organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Methyl­sulfan­yl)cyclo­dodeca­none tosyl­hydrazone

aKey Laboratory of Pesticide Chemistry and Application Technology, Department of Applied Chemistry, China Agricultural University, Beijing 100094, People's Republic of China
*Correspondence e-mail: wangdq@cau.edu.cn

(Received 22 February 2008; accepted 27 February 2008; online 5 March 2008)

The title compound, C20H32N2O2S2, has been synthesized by the reaction of α-methyl­sulfanylcyclo­dodeca­none and p-toluene­sulfonyl­hydrazine. In the crystal structure, the conformation of the non-benzenoid ring is [3333] and the methyl­sulfanyl group is in the α-side exo position. The mol­ecules are linked by inter­molecular N—H⋯S hydrogen bonds.

Related literature

For related literature, see: Li et al.(2005[Li, X. H., Yang, X. L., Ling, Y., Fan, Z. J., Wang, D. Q. & Li, Z. M. (2005). J. Argric. Food. Chem. 53, 2202-2206.]); Lu et al. (2004[Lu, H. Z., Wang, M. A. & Wang, D. Q. (2004). Chem. J. Chin. Univ. 25, 120-123.]); Song et al. (2005[Song, Y. N., Wang, D. Q. & Wang, M. A. (2005). Chin. J. Pestic. Sci., 7, 210-214.]); Wang et al. (2002[Wang, D. Q., Yang, X. L., Wang, M. A., Liang, X. M. & You, T. B. (2002). Acta Chim. Sinica, 60, 475-480.], 2007[Wang, M. A., Yan, X. J., Liu, J. P., Jin, S. H., Li, T. G., Yang, X. & Wang, D. Q. (2007). Acta Chim. Sinica, 16, 1657-1662.]).

[Scheme 1]

Experimental

Crystal data
  • C20H32N2O2S2

  • Mr = 396.60

  • Monoclinic, P 21 /n

  • a = 8.4374 (7) Å

  • b = 11.5276 (10) Å

  • c = 21.7836 (19) Å

  • β = 92.530 (2)°

  • V = 2116.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 (2) K

  • 0.47 × 0.38 × 0.28 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.]) Tmin = 0.778, Tmax = 1.000 (expected range = 0.722–0.929)

  • 12199 measured reflections

  • 4615 independent reflections

  • 3650 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.131

  • S = 1.03

  • 4615 reflections

  • 241 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯S1i 0.846 (15) 2.786 (15) 3.6223 (18) 170 (2)
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2000[Bruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Many derivatives of cyclododecanone have bioactivity that has attracted much attention from chemists (Song et al., 2005; Li et al., 2005). In order to understand the structure-activity relationships of these materials, it is necessary to study their stereochemistry and overall conformation. We have studied a number of α-monosubstituted cyclododecanones with some fruitful results (Wang et al.,2002; Lu et al.., 2004). Recently, we found a very interesting conformational phenomenon in the condensation products resulting from on the reactions of α-monosubstituted cyclododecanones with hydroxylamine and thiosemicarbazide (Wang et al., 2007). In these compounds the parent ring has a [3333] conformation and the substituting group is at the α-side-exo or α-corner-antiposition. These results were rationalized by "corner-position carbonyl participation" of raw materials, memory effects and H-bonding between amine derivatives and α-monosubstituted cyclododecanones. To further understand the above results, we synthesized the title compound (I) by the reaction of α-methylsulfanylcyclododecanone and p-toluenesulfonylhydrazine. The X-ray analysis further confirmed the validity of our proposed explanation.

The molecular structure of the title compound is given in Fig.1. In the crystal, the parent ring has the [3333] conformation found in the other molecules and the methylsulfanyl group is at α-side-exo position. The molecules are linked by intermolecular N—H···S hydrogen bonds (Table 1 and Fig.2).

Related literature top

For related literature, see: Li et al.(2005); Lu et al. (2004); Song et al. (2005); Wang et al. (2002, 2007).

Experimental top

α-Methylsulfanylcyclododecanone(228 mg, 1.0 mmol) was dissolved in 10 ml absolute ethanol along with p-toluenesulfonylhydrazine (279 mg, 1.5 mmol) and a catalytic amount of p-toluenesulfonic acid. The reaction mixture was heated to reflux under nitrogen for 5 h and cooled. After removal of the solvent under reduced pressure, the crude product was purified by column chromatography on silica gel (200–300 mesh) using hexane/ethyl acetate (10:1,v/v) as the eluent, and recrystallized from methanol to give a pure colorless crystal (yield 76%, m.p. 136–138 °C) suitable for X-ray diffraction.

Refinement top

All non-hydrogen atoms were refined with anisotropic displacement parameters. The carbon-bound H atoms were placed at calculated positions, with C—H = 0.93–0.98 Å, and included in the final cycles of refinement using a riding model with Uiso (H) = 1.2 or 1.5(methyl) Ueq (parent atom). The H atoms attached to N2 was located in a difference Fourier map, and was refined with a distance of N–H 0.85 (1) Å.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of (I). Intermolecular hydrogen bonds are shown as dashed lines.
2-(Methylsulfanyl)cyclododecanone tosylhydrazone top
Crystal data top
C20H32N2O2S2F(000) = 856
Mr = 396.60Dx = 1.245 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.4374 (7) ÅCell parameters from 3644 reflections
b = 11.5276 (10) Åθ = 4.8–55.1°
c = 21.7836 (19) ŵ = 0.27 mm1
β = 92.530 (2)°T = 293 K
V = 2116.7 (3) Å3Prismatic, colorless
Z = 40.47 × 0.38 × 0.28 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4615 independent reflections
Radiation source: fine-focus sealed tube3650 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ϕ and ω scansθmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.778, Tmax = 1.000k = 1413
12199 measured reflectionsl = 2718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0655P)2]
where P = (Fo2 + 2Fc2)/3
4615 reflections(Δ/σ)max = 0.001
241 parametersΔρmax = 0.41 e Å3
1 restraintΔρmin = 0.24 e Å3
Crystal data top
C20H32N2O2S2V = 2116.7 (3) Å3
Mr = 396.60Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.4374 (7) ŵ = 0.27 mm1
b = 11.5276 (10) ÅT = 293 K
c = 21.7836 (19) Å0.47 × 0.38 × 0.28 mm
β = 92.530 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4615 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3650 reflections with I > 2σ(I)
Tmin = 0.778, Tmax = 1.000Rint = 0.061
12199 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0491 restraint
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.41 e Å3
4615 reflectionsΔρmin = 0.24 e Å3
241 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.84188 (7)0.86341 (5)0.29057 (3)0.05522 (19)
S20.28829 (5)1.10533 (4)0.20128 (2)0.03749 (15)
O10.24538 (17)1.21632 (12)0.17655 (6)0.0515 (4)
O20.19940 (15)1.00460 (12)0.18414 (7)0.0490 (4)
N10.53858 (18)0.97987 (13)0.19883 (7)0.0360 (4)
N20.47071 (18)1.08519 (14)0.17949 (7)0.0372 (4)
C10.6872 (2)0.96614 (16)0.19183 (8)0.0358 (4)
C20.8013 (2)1.05110 (18)0.16582 (9)0.0427 (5)
H2A0.89641.05410.19250.051*
H2B0.75361.12770.16550.051*
C30.8478 (2)1.02089 (19)0.10087 (9)0.0471 (5)
H3A0.93031.07390.08890.056*
H3B0.89180.94310.10100.056*
C40.7115 (3)1.0267 (2)0.05364 (10)0.0529 (6)
H4A0.67461.10630.05070.063*
H4B0.62490.97990.06780.063*
C50.7525 (3)0.9853 (2)0.01033 (10)0.0611 (6)
H5A0.66541.00470.03910.073*
H5B0.84561.02690.02290.073*
C60.7844 (3)0.8560 (2)0.01425 (11)0.0636 (7)
H6A0.86640.83600.01650.076*
H6B0.82550.83930.05420.076*
C70.6409 (3)0.7787 (2)0.00514 (11)0.0666 (7)
H7A0.56380.82160.01750.080*
H7B0.59210.75980.04510.080*
C80.6798 (3)0.6672 (2)0.02873 (12)0.0710 (7)
H8A0.76440.62800.00830.085*
H8B0.58740.61720.02620.085*
C90.7308 (3)0.6842 (2)0.09646 (11)0.0596 (6)
H9A0.77500.61190.11230.072*
H9B0.81410.74220.09930.072*
C100.5981 (3)0.72134 (18)0.13636 (10)0.0491 (5)
H10A0.51830.66070.13550.059*
H10B0.54910.79040.11860.059*
C110.6475 (3)0.74684 (18)0.20316 (10)0.0495 (5)
H11A0.55270.75980.22590.059*
H11B0.70060.67900.22060.059*
C120.7559 (2)0.85050 (17)0.21215 (9)0.0434 (5)
H120.84550.83640.18600.052*
C130.6686 (3)0.8781 (2)0.33481 (11)0.0699 (7)
H13A0.60900.94470.32080.105*
H13B0.70000.88770.37740.105*
H13C0.60410.80990.32990.105*
C140.2972 (2)1.11577 (16)0.28203 (9)0.0368 (4)
C150.3174 (2)1.22352 (17)0.30923 (9)0.0429 (5)
H150.32521.28960.28510.051*
C160.3258 (2)1.23198 (18)0.37211 (10)0.0485 (5)
H160.33841.30450.39030.058*
C170.3159 (3)1.13478 (19)0.40892 (10)0.0481 (5)
C180.2959 (3)1.02835 (18)0.38062 (10)0.0530 (6)
H180.28960.96220.40480.064*
C190.2849 (3)1.01732 (17)0.31766 (10)0.0475 (5)
H190.26950.94500.29950.057*
C200.3224 (4)1.1469 (2)0.47810 (11)0.0711 (7)
H20A0.36081.22280.48930.107*
H20B0.39241.08920.49590.107*
H20C0.21801.13650.49310.107*
H20.522 (2)1.1482 (14)0.1827 (10)0.049 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0623 (4)0.0541 (4)0.0480 (3)0.0090 (3)0.0123 (3)0.0002 (3)
S20.0374 (3)0.0370 (3)0.0381 (3)0.00631 (19)0.0012 (2)0.0006 (2)
O10.0597 (9)0.0459 (8)0.0486 (9)0.0192 (7)0.0012 (7)0.0047 (7)
O20.0430 (8)0.0507 (8)0.0529 (9)0.0030 (6)0.0030 (7)0.0071 (7)
N10.0418 (9)0.0335 (8)0.0328 (8)0.0047 (7)0.0035 (7)0.0019 (6)
N20.0411 (9)0.0334 (9)0.0376 (9)0.0032 (7)0.0054 (7)0.0024 (7)
C10.0411 (10)0.0376 (10)0.0287 (9)0.0050 (8)0.0016 (8)0.0046 (8)
C20.0384 (10)0.0427 (11)0.0473 (12)0.0002 (8)0.0047 (9)0.0063 (9)
C30.0393 (10)0.0561 (13)0.0464 (12)0.0003 (9)0.0094 (9)0.0025 (10)
C40.0492 (12)0.0631 (15)0.0466 (13)0.0093 (11)0.0049 (10)0.0085 (11)
C50.0593 (14)0.0856 (18)0.0387 (12)0.0064 (13)0.0036 (11)0.0137 (12)
C60.0608 (15)0.0898 (19)0.0408 (13)0.0071 (13)0.0102 (11)0.0017 (12)
C70.0725 (16)0.0837 (18)0.0426 (13)0.0016 (14)0.0079 (12)0.0062 (13)
C80.0862 (19)0.0698 (17)0.0574 (16)0.0073 (14)0.0065 (14)0.0220 (13)
C90.0712 (15)0.0528 (14)0.0546 (14)0.0144 (12)0.0005 (12)0.0008 (11)
C100.0562 (13)0.0407 (11)0.0504 (13)0.0028 (10)0.0011 (10)0.0023 (10)
C110.0623 (13)0.0387 (11)0.0476 (13)0.0007 (10)0.0046 (11)0.0055 (9)
C120.0467 (11)0.0448 (12)0.0386 (11)0.0081 (9)0.0012 (9)0.0022 (9)
C130.099 (2)0.0649 (16)0.0459 (14)0.0174 (14)0.0083 (14)0.0074 (12)
C140.0350 (9)0.0365 (10)0.0395 (11)0.0030 (8)0.0065 (8)0.0005 (8)
C150.0470 (11)0.0355 (10)0.0466 (12)0.0006 (9)0.0078 (9)0.0014 (9)
C160.0549 (12)0.0418 (11)0.0491 (13)0.0045 (10)0.0067 (10)0.0073 (10)
C170.0495 (12)0.0550 (13)0.0402 (12)0.0020 (10)0.0069 (10)0.0008 (10)
C180.0706 (14)0.0430 (12)0.0462 (13)0.0004 (11)0.0127 (11)0.0095 (10)
C190.0621 (13)0.0336 (10)0.0476 (12)0.0014 (9)0.0116 (10)0.0019 (9)
C200.093 (2)0.0784 (18)0.0421 (13)0.0100 (15)0.0074 (14)0.0047 (12)
Geometric parameters (Å, º) top
S1—C131.794 (3)C8—H8A0.9700
S1—C121.832 (2)C8—H8B0.9700
S2—O21.4232 (14)C9—C101.509 (3)
S2—O11.4287 (14)C9—H9A0.9700
S2—N21.6470 (16)C9—H9B0.9700
S2—C141.761 (2)C10—C111.524 (3)
N1—C11.280 (2)C10—H10A0.9700
N1—N21.399 (2)C10—H10B0.9700
N2—H20.846 (15)C11—C121.512 (3)
C1—C21.501 (3)C11—H11A0.9700
C1—C121.512 (3)C11—H11B0.9700
C2—C31.525 (3)C12—H120.9800
C2—H2A0.9700C13—H13A0.9600
C2—H2B0.9700C13—H13B0.9600
C3—C41.510 (3)C13—H13C0.9600
C3—H3A0.9700C14—C191.382 (3)
C3—H3B0.9700C14—C151.383 (3)
C4—C51.527 (3)C15—C161.372 (3)
C4—H4A0.9700C15—H150.9300
C4—H4B0.9700C16—C171.383 (3)
C5—C61.517 (3)C16—H160.9300
C5—H5A0.9700C17—C181.380 (3)
C5—H5B0.9700C17—C201.512 (3)
C6—C71.524 (3)C18—C191.376 (3)
C6—H6A0.9700C18—H180.9300
C6—H6B0.9700C19—H190.9300
C7—C81.510 (3)C20—H20A0.9600
C7—H7A0.9700C20—H20B0.9600
C7—H7B0.9700C20—H20C0.9600
C8—C91.531 (3)
C13—S1—C12102.13 (11)H8A—C8—H8B107.6
O2—S2—O1120.65 (9)C10—C9—C8114.0 (2)
O2—S2—N2107.32 (8)C10—C9—H9A108.7
O1—S2—N2104.01 (9)C8—C9—H9A108.7
O2—S2—C14108.44 (9)C10—C9—H9B108.7
O1—S2—C14108.32 (8)C8—C9—H9B108.7
N2—S2—C14107.36 (9)H9A—C9—H9B107.6
C1—N1—N2117.49 (15)C9—C10—C11115.22 (18)
N1—N2—S2114.25 (12)C9—C10—H10A108.5
N1—N2—H2121.3 (14)C11—C10—H10A108.5
S2—N2—H2109.5 (15)C9—C10—H10B108.5
N1—C1—C2127.74 (17)C11—C10—H10B108.5
N1—C1—C12116.03 (17)H10A—C10—H10B107.5
C2—C1—C12116.23 (16)C12—C11—C10114.46 (17)
C1—C2—C3113.37 (16)C12—C11—H11A108.6
C1—C2—H2A108.9C10—C11—H11A108.6
C3—C2—H2A108.9C12—C11—H11B108.6
C1—C2—H2B108.9C10—C11—H11B108.6
C3—C2—H2B108.9H11A—C11—H11B107.6
H2A—C2—H2B107.7C1—C12—C11115.91 (17)
C4—C3—C2113.72 (17)C1—C12—S1109.40 (13)
C4—C3—H3A108.8C11—C12—S1113.40 (15)
C2—C3—H3A108.8C1—C12—H12105.8
C4—C3—H3B108.8C11—C12—H12105.8
C2—C3—H3B108.8S1—C12—H12105.8
H3A—C3—H3B107.7S1—C13—H13A109.5
C3—C4—C5114.30 (18)S1—C13—H13B109.5
C3—C4—H4A108.7H13A—C13—H13B109.5
C5—C4—H4A108.7S1—C13—H13C109.5
C3—C4—H4B108.7H13A—C13—H13C109.5
C5—C4—H4B108.7H13B—C13—H13C109.5
H4A—C4—H4B107.6C19—C14—C15120.52 (19)
C6—C5—C4114.00 (19)C19—C14—S2120.27 (15)
C6—C5—H5A108.8C15—C14—S2119.21 (15)
C4—C5—H5A108.8C16—C15—C14119.43 (18)
C6—C5—H5B108.8C16—C15—H15120.3
C4—C5—H5B108.8C14—C15—H15120.3
H5A—C5—H5B107.6C15—C16—C17121.32 (19)
C5—C6—C7115.0 (2)C15—C16—H16119.3
C5—C6—H6A108.5C17—C16—H16119.3
C7—C6—H6A108.5C18—C17—C16118.1 (2)
C5—C6—H6B108.5C18—C17—C20121.7 (2)
C7—C6—H6B108.5C16—C17—C20120.2 (2)
H6A—C6—H6B107.5C19—C18—C17121.93 (19)
C8—C7—C6113.8 (2)C19—C18—H18119.0
C8—C7—H7A108.8C17—C18—H18119.0
C6—C7—H7A108.8C18—C19—C14118.72 (19)
C8—C7—H7B108.8C18—C19—H19120.6
C6—C7—H7B108.8C14—C19—H19120.6
H7A—C7—H7B107.7C17—C20—H20A109.5
C7—C8—C9114.1 (2)C17—C20—H20B109.5
C7—C8—H8A108.7H20A—C20—H20B109.5
C9—C8—H8A108.7C17—C20—H20C109.5
C7—C8—H8B108.7H20A—C20—H20C109.5
C9—C8—H8B108.7H20B—C20—H20C109.5
C1—N1—N2—S2169.49 (13)C10—C11—C12—C162.7 (2)
O2—S2—N2—N151.04 (15)C10—C11—C12—S1169.51 (15)
O1—S2—N2—N1179.96 (12)C13—S1—C12—C170.58 (16)
C14—S2—N2—N165.37 (14)C13—S1—C12—C1160.51 (17)
N2—N1—C1—C21.0 (3)O2—S2—C14—C1926.37 (19)
N2—N1—C1—C12178.92 (15)O1—S2—C14—C19158.95 (16)
N1—C1—C2—C3105.1 (2)N2—S2—C14—C1989.30 (18)
C12—C1—C2—C374.8 (2)O2—S2—C14—C15153.98 (15)
C1—C2—C3—C465.0 (2)O1—S2—C14—C1521.41 (18)
C2—C3—C4—C5174.27 (19)N2—S2—C14—C1590.35 (16)
C3—C4—C5—C668.5 (3)C19—C14—C15—C160.2 (3)
C4—C5—C6—C767.2 (3)S2—C14—C15—C16179.41 (15)
C5—C6—C7—C8144.2 (2)C14—C15—C16—C170.6 (3)
C6—C7—C8—C968.6 (3)C15—C16—C17—C180.5 (3)
C7—C8—C9—C1070.6 (3)C15—C16—C17—C20178.8 (2)
C8—C9—C10—C11176.03 (19)C16—C17—C18—C190.3 (3)
C9—C10—C11—C1265.8 (2)C20—C17—C18—C19177.9 (2)
N1—C1—C12—C1134.1 (2)C17—C18—C19—C141.2 (3)
C2—C1—C12—C11145.82 (18)C15—C14—C19—C181.1 (3)
N1—C1—C12—S195.61 (17)S2—C14—C19—C18178.55 (16)
C2—C1—C12—S184.45 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S1i0.85 (2)2.79 (2)3.6223 (18)170 (2)
Symmetry code: (i) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H32N2O2S2
Mr396.60
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.4374 (7), 11.5276 (10), 21.7836 (19)
β (°) 92.530 (2)
V3)2116.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.47 × 0.38 × 0.28
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.778, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12199, 4615, 3650
Rint0.061
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.131, 1.03
No. of reflections4615
No. of parameters241
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.24

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S1i0.846 (15)2.786 (15)3.6223 (18)170 (2)
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

We acknowledge financial support of this investigation by the National Basic Research Program of China (2003CB114407).

References

First citationBruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, X. H., Yang, X. L., Ling, Y., Fan, Z. J., Wang, D. Q. & Li, Z. M. (2005). J. Argric. Food. Chem. 53, 2202–2206.  Web of Science CrossRef CAS Google Scholar
First citationLu, H. Z., Wang, M. A. & Wang, D. Q. (2004). Chem. J. Chin. Univ. 25, 120–123.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, Y. N., Wang, D. Q. & Wang, M. A. (2005). Chin. J. Pestic. Sci., 7, 210–214.  CAS Google Scholar
First citationWang, M. A., Yan, X. J., Liu, J. P., Jin, S. H., Li, T. G., Yang, X. & Wang, D. Q. (2007). Acta Chim. Sinica, 16, 1657–1662.  Google Scholar
First citationWang, D. Q., Yang, X. L., Wang, M. A., Liang, X. M. & You, T. B. (2002). Acta Chim. Sinica, 60, 475–480.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds