organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,7-Bis(4-acetyl­phen­­oxy)naphthalene

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan, bSection Manager, Group I, Section III, Functional Chemicals Research Laboratory, Nippon Kayaku Co. Ltd, Shimo 3-chome, Kita-ku, Tokyo 115-0042, Japan, and cInstrumentation Analysis Center, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: yonezawa@cc.tuat.ac.jp

(Received 10 March 2008; accepted 19 March 2008; online 29 March 2008)

The title compound, C26H20O4, has an asymmetrical conformation at 193 K. The 4-acetyl­phenyl groups are twisted away from the the naphthalene ring system, with one benzene ring turned towards the 1-position of the naphthalene ring and the other benzene ring turned towards the 6-position. The inter­planar angles between the mean planes of the benzene rings and the naphthalene ring system are 68.71 (6) and 74.01 (6)°. The structure displays C—H⋯O hydrogen bonding and ππ stacking inter­actions [centroid–centroid and interplanar distances are 3.5938 (9) and 3.517 Å, respectively].

Related literature

For related literature, see: Ocak et al. (2004[Ocak, N., Işık, Ş., Akdemir, N., Ağar, E. & Gümrükçüoğlu, I. E. (2004). Acta Cryst. E60, o435-o436.]).

[Scheme 1]

Experimental

Crystal data
  • C26H20O4

  • Mr = 396.42

  • Triclinic, [P \overline 1]

  • a = 5.8691 (2) Å

  • b = 7.9105 (2) Å

  • c = 21.4040 (5) Å

  • α = 90.322 (2)°

  • β = 95.534 (2)°

  • γ = 102.283 (2)°

  • V = 966.11 (5) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.74 mm−1

  • T = 193 K

  • 0.60 × 0.20 × 0.02 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.792, Tmax = 0.985

  • 17040 measured reflections

  • 3467 independent reflections

  • 2617 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.125

  • S = 1.09

  • 3467 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.95 2.54 3.448 (2) 160
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR2004 (Burla, et al, 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

An ORTEPIII (Burnett & Johnson, 1996) plot of the molecule (I) is shown in Fig. 1.Considering its two dimensional representation, the molecule could have had C2 symmetry. This is certainly not the case in practice, as the naphthalene moiety forms dihedral angles of 68.71 (6)° and 74.01 (6)° with the best mean planes of the aromatic rings C11—C16 and C19—C24, respectively. The torsion angles between the naphthalene ring and the two benzene rings are -34.0 (2)° [C11—O1—C1—C2], and -132.00 (15)° [C19—O3—C5—C4]. The difference in the two torsion angles between the naphthalene and benzene rings is rather large. This means that one benzene ring (C11—C16) turns to the 1-position, and the other benzene ring (C19—C24) turns to the 6-position rather than the 8-position. This compound has an asymmetrical conformation similar to that of 2,7-bis(3,4-dicyanophenoxy)naphthalene (Ocak et al., 2004).

The crystal packing is stabilized mainly by van der Waals interactions, however there is some ππ stacking and C—H···O intermolecular interactions (Table 1, Fig. 2). The hydrogen bonds between an acetyl hydrogen and the carbonyl oxygen of a neighboring molecule link the molecules into pairs around a center of symmetry that are aligned complementarily in a row forming a polymer-like infinitive ribbon (Fig. 2).

Related literature top

For related literature, see: Ocak et al. (2004).

Experimental top

2,7-naphthalenediol (160 mg, 1.0 mmol) and 4-fluoroacetophenone (303 mg, 2.2 mmol) were dissolved in DMF (1.0 ml) with stirring under N2. Potassium carbonate (304 mg, 2.2 mmol) was added. The reaction mixture was stirred for 24 h at 150 C° and poured into water. The products extracted with CHCl3, and washed with brine. The organic layer was dried with MgSO4 and concentrated under pressure. Slightly purplish single crystals suitable for X-ray diffraction were obtained by crystallization from ethanol.

Refinement top

All the H atoms were found in difference maps and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and Uĩso~(H) = 1.2U~eq~(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla, et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), with the atom-labeling scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the a axis. The dashed lines indicate hydrogen bonding (blue dashed line) and ππ stacking interactions (black dashed line).
2,7-Bis(4-acetylphenoxy)naphthalene top
Crystal data top
C26H20O4Z = 2
Mr = 396.42F(000) = 416
Triclinic, P1Dx = 1.363 Mg m3
Hall symbol: -P 1Melting point = 430.2–430.9 K
a = 5.8691 (2) ÅCu Kα radiation, λ = 1.54187 Å
b = 7.9105 (2) ÅCell parameters from 12820 reflections
c = 21.4040 (5) Åθ = 4.2–68.2°
α = 90.322 (2)°µ = 0.74 mm1
β = 95.534 (2)°T = 193 K
γ = 102.283 (2)°Platelet, clear pale purple
V = 966.11 (5) Å30.60 × 0.20 × 0.02 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3467 independent reflections
Radiation source: rotating anode2617 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 10.00 pixels mm-1θmax = 68.2°, θmin = 4.2°
ω scansh = 66
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 99
Tmin = 0.792, Tmax = 0.985l = 2525
17040 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: difference Fourier map
wR(F2) = 0.125H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0673P)2 + 0.0881P]
where P = (Fo2 + 2Fc2)/3
3467 reflections(Δ/σ)max = 0.001
273 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C26H20O4γ = 102.283 (2)°
Mr = 396.42V = 966.11 (5) Å3
Triclinic, P1Z = 2
a = 5.8691 (2) ÅCu Kα radiation
b = 7.9105 (2) ŵ = 0.74 mm1
c = 21.4040 (5) ÅT = 193 K
α = 90.322 (2)°0.60 × 0.20 × 0.02 mm
β = 95.534 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3467 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
2617 reflections with I > 2σ(I)
Tmin = 0.792, Tmax = 0.985Rint = 0.030
17040 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.09Δρmax = 0.19 e Å3
3467 reflectionsΔρmin = 0.24 e Å3
273 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4929 (2)0.04326 (15)0.14405 (5)0.0460 (3)
O20.7532 (2)0.44294 (17)0.10302 (6)0.0578 (4)
O30.3337 (2)0.45641 (15)0.28446 (5)0.0445 (3)
O40.6274 (2)0.81543 (16)0.51905 (6)0.0542 (4)
C10.3180 (3)0.0478 (2)0.18309 (7)0.0364 (4)
C20.2243 (3)0.1895 (2)0.19006 (7)0.0363 (4)
H20.27210.28940.16610.044*
C30.0555 (3)0.18698 (19)0.23309 (6)0.0334 (4)
C40.0519 (3)0.3297 (2)0.24098 (7)0.0361 (4)
H40.01000.43080.21730.043*
C50.2151 (3)0.3208 (2)0.28259 (7)0.0376 (4)
C60.2807 (3)0.1748 (2)0.31916 (7)0.0416 (4)
H60.39390.17240.34820.050*
C70.1796 (3)0.0366 (2)0.31236 (7)0.0402 (4)
H70.22330.06220.33710.048*
C80.0113 (3)0.03715 (19)0.26930 (6)0.0344 (4)
C90.0924 (3)0.1059 (2)0.26025 (7)0.0410 (4)
H90.04960.20650.28410.049*
C100.2526 (3)0.1022 (2)0.21793 (7)0.0407 (4)
H100.31940.19970.21200.049*
C110.4961 (3)0.13361 (19)0.08868 (7)0.0361 (4)
C120.2975 (3)0.1256 (2)0.04757 (7)0.0402 (4)
H120.14890.06640.05860.048*
C130.3166 (3)0.2042 (2)0.00971 (7)0.0395 (4)
H130.18000.19840.03800.047*
C140.5327 (3)0.29172 (18)0.02654 (7)0.0341 (4)
C150.7292 (3)0.3012 (2)0.01629 (7)0.0393 (4)
H150.87770.36230.00590.047*
C160.7120 (3)0.2230 (2)0.07376 (7)0.0392 (4)
H160.84730.23070.10270.047*
C170.5597 (3)0.3703 (2)0.08936 (7)0.0403 (4)
C180.3482 (3)0.3545 (2)0.13569 (8)0.0510 (5)
H18A0.39250.41670.17360.061*
H18B0.23010.40430.11720.061*
H18C0.28350.23210.14660.061*
C190.3525 (3)0.52941 (19)0.34179 (7)0.0359 (4)
C200.1817 (3)0.5418 (2)0.39204 (7)0.0404 (4)
H200.05020.49100.38910.049*
C210.2046 (3)0.6289 (2)0.44668 (7)0.0409 (4)
H210.08590.63980.48080.049*
C220.3988 (3)0.70055 (19)0.45228 (7)0.0359 (4)
C230.5678 (3)0.6862 (2)0.40098 (7)0.0408 (4)
H230.70100.73510.40390.049*
C240.5448 (3)0.6021 (2)0.34601 (7)0.0398 (4)
H240.66060.59420.31130.048*
C250.4346 (3)0.7891 (2)0.51118 (7)0.0407 (4)
C260.2330 (3)0.8422 (3)0.56052 (8)0.0545 (5)
H26A0.26490.93130.58840.065*
H26B0.09020.88850.54050.065*
H26C0.21170.74150.58510.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0475 (7)0.0581 (7)0.0407 (6)0.0246 (6)0.0160 (5)0.0149 (5)
O20.0560 (8)0.0639 (8)0.0516 (7)0.0043 (6)0.0144 (6)0.0169 (6)
O30.0530 (7)0.0528 (7)0.0338 (6)0.0234 (6)0.0082 (5)0.0020 (5)
O40.0503 (8)0.0594 (8)0.0558 (7)0.0128 (6)0.0184 (6)0.0041 (6)
C10.0351 (9)0.0458 (9)0.0299 (8)0.0113 (7)0.0054 (6)0.0031 (6)
C20.0380 (9)0.0388 (9)0.0315 (8)0.0067 (7)0.0041 (6)0.0051 (6)
C30.0338 (8)0.0389 (8)0.0266 (7)0.0062 (7)0.0010 (6)0.0007 (6)
C40.0395 (9)0.0370 (8)0.0311 (8)0.0064 (7)0.0038 (6)0.0030 (6)
C50.0385 (9)0.0427 (9)0.0332 (8)0.0127 (7)0.0025 (6)0.0026 (6)
C60.0407 (10)0.0492 (10)0.0352 (8)0.0070 (8)0.0117 (7)0.0014 (7)
C70.0418 (10)0.0405 (9)0.0364 (8)0.0029 (7)0.0073 (7)0.0050 (7)
C80.0338 (9)0.0388 (8)0.0294 (7)0.0054 (7)0.0024 (6)0.0014 (6)
C90.0466 (10)0.0372 (9)0.0383 (8)0.0063 (7)0.0058 (7)0.0059 (7)
C100.0464 (10)0.0401 (9)0.0386 (9)0.0151 (7)0.0063 (7)0.0032 (7)
C110.0411 (9)0.0378 (8)0.0328 (8)0.0136 (7)0.0087 (7)0.0033 (6)
C120.0335 (9)0.0448 (9)0.0413 (9)0.0034 (7)0.0099 (7)0.0014 (7)
C130.0352 (9)0.0461 (9)0.0363 (8)0.0075 (7)0.0021 (7)0.0014 (7)
C140.0375 (9)0.0310 (8)0.0349 (8)0.0085 (6)0.0064 (6)0.0014 (6)
C150.0339 (9)0.0390 (9)0.0438 (9)0.0031 (7)0.0085 (7)0.0023 (7)
C160.0341 (9)0.0466 (9)0.0375 (8)0.0106 (7)0.0025 (7)0.0004 (7)
C170.0483 (10)0.0364 (8)0.0390 (9)0.0126 (7)0.0103 (7)0.0020 (7)
C180.0608 (12)0.0583 (11)0.0380 (9)0.0221 (9)0.0049 (8)0.0060 (8)
C190.0377 (9)0.0370 (8)0.0346 (8)0.0083 (7)0.0103 (7)0.0032 (6)
C200.0353 (9)0.0462 (9)0.0426 (9)0.0143 (7)0.0053 (7)0.0019 (7)
C210.0388 (9)0.0459 (9)0.0390 (9)0.0123 (7)0.0019 (7)0.0027 (7)
C220.0358 (9)0.0335 (8)0.0383 (8)0.0053 (6)0.0079 (7)0.0031 (6)
C230.0332 (9)0.0433 (9)0.0478 (9)0.0103 (7)0.0081 (7)0.0022 (7)
C240.0345 (9)0.0446 (9)0.0411 (9)0.0110 (7)0.0020 (7)0.0016 (7)
C250.0445 (10)0.0369 (8)0.0418 (9)0.0073 (7)0.0129 (7)0.0054 (7)
C260.0574 (12)0.0635 (12)0.0432 (10)0.0149 (9)0.0048 (8)0.0075 (8)
Geometric parameters (Å, º) top
O1—C111.3871 (17)C13—C141.391 (2)
O1—C11.3905 (17)C13—H130.9500
O2—C171.2225 (18)C14—C151.391 (2)
O3—C191.3772 (17)C14—C171.492 (2)
O3—C51.4001 (18)C15—C161.383 (2)
O4—C251.2201 (19)C15—H150.9500
C1—C21.363 (2)C16—H160.9500
C1—C101.408 (2)C17—C181.495 (2)
C2—C31.413 (2)C18—H18A0.9800
C2—H20.9500C18—H18B0.9800
C3—C41.422 (2)C18—H18C0.9800
C3—C81.425 (2)C19—C241.381 (2)
C4—C51.361 (2)C19—C201.386 (2)
C4—H40.9500C20—C211.386 (2)
C5—C61.405 (2)C20—H200.9500
C6—C71.363 (2)C21—C221.391 (2)
C6—H60.9500C21—H210.9500
C7—C81.414 (2)C22—C231.394 (2)
C7—H70.9500C22—C251.493 (2)
C8—C91.415 (2)C23—C241.381 (2)
C9—C101.363 (2)C23—H230.9500
C9—H90.9500C24—H240.9500
C10—H100.9500C25—C261.495 (2)
C11—C161.381 (2)C26—H26A0.9800
C11—C121.381 (2)C26—H26B0.9800
C12—C131.381 (2)C26—H26C0.9800
C12—H120.9500
C11—O1—C1119.52 (12)C13—C14—C17122.02 (14)
C19—O3—C5118.88 (11)C16—C15—C14121.10 (14)
C2—C1—O1123.00 (14)C16—C15—H15119.5
C2—C1—C10121.89 (14)C14—C15—H15119.5
O1—C1—C10115.03 (14)C11—C16—C15119.34 (15)
C1—C2—C3119.57 (14)C11—C16—H16120.3
C1—C2—H2120.2C15—C16—H16120.3
C3—C2—H2120.2O2—C17—C14120.20 (15)
C2—C3—C4121.79 (14)O2—C17—C18120.69 (14)
C2—C3—C8119.44 (14)C14—C17—C18119.09 (14)
C4—C3—C8118.76 (13)C17—C18—H18A109.5
C5—C4—C3119.74 (14)C17—C18—H18B109.5
C5—C4—H4120.1H18A—C18—H18B109.5
C3—C4—H4120.1C17—C18—H18C109.5
C4—C5—O3117.97 (14)H18A—C18—H18C109.5
C4—C5—C6122.15 (15)H18B—C18—H18C109.5
O3—C5—C6119.65 (14)O3—C19—C24116.52 (14)
C7—C6—C5119.04 (14)O3—C19—C20122.80 (14)
C7—C6—H6120.5C24—C19—C20120.53 (14)
C5—C6—H6120.5C19—C20—C21119.39 (15)
C6—C7—C8121.46 (14)C19—C20—H20120.3
C6—C7—H7119.3C21—C20—H20120.3
C8—C7—H7119.3C20—C21—C22121.00 (15)
C7—C8—C9122.66 (14)C20—C21—H21119.5
C7—C8—C3118.84 (14)C22—C21—H21119.5
C9—C8—C3118.50 (14)C21—C22—C23118.36 (14)
C10—C9—C8121.31 (14)C21—C22—C25122.64 (15)
C10—C9—H9119.3C23—C22—C25118.98 (14)
C8—C9—H9119.3C24—C23—C22121.06 (15)
C9—C10—C1119.28 (15)C24—C23—H23119.5
C9—C10—H10120.4C22—C23—H23119.5
C1—C10—H10120.4C23—C24—C19119.63 (15)
C16—C11—C12120.70 (14)C23—C24—H24120.2
C16—C11—O1116.81 (14)C19—C24—H24120.2
C12—C11—O1122.32 (14)O4—C25—C22120.09 (15)
C11—C12—C13119.49 (14)O4—C25—C26120.68 (15)
C11—C12—H12120.3C22—C25—C26119.22 (14)
C13—C12—H12120.3C25—C26—H26A109.5
C12—C13—C14121.00 (15)C25—C26—H26B109.5
C12—C13—H13119.5H26A—C26—H26B109.5
C14—C13—H13119.5C25—C26—H26C109.5
C15—C14—C13118.34 (14)H26A—C26—H26C109.5
C15—C14—C17119.62 (14)H26B—C26—H26C109.5
C11—O1—C1—C234.0 (2)O1—C11—C12—C13173.43 (14)
C11—O1—C1—C10149.36 (14)C11—C12—C13—C140.2 (2)
O1—C1—C2—C3176.78 (13)C12—C13—C14—C151.2 (2)
C10—C1—C2—C30.4 (2)C12—C13—C14—C17176.96 (14)
C1—C2—C3—C4178.38 (14)C13—C14—C15—C161.2 (2)
C1—C2—C3—C81.0 (2)C17—C14—C15—C16177.04 (14)
C2—C3—C4—C5179.42 (14)C12—C11—C16—C151.7 (2)
C8—C3—C4—C50.0 (2)O1—C11—C16—C15173.65 (13)
C3—C4—C5—O3173.71 (12)C14—C15—C16—C110.3 (2)
C3—C4—C5—C60.7 (2)C15—C14—C17—O20.2 (2)
C19—O3—C5—C4132.00 (15)C13—C14—C17—O2178.38 (14)
C19—O3—C5—C653.40 (19)C15—C14—C17—C18178.13 (14)
C4—C5—C6—C70.7 (2)C13—C14—C17—C180.0 (2)
O3—C5—C6—C7173.69 (14)C5—O3—C19—C24152.32 (14)
C5—C6—C7—C80.2 (2)C5—O3—C19—C2032.1 (2)
C6—C7—C8—C9178.51 (14)O3—C19—C20—C21175.05 (14)
C6—C7—C8—C30.9 (2)C24—C19—C20—C210.4 (2)
C2—C3—C8—C7179.76 (13)C19—C20—C21—C221.4 (2)
C4—C3—C8—C70.8 (2)C20—C21—C22—C231.5 (2)
C2—C3—C8—C90.8 (2)C20—C21—C22—C25177.50 (14)
C4—C3—C8—C9178.62 (13)C21—C22—C23—C240.4 (2)
C7—C8—C9—C10179.34 (14)C25—C22—C23—C24178.56 (14)
C3—C8—C9—C100.1 (2)C22—C23—C24—C190.6 (2)
C8—C9—C10—C10.7 (2)O3—C19—C24—C23176.32 (13)
C2—C1—C10—C90.5 (2)C20—C19—C24—C230.6 (2)
O1—C1—C10—C9176.16 (13)C21—C22—C25—O4163.64 (15)
C1—O1—C11—C16137.94 (14)C23—C22—C25—O415.3 (2)
C1—O1—C11—C1246.8 (2)C21—C22—C25—C2615.4 (2)
C16—C11—C12—C131.7 (2)C23—C22—C25—C26165.70 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.952.543.448 (2)160
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC26H20O4
Mr396.42
Crystal system, space groupTriclinic, P1
Temperature (K)193
a, b, c (Å)5.8691 (2), 7.9105 (2), 21.4040 (5)
α, β, γ (°)90.322 (2), 95.534 (2), 102.283 (2)
V3)966.11 (5)
Z2
Radiation typeCu Kα
µ (mm1)0.74
Crystal size (mm)0.60 × 0.20 × 0.02
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.792, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
17040, 3467, 2617
Rint0.030
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.125, 1.09
No. of reflections3467
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.24

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla, et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.952.543.448 (2)160
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

This work was partially supported by the Ogasawara Foundation for the Promotion of Science & Engineering, Tokyo, Japan.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationOcak, N., Işık, Ş., Akdemir, N., Ağar, E. & Gümrükçüoğlu, I. E. (2004). Acta Cryst. E60, o435–o436.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds