metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­aqua­di­pyridine­zinc(II)]-μ-succinato]

aDepartment of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10930, Thailand
*Correspondence e-mail: fscists@ku.ac.th

(Received 12 February 2008; accepted 11 March 2008; online 14 March 2008)

In the title compound, [Zn(C4H4O4)(C5H5N)2(H2O)2]n, the ZnII ion (site symmetry [\overline{1}]) is coordinated in an octahedral geometry by two pyridine mol­ecules, two water mol­ecules and two bridging centrosymmetric O-monodentate succinate dianions to create one-dimensional polymeric chains. The chains are cross-linked by O—H⋯O hydrogen bonds, forming sheets.

Related literature

For a related structure containing fumarate ions, see: Ohmura et al. (2003[Ohmura, T., Mori, W., Hasegawa, M., Takai, T., Ikeda, T. & Hasegawa, E. (2003). Bull. Chem. Soc. Jpn, 76, 1387-1395.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C4H4O4)(C5H5N)2(H2O)2]

  • Mr = 375.67

  • Orthorhombic, P b c a

  • a = 11.8142 (8) Å

  • b = 8.9111 (7) Å

  • c = 14.9705 (10) Å

  • V = 1576.06 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.59 mm−1

  • T = 273 (2) K

  • 0.08 × 0.08 × 0.04 mm

Data collection
  • Bruker–Nonius APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Brucker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.804, Tmax = 0.931

  • 9256 measured reflections

  • 1814 independent reflections

  • 1200 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.107

  • S = 1.13

  • 1814 reflections

  • 138 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—O2 2.064 (3)
Zn1—O3 2.110 (3)
Zn1—N1 2.170 (4)
O2i—Zn1—N1i 88.88 (14)
Symmetry code: (i) -x+1, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O1 0.82 1.94 2.690 (5) 152
O3—H3B⋯O1ii 0.74 (6) 1.97 (6) 2.687 (5) 164 (5)
Symmetry code: (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski and Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: Mercury and local program.

Supporting information


Comment top

The molecular structure of the title compound, (I), (Fig. 1), consists of zinc(II) ions linked through succinate bridges to create one-dimensional polymeric chains. Each ZnII ion (site symmetry 1) is further coordinated by two pyridine molecules and two water molecules resulting in a slightly distorted trans-ZnN2O4 octahedral geometry (Table 1).

The coordinated water molecules form both intrachain O—H···O hydrogen bonds with the uncoordinated carboxyl group of a succinate ligand within the chain and intermolecular hydrogen bond with those in an adjacent chain (Fig. 2, Table 2). For a related structure, see Ohmura et al. (2003).

Related literature top

For a related structure containing fumarate ions, see: Ohmura et al. (2003).

Experimental top

A pyridine solution (10 ml) of succinic acid (0.116 g, 1 mmol) was added to an aqueous solution (10 ml) of zinc acetate dihydrate (0.148 g, 0.673 mmol). The mixture was then allowed to stand for several days at room temperature, after which colourless blocks of (I) precipitated.

Refinement top

All the H atoms except H3A were located in a difference map and their positions and Uiso values were freely refined. H3A was geometrically placed (O—H = 0.82 Å) and refined as riding with Uiso(H) = 1.5 Ueq(H).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski and Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski and Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: Mercury (Macrae et al., 2006) and local program.

Figures top
[Figure 1] Fig. 1. A fragment of the polymeric chain in (I) showing 50% displacement ellipsoids (arbitrary spheres for the H atoms). Symmetry codes: (i) 1 - x, -y, 1 - z; (ii) 1 - x, 1 - y, 1 - z; (iii) x, y + 1, z.
[Figure 2] Fig. 2. The packing in (I) viewed along the b axis with hydrogen bonds indicated by dashed lines.
catena-Poly[[diaquadipyridinezinc(II)]-µ-succinato] top
Crystal data top
[Zn(C4H4O4)(C5H5N)2(H2O)2]F(000) = 776
Mr = 375.67Dx = 1.583 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2052 reflections
a = 11.8142 (8) Åθ = 2.9–27.5°
b = 8.9111 (7) ŵ = 1.59 mm1
c = 14.9705 (10) ÅT = 273 K
V = 1576.06 (19) Å3Block, colourless
Z = 40.08 × 0.08 × 0.04 mm
Data collection top
Bruker–Nonious APEXII CCD camera on κ-goniostat
diffractometer
1814 independent reflections
Radiation source: fine-focus sealed tube1200 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
Detector resolution: 4096x4096pixels / 62x62mm pixels mm-1θmax = 27.6°, θmin = 3.2°
ϕ and ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1110
Tmin = 0.804, Tmax = 0.931l = 1917
9256 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: difmap and geom
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + 9.8897P]
where P = (Fo2 + 2Fc2)/3
1814 reflections(Δ/σ)max < 0.001
138 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Zn(C4H4O4)(C5H5N)2(H2O)2]V = 1576.06 (19) Å3
Mr = 375.67Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 11.8142 (8) ŵ = 1.59 mm1
b = 8.9111 (7) ÅT = 273 K
c = 14.9705 (10) Å0.08 × 0.08 × 0.04 mm
Data collection top
Bruker–Nonious APEXII CCD camera on κ-goniostat
diffractometer
1814 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
1200 reflections with I > 2σ(I)
Tmin = 0.804, Tmax = 0.931Rint = 0.067
9256 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.55 e Å3
1814 reflectionsΔρmin = 0.46 e Å3
138 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.00000.50000.0147 (2)
O30.6625 (3)0.0017 (4)0.4416 (2)0.0186 (7)
H3A0.69100.08500.44770.028*
O20.5136 (3)0.2237 (4)0.5340 (2)0.0179 (7)
O10.6873 (3)0.2905 (4)0.4901 (2)0.0229 (8)
C30.3411 (5)0.1656 (6)0.2097 (4)0.0290 (13)
C20.4391 (5)0.2285 (6)0.2438 (4)0.0254 (12)
C50.3356 (4)0.0065 (7)0.3386 (3)0.0206 (10)
C60.5888 (4)0.3201 (5)0.5168 (3)0.0172 (10)
N10.4308 (3)0.0673 (4)0.3719 (3)0.0156 (8)
C10.4810 (4)0.1762 (6)0.3235 (3)0.0199 (11)
C70.5529 (4)0.4835 (6)0.5275 (4)0.0224 (11)
C40.2892 (5)0.0528 (7)0.2586 (4)0.0279 (13)
H40.224 (5)0.010 (6)0.243 (3)0.025 (15)*
H10.549 (4)0.205 (6)0.345 (3)0.018 (13)*
H30.308 (5)0.199 (7)0.154 (4)0.035 (17)*
H50.304 (4)0.066 (6)0.376 (4)0.026 (15)*
H20.476 (5)0.295 (6)0.209 (4)0.028 (16)*
H7A0.540 (4)0.492 (6)0.591 (4)0.018 (13)*
H70.616 (4)0.549 (5)0.514 (3)0.014 (13)*
H3B0.694 (5)0.064 (7)0.459 (4)0.04 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0146 (3)0.0125 (3)0.0169 (4)0.0005 (4)0.0010 (3)0.0002 (4)
O30.0190 (16)0.0113 (16)0.0254 (18)0.0048 (18)0.0012 (13)0.0012 (17)
O20.0192 (16)0.0116 (16)0.0229 (16)0.0006 (14)0.0033 (14)0.0022 (14)
O10.0160 (15)0.0137 (18)0.039 (2)0.0010 (17)0.0048 (15)0.0000 (13)
C30.041 (3)0.026 (3)0.020 (3)0.004 (2)0.012 (2)0.001 (3)
C20.036 (3)0.021 (3)0.019 (3)0.000 (2)0.004 (2)0.006 (2)
C50.019 (2)0.022 (3)0.021 (2)0.000 (3)0.0002 (18)0.001 (2)
C60.019 (2)0.015 (2)0.018 (3)0.003 (2)0.0046 (18)0.0011 (19)
N10.0181 (19)0.012 (2)0.017 (2)0.0011 (17)0.0012 (16)0.0016 (17)
C10.020 (3)0.018 (3)0.022 (3)0.001 (2)0.002 (2)0.001 (2)
C70.020 (2)0.014 (3)0.034 (3)0.001 (2)0.005 (2)0.003 (2)
C40.028 (3)0.026 (3)0.029 (3)0.003 (3)0.007 (2)0.005 (3)
Geometric parameters (Å, º) top
Zn1—O22.064 (3)C2—C11.374 (7)
Zn1—O2i2.064 (3)C2—H20.90 (6)
Zn1—O3i2.110 (3)C5—N11.345 (6)
Zn1—O32.110 (3)C5—C41.379 (7)
Zn1—N1i2.170 (4)C5—H50.93 (6)
Zn1—N12.170 (4)C6—C71.525 (7)
O3—H3A0.8200N1—C11.348 (6)
O3—H3B0.74 (6)C1—H10.90 (5)
O2—C61.263 (6)C7—C7ii1.526 (9)
O1—C61.258 (5)C7—H7A0.97 (5)
C3—C21.383 (8)C7—H70.97 (5)
C3—C41.387 (8)C4—H40.89 (6)
C3—H30.96 (6)
O2—Zn1—O2i180.0C1—C2—H2123 (4)
O2—Zn1—O3i88.60 (13)C3—C2—H2118 (4)
O2i—Zn1—O3i91.40 (13)N1—C5—C4122.2 (5)
O2—Zn1—O391.40 (13)N1—C5—H5113 (3)
O2i—Zn1—O388.60 (13)C4—C5—H5125 (3)
O3i—Zn1—O3180.0O1—C6—O2124.9 (4)
O2—Zn1—N1i91.12 (14)O1—C6—C7119.4 (4)
O2i—Zn1—N1i88.88 (14)O2—C6—C7115.7 (4)
O3i—Zn1—N1i88.53 (14)C5—N1—C1117.3 (4)
O3—Zn1—N1i91.47 (14)C5—N1—Zn1122.1 (3)
O2—Zn1—N188.88 (14)C1—N1—Zn1120.5 (3)
O2i—Zn1—N191.12 (14)N1—C1—C2123.5 (5)
O3i—Zn1—N191.47 (14)N1—C1—H1114 (3)
O3—Zn1—N188.53 (14)C2—C1—H1122 (3)
N1i—Zn1—N1180C6—C7—C7ii110.8 (5)
Zn1—O3—H3A109.5C6—C7—H7A103 (3)
Zn1—O3—H3B108 (5)C7ii—C7—H7A112 (3)
H3A—O3—H3B118.2C6—C7—H7110 (3)
C6—O2—Zn1131.5 (3)C7ii—C7—H7114 (3)
C2—C3—C4118.0 (5)H7A—C7—H7106 (4)
C2—C3—H3122 (3)C5—C4—C3120.0 (5)
C4—C3—H3120 (3)C5—C4—H4116 (3)
C1—C2—C3118.9 (5)C3—C4—H4124 (4)
O3i—Zn1—O2—C6174.6 (4)O3—Zn1—N1—C5137.5 (4)
O3—Zn1—O2—C65.4 (4)O2—Zn1—N1—C147.0 (4)
N1i—Zn1—O2—C696.9 (4)O2i—Zn1—N1—C1133.0 (4)
N1—Zn1—O2—C683.1 (4)O3i—Zn1—N1—C1135.6 (4)
C4—C3—C2—C10.5 (8)O3—Zn1—N1—C144.4 (4)
Zn1—O2—C6—O116.8 (7)C5—N1—C1—C21.0 (7)
Zn1—O2—C6—C7161.3 (3)Zn1—N1—C1—C2177.2 (4)
C4—C5—N1—C10.5 (7)C3—C2—C1—N11.0 (8)
C4—C5—N1—Zn1177.6 (4)O1—C6—C7—C7ii123.7 (6)
O2—Zn1—N1—C5131.1 (4)O2—C6—C7—C7ii54.5 (7)
O2i—Zn1—N1—C548.9 (4)N1—C5—C4—C30.1 (9)
O3i—Zn1—N1—C542.5 (4)C2—C3—C4—C50.1 (9)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O10.821.942.690 (5)152
O3—H3B···O1iii0.74 (6)1.97 (6)2.687 (5)164 (5)
Symmetry code: (iii) x+3/2, y1/2, z.

Experimental details

Crystal data
Chemical formula[Zn(C4H4O4)(C5H5N)2(H2O)2]
Mr375.67
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)273
a, b, c (Å)11.8142 (8), 8.9111 (7), 14.9705 (10)
V3)1576.06 (19)
Z4
Radiation typeMo Kα
µ (mm1)1.59
Crystal size (mm)0.08 × 0.08 × 0.04
Data collection
DiffractometerBruker–Nonious APEXII CCD camera on κ-goniostat
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.804, 0.931
No. of measured, independent and
observed [I > 2σ(I)] reflections
9256, 1814, 1200
Rint0.067
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.108, 1.13
No. of reflections1814
No. of parameters138
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 0.46

Computer programs: , DENZO (Otwinowski and Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006) and local program.

Selected geometric parameters (Å, º) top
Zn1—O22.064 (3)Zn1—N12.170 (4)
Zn1—O32.110 (3)
O2i—Zn1—N1i88.88 (14)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O10.821.942.690 (5)152
O3—H3B···O1ii0.74 (6)1.97 (6)2.687 (5)164 (5)
Symmetry code: (ii) x+3/2, y1/2, z.
 

Acknowledgements

The authors thank the Development and Promotion of Science and Technology Talents fund.

References

First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOhmura, T., Mori, W., Hasegawa, M., Takai, T., Ikeda, T. & Hasegawa, E. (2003). Bull. Chem. Soc. Jpn, 76, 1387–1395.  Web of Science CSD CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Brucker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds