) and then single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol.

Refinement top

All non-H atoms were refined anisotropically. All H atoms were placed in calculated positions, with N–H = 0.9 Å and C–H = 0.93 Å. Final difference Fourier maps showed the highest and lowest electron densities of 0.160 and -0.177 e Å-3, respectively.

Computing details top

Data collection: XSCANS (Bruker, 1997); cell refinement: XSCANS (Bruker, 1997); data reduction: XSCANS (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective drawing of the title compound, with the atomic numbering scheme. Displacement ellipsoids are shown at the 35% probability level.
[Figure 2] Fig. 2. The unit cell packing of the title compound, viewed along the a direction.
2,4-Dinitrobenzaldehyde hydrazone top
Crystal data top
C7H6N4O4Z = 2
Mr = 210.16F(000) = 216
Triclinic, P1Dx = 1.613 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.5839 (7) ÅCell parameters from 39 reflections
b = 9.6840 (16) Åθ = 5.9–12.5°
c = 9.9287 (15) ŵ = 0.14 mm1
α = 90.785 (12)°T = 295 K
β = 96.149 (11)°Prism, yellow
γ = 98.955 (13)°0.4 × 0.3 × 0.2 mm
V = 432.66 (12) Å3
Data collection top
Bruker P4
diffractometer
Rint = 0.027
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 2.1°
Graphite monochromatorh = 51
ω scansk = 1111
2238 measured reflectionsl = 1111
1616 independent reflections3 standard reflections every 97 reflections
1160 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.001P)2 + 0.38P]
where P = (Fo2 + 2Fc2)/3
1616 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C7H6N4O4γ = 98.955 (13)°
Mr = 210.16V = 432.66 (12) Å3
Triclinic, P1Z = 2
a = 4.5839 (7) ÅMo Kα radiation
b = 9.6840 (16) ŵ = 0.14 mm1
c = 9.9287 (15) ÅT = 295 K
α = 90.785 (12)°0.4 × 0.3 × 0.2 mm
β = 96.149 (11)°
Data collection top
Bruker P4
diffractometer
Rint = 0.027
2238 measured reflections3 standard reflections every 97 reflections
1616 independent reflections intensity decay: none
1160 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.07Δρmax = 0.16 e Å3
1616 reflectionsΔρmin = 0.18 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7840 (6)0.1234 (3)0.5319 (2)0.0887 (8)
O20.4576 (6)0.2314 (2)0.6030 (2)0.0798 (7)
O30.0003 (6)0.5548 (2)0.3362 (3)0.0872 (8)
O40.1241 (6)0.5961 (3)0.1351 (3)0.0946 (9)
N10.9783 (6)0.0870 (3)0.1463 (3)0.0758 (8)
H1B1.01670.13640.22040.091*
H1C1.05810.10430.07000.091*
N20.8489 (5)0.0275 (2)0.1456 (2)0.0578 (6)
N30.5907 (6)0.1955 (2)0.5116 (2)0.0569 (6)
N40.1273 (6)0.5291 (3)0.2381 (3)0.0675 (7)
C10.7626 (6)0.0654 (3)0.2571 (3)0.0520 (7)
H1A0.79840.01690.33580.062*
C20.6075 (6)0.1858 (3)0.2585 (3)0.0471 (6)
C30.5165 (6)0.2445 (3)0.3752 (3)0.0470 (6)
C40.3552 (6)0.3540 (3)0.3687 (3)0.0518 (7)
H4A0.29180.38850.44660.062*
C50.2906 (6)0.4105 (3)0.2464 (3)0.0534 (7)
C60.3755 (6)0.3582 (3)0.1277 (3)0.0580 (7)
H6A0.33020.39780.04480.070*
C70.5269 (6)0.2473 (3)0.1360 (3)0.0561 (7)
H7A0.57910.21080.05650.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.117 (2)0.1053 (19)0.0558 (13)0.0634 (17)0.0041 (13)0.0040 (12)
O20.1006 (18)0.0891 (16)0.0580 (13)0.0258 (14)0.0307 (12)0.0011 (11)
O30.0851 (17)0.0709 (15)0.115 (2)0.0314 (13)0.0264 (15)0.0126 (14)
O40.136 (2)0.0714 (16)0.0829 (17)0.0524 (16)0.0107 (16)0.0009 (13)
N10.109 (2)0.0739 (17)0.0583 (15)0.0542 (17)0.0153 (15)0.0001 (13)
N20.0690 (15)0.0583 (14)0.0517 (14)0.0267 (12)0.0088 (11)0.0026 (11)
N30.0658 (15)0.0538 (14)0.0513 (14)0.0095 (12)0.0085 (12)0.0042 (11)
N40.0686 (17)0.0521 (15)0.083 (2)0.0200 (13)0.0023 (15)0.0111 (14)
C10.0609 (17)0.0507 (15)0.0484 (15)0.0176 (13)0.0106 (13)0.0035 (12)
C20.0447 (14)0.0465 (14)0.0510 (15)0.0082 (11)0.0085 (12)0.0016 (11)
C30.0482 (15)0.0464 (14)0.0459 (15)0.0056 (12)0.0063 (11)0.0001 (11)
C40.0494 (15)0.0486 (15)0.0578 (17)0.0080 (12)0.0091 (13)0.0096 (12)
C50.0505 (15)0.0449 (15)0.0661 (18)0.0140 (12)0.0029 (13)0.0031 (13)
C60.0649 (18)0.0569 (17)0.0542 (17)0.0183 (14)0.0027 (14)0.0034 (13)
C70.0661 (18)0.0586 (17)0.0473 (15)0.0211 (14)0.0073 (13)0.0027 (12)
Geometric parameters (Å, º) top
O1—N31.214 (3)C1—H1A0.9300
O2—N31.221 (3)C2—C71.400 (4)
O3—N41.229 (3)C2—C31.414 (3)
O4—N41.219 (3)C3—C41.382 (3)
N1—N21.336 (3)C4—C51.361 (4)
N1—H1B0.8999C4—H4A0.9300
N1—H1C0.9000C5—C61.393 (4)
N2—C11.282 (3)C6—C71.365 (4)
N3—C31.464 (3)C6—H6A0.9300
N4—C51.463 (3)C7—H7A0.9300
C1—C21.458 (3)
N2—N1—H1B124.3C4—C3—C2122.2 (2)
N2—N1—H1C115.3C4—C3—N3115.3 (2)
H1B—N1—H1C119.5C2—C3—N3122.5 (2)
C1—N2—N1117.5 (2)C5—C4—C3118.9 (2)
O1—N3—O2121.8 (3)C5—C4—H4A120.6
O1—N3—C3119.9 (2)C3—C4—H4A120.6
O2—N3—C3118.3 (2)C4—C5—C6121.7 (3)
O4—N4—O3123.8 (3)C4—C5—N4119.6 (3)
O4—N4—C5118.6 (3)C6—C5—N4118.7 (3)
O3—N4—C5117.6 (3)C7—C6—C5118.4 (3)
N2—C1—C2118.9 (2)C7—C6—H6A120.8
N2—C1—H1A120.5C5—C6—H6A120.8
C2—C1—H1A120.5C6—C7—C2123.2 (3)
C7—C2—C3115.5 (2)C6—C7—H7A118.4
C7—C2—C1119.4 (2)C2—C7—H7A118.4
C3—C2—C1125.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O1i0.902.523.305 (3)146
N1—H1C···N2ii0.902.343.123 (4)146
Symmetry codes: (i) x+2, y, z+1; (ii) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC7H6N4O4
Mr210.16
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)4.5839 (7), 9.6840 (16), 9.9287 (15)
α, β, γ (°)90.785 (12), 96.149 (11), 98.955 (13)
V3)432.66 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.4 × 0.3 × 0.2
Data collection
DiffractometerBruker P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2238, 1616, 1160
Rint0.027
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.116, 1.07
No. of reflections1616
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.18

Computer programs: XSCANS (Bruker, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O1i0.902.523.305 (3)145.5
N1—H1C···N2ii0.902.343.123 (4)145.9
Symmetry codes: (i) x+2, y, z+1; (ii) x+2, y, z.
 

Acknowledgements

The authors acknowledge financial support from the Ministry of Science and Technology of China (2005CCA03400, 2007 A A02Z160), the Chinese National Natural Science Foundation (20572060, 20472043), and the Department of Science and Technology of Guangdong Province (2005 A11601008).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (1997). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChaulk, S. G. & MacMillan, A. M. (2007). Nat. Protoc. 2, 1052–1058.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKawakami, T., Uehata, K. & Suzuki, H. (2000). Org. Lett. 2, 413–415.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoreno-Mañas, M., Pleixats, R., Andreu, R., Garín, J., Orduna, J., Villacampa, B., Levillain, E. & Sallé, M. (2001). J. Mater. Chem. 11, 374–380.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds