organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Trichodermin (4β-acet­­oxy-12,13-ep­oxy­trichothec-9-ene)

aInsitute of Biotechnology, Zhejiang University, Hanzhou, People's Republic of China, and bCollege of Pharmaceutical Sicence, Zhejiang University, Hanzhou, People's Republic of China
*Correspondence e-mail: fuchenglin@zju.edu.cn

(Received 3 March 2008; accepted 6 March 2008; online 12 March 2008)

In the title natural product, C17H24O4, which is a very potent inhibitor of protein synthesis in mammalian cells, the five-membered ring displays an envelope conformation, whereas the two six-membered rings show different conformations, viz. chair and half-chair.

Related literature

For related literature, see: Nielsen et al. (2005[Nielsen, K. F., Grafenhan, T., Zafari, D. & Thrane, U. (2005). J. Agric. Food Chem. 53, 8190-8196.]); Wei et al. (1974[Wei, C. M., Hansen, B. S., Vaughan, M. H. & McLaughlinm, C. S. (1974). Proc. Natl Acad. Sci. USA, 71, 713-717.]); Zhang et al. (2007[Zhang, C., Liu, S., Lin, F., Kubicek, C. P. & Druzhinina, I. S. (2007). Microbiol. Lett. 270, 90-96.]). For details of ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Amer. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C17H24O4

  • Mr = 292.36

  • Orthorhombic, P 21 21 21

  • a = 7.0127 (3) Å

  • b = 8.4102 (3) Å

  • c = 26.2786 (10) Å

  • V = 1549.86 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.41 × 0.40 × 0.37 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: none

  • 14719 measured reflections

  • 2046 independent reflections

  • 1726 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.104

  • S = 1.11

  • 2046 reflections

  • 195 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14a⋯O2 0.96 2.58 2.936 (3) 102

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Trichodermin is a member of the 4β-aceoxy-12,13-epoxytrichothecene family (Nielsen et al., 2005), which form a medically and economically important class of mycotoxins produced by fungi that spoil fruit and grain. Many studies (e.g. Wei et al., 1974) show that trichodermin is a very potent inhibitor of protein synthesis in mammalian cells.

The molecular structure of (I) is shown in Fig. 1. The molecule contains two six membered rings, one five membered ring and one three membered ring. The five membered ring displays an envelope conformation with atom C12 at the flap position 0.705 (3) Å out of the mean plane formed by the other four atoms.

The O1-containing six-membered ring displays a chair conformation. The typical C9?C10 double bond length of 1.325 (3)Å suggests that C9 and C10 atoms are sp2 hybridized, which correlates with the larger C9—C10—C11 bond angle of 125.0 (2)° and C8—C9—C10 bond angle of 121.0 (2)° and a small C8—C9—C10—C11 torsion angle of 2.6 (3)°. A ring puckering analysis for the C9-containing six membered ring gave θ of 128.3 (2)° and ϕ of 206.9 (3)°, indicating a half-chair conformation (Cremer & Pople, 1975).

The C14-methyl group is attached to the bridgehead C5 atom and the small C14—C5—C12—O2 torsion angle of 38.4 (2)° allows a weak intramolecular C—H···O interaction (Table 1) to occur.

Related literature top

For related literature, see: Nielsen et al. (2005); Wei et al. (1974); Zhang et al. (2007). For details of ring puckering analysis, see: Cremer & Pople (1975).

Experimental top

For morphological identification (Zhang et al., 2007) cultures were grown on OA, PDA, and SNA media for 7–14 days at room temperature (293 K) under ambient daylight (Nielsen et al., 2005). Microscopic observations and measurements were made from slides mounted in water. For metabolite production, the strains were inoculated onto PDA media and incubated for 10 days at 298 K in the dark. Selected strains were also cultivated in liquid media placed in a rotary shaker at 120 rpm for 10 days at 298 K in the dark. After cultivation, the bottles were stored at 253 K until extraction.

Liquid cultures were extracted with petroleum ether. The upper phase was filtered and evaporated in vacuo. Samples were then redissolved in petroleum ether to crystallize the crude product. Colourless chunks of (I) were recrystalized from n-hexane.

Refinement top

In the absence of significant anomalous scattering effects, Friedel pairs were merged; the absolute configuration was not determined.

The H atoms were geometrically placed (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The methyl group was allowed to rotate, but not to tip, to best fit the electron density.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% displacement ellipsoids (arbitrary spheres for H atoms), dashed line indicates hydrogen bonding.
4β-aceoxy-12,13-epoxytrichothec-9-ene top
Crystal data top
C17H24O4Dx = 1.253 Mg m3
Mr = 292.36Melting point = 319–320 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9452 reflections
a = 7.0127 (3) Åθ = 3.2–27.0°
b = 8.4102 (3) ŵ = 0.09 mm1
c = 26.2786 (10) ÅT = 293 K
V = 1549.86 (10) Å3Chunk, colorless
Z = 40.41 × 0.40 × 0.37 mm
F(000) = 632.00
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1726 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 27.4°, θmin = 3.0°
Detector resolution: 10.0 pixels mm-1h = 99
ω scansk = 910
14719 measured reflectionsl = 3433
2046 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0625P)2 + 0.0793P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
2046 reflectionsΔρmax = 0.18 e Å3
195 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.032 (3)
Crystal data top
C17H24O4V = 1549.86 (10) Å3
Mr = 292.36Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.0127 (3) ŵ = 0.09 mm1
b = 8.4102 (3) ÅT = 293 K
c = 26.2786 (10) Å0.41 × 0.40 × 0.37 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1726 reflections with I > 2σ(I)
14719 measured reflectionsRint = 0.027
2046 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.11Δρmax = 0.18 e Å3
2046 reflectionsΔρmin = 0.13 e Å3
195 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C140.6512 (4)0.9319 (2)0.36688 (10)0.0589 (6)
H14A0.67931.00170.33900.088*
H14B0.70860.97270.39740.088*
H14C0.51560.92530.37140.088*
C70.4588 (3)0.6081 (3)0.39880 (9)0.0533 (5)
H7A0.39180.70710.40510.064*
H7B0.41800.56800.36600.064*
C80.4061 (3)0.4884 (3)0.43987 (9)0.0589 (6)
H8A0.41400.53970.47290.071*
H8B0.27520.45480.43480.071*
C130.4905 (3)0.7268 (3)0.27735 (9)0.0641 (6)
H13A0.44520.64230.25530.077*
H13B0.39120.78600.29470.077*
O20.6596 (2)0.81223 (19)0.26194 (6)0.0629 (4)
C150.7438 (4)0.6934 (3)0.45039 (7)0.0564 (5)
H15A0.66410.77800.46260.085*
H15B0.87320.72990.44820.085*
H15C0.73690.60510.47350.085*
C50.7308 (3)0.7668 (2)0.35565 (7)0.0433 (4)
C181.1534 (4)1.1714 (3)0.34760 (9)0.0627 (6)
H18A1.21061.23470.37390.094*
H18B1.04451.22620.33410.094*
H18C1.24441.15360.32090.094*
C60.6749 (3)0.6406 (2)0.39726 (7)0.0421 (4)
C120.6697 (3)0.7020 (2)0.30416 (7)0.0465 (5)
C90.5325 (3)0.3449 (2)0.43982 (8)0.0525 (5)
C160.4718 (4)0.2079 (3)0.47267 (9)0.0676 (6)
H16A0.56180.12260.46920.101*
H16B0.34780.17210.46220.101*
H16C0.46690.24150.50760.101*
O41.0964 (3)0.9811 (2)0.41353 (6)0.0741 (5)
C171.0918 (3)1.0153 (2)0.36930 (9)0.0506 (5)
O31.0281 (2)0.91593 (16)0.33263 (5)0.0502 (4)
C40.9533 (3)0.7633 (2)0.34927 (8)0.0440 (4)
H41.01410.73090.38120.053*
C110.7705 (3)0.4800 (2)0.38357 (7)0.0419 (4)
H110.90690.48920.39110.050*
C100.6935 (3)0.3431 (2)0.41348 (8)0.0486 (5)
H100.76410.24950.41360.058*
C20.8015 (3)0.5625 (2)0.29623 (7)0.0461 (4)
H20.79550.52520.26090.055*
O10.7508 (2)0.43802 (14)0.33066 (5)0.0462 (3)
C30.9936 (3)0.6396 (2)0.30725 (8)0.0497 (5)
H3A1.04380.69070.27700.060*
H3B1.08490.56100.31890.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C140.0555 (13)0.0392 (9)0.0820 (14)0.0064 (9)0.0048 (11)0.0083 (10)
C70.0408 (11)0.0516 (10)0.0675 (13)0.0032 (9)0.0035 (10)0.0066 (10)
C80.0493 (12)0.0608 (12)0.0667 (13)0.0051 (11)0.0101 (10)0.0109 (11)
C130.0542 (13)0.0734 (14)0.0648 (13)0.0018 (12)0.0151 (11)0.0026 (12)
O20.0649 (10)0.0625 (9)0.0612 (9)0.0067 (8)0.0071 (8)0.0092 (7)
C150.0640 (13)0.0531 (10)0.0520 (11)0.0085 (11)0.0012 (10)0.0139 (9)
C50.0388 (9)0.0374 (8)0.0537 (10)0.0026 (8)0.0021 (8)0.0079 (8)
C180.0740 (16)0.0468 (11)0.0672 (13)0.0104 (11)0.0040 (12)0.0033 (10)
C60.0401 (10)0.0383 (9)0.0480 (10)0.0012 (7)0.0008 (8)0.0095 (8)
C120.0442 (10)0.0446 (10)0.0508 (10)0.0015 (8)0.0046 (9)0.0020 (8)
C90.0568 (12)0.0509 (11)0.0497 (10)0.0096 (10)0.0015 (10)0.0071 (9)
C160.0737 (16)0.0677 (13)0.0613 (13)0.0158 (13)0.0082 (12)0.0011 (11)
O40.1000 (14)0.0670 (10)0.0553 (9)0.0305 (10)0.0103 (9)0.0022 (8)
C170.0456 (11)0.0478 (10)0.0583 (12)0.0069 (9)0.0008 (9)0.0065 (9)
O30.0536 (8)0.0426 (7)0.0543 (8)0.0087 (6)0.0013 (6)0.0036 (6)
C40.0412 (10)0.0386 (9)0.0524 (10)0.0014 (8)0.0021 (8)0.0025 (8)
C110.0401 (10)0.0399 (8)0.0457 (10)0.0007 (8)0.0017 (8)0.0067 (7)
C100.0531 (12)0.0406 (9)0.0521 (10)0.0014 (9)0.0032 (9)0.0061 (8)
C20.0498 (11)0.0437 (9)0.0447 (9)0.0012 (9)0.0008 (8)0.0087 (8)
O10.0520 (8)0.0385 (6)0.0481 (7)0.0008 (6)0.0003 (6)0.0100 (5)
C30.0452 (11)0.0453 (10)0.0586 (11)0.0037 (8)0.0051 (9)0.0071 (9)
Geometric parameters (Å, º) top
O1—C21.429 (2)C15—H15B0.9600
O1—C111.441 (2)C15—H15C0.9600
O2—C121.447 (2)C5—C121.521 (3)
O2—C131.444 (3)C5—C41.569 (3)
O3—C41.454 (2)C5—C61.574 (3)
O3—C171.351 (2)C18—C171.496 (3)
O4—C171.198 (3)C18—H18A0.9600
C9—C101.325 (3)C18—H18B0.9600
C14—C51.526 (2)C18—H18C0.9600
C14—H14A0.9600C6—C111.550 (2)
C14—H14B0.9600C12—C21.508 (3)
C14—H14C0.9600C9—C161.501 (3)
C7—C81.522 (3)C16—H16A0.9600
C7—C61.540 (3)C16—H16B0.9600
C7—H7A0.9700C16—H16C0.9600
C7—H7B0.9700C4—C31.543 (3)
C8—C91.497 (3)C4—H40.9800
C8—H8A0.9700C11—C101.495 (3)
C8—H8B0.9700C11—H110.9800
C13—C121.456 (3)C10—H100.9300
C13—H13A0.9700C2—C31.523 (3)
C13—H13B0.9700C2—H20.9800
C15—C61.543 (3)C3—H3A0.9700
C15—H15A0.9600C3—H3B0.9700
C5—C14—H14A109.5C11—C6—C5108.57 (14)
C5—C14—H14B109.5O2—C12—C1359.67 (13)
H14A—C14—H14B109.5O2—C12—C2114.98 (16)
C5—C14—H14C109.5C13—C12—C2125.02 (19)
H14A—C14—H14C109.5O2—C12—C5117.80 (16)
H14B—C14—H14C109.5C13—C12—C5128.51 (19)
C8—C7—C6112.00 (18)C2—C12—C5103.23 (15)
C8—C7—H7A109.2C10—C9—C8120.9 (2)
C6—C7—H7A109.2C10—C9—C16122.2 (2)
C8—C7—H7B109.2C8—C9—C16116.76 (19)
C6—C7—H7B109.2C9—C16—H16A109.5
H7A—C7—H7B107.9C9—C16—H16B109.5
C9—C8—C7112.90 (18)H16A—C16—H16B109.5
C9—C8—H8A109.0C9—C16—H16C109.5
C7—C8—H8A109.0H16A—C16—H16C109.5
C9—C8—H8B109.0H16B—C16—H16C109.5
C7—C8—H8B109.0O4—C17—O3123.5 (2)
H8A—C8—H8B107.8O4—C17—C18125.0 (2)
O2—C13—C1259.88 (13)O3—C17—C18111.50 (19)
O2—C13—H13A117.8C17—O3—C4116.79 (15)
C12—C13—H13A117.8O3—C4—C3108.30 (15)
O2—C13—H13B117.8O3—C4—C5111.98 (16)
C12—C13—H13B117.8C3—C4—C5105.74 (16)
H13A—C13—H13B114.9O3—C4—H4110.2
C13—O2—C1260.45 (13)C3—C4—H4110.2
C6—C15—H15A109.5C5—C4—H4110.2
C6—C15—H15B109.5O1—C11—C10106.50 (15)
H15A—C15—H15B109.5O1—C11—C6113.33 (15)
C6—C15—H15C109.5C10—C11—C6113.11 (15)
H15A—C15—H15C109.5O1—C11—H11107.9
H15B—C15—H15C109.5C10—C11—H11107.9
C12—C5—C14113.27 (18)C6—C11—H11107.9
C12—C5—C4100.28 (16)C9—C10—C11125.0 (2)
C14—C5—C4113.68 (16)C9—C10—H10117.5
C12—C5—C6107.84 (15)C11—C10—H10117.5
C14—C5—C6112.86 (16)O1—C2—C12109.28 (15)
C4—C5—C6108.03 (16)O1—C2—C3114.30 (16)
C17—C18—H18A109.5C12—C2—C3100.66 (14)
C17—C18—H18B109.5O1—C2—H2110.7
H18A—C18—H18B109.5C12—C2—H2110.7
C17—C18—H18C109.5C3—C2—H2110.7
H18A—C18—H18C109.5C2—O1—C11114.05 (13)
H18B—C18—H18C109.5C2—C3—C4105.12 (15)
C7—C6—C15109.60 (17)C2—C3—H3A110.7
C7—C6—C11106.10 (16)C4—C3—H3A110.7
C15—C6—C11108.99 (17)C2—C3—H3B110.7
C7—C6—C5112.52 (16)C4—C3—H3B110.7
C15—C6—C5110.89 (15)H3A—C3—H3B108.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14a···O20.962.582.936 (3)102

Experimental details

Crystal data
Chemical formulaC17H24O4
Mr292.36
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)7.0127 (3), 8.4102 (3), 26.2786 (10)
V3)1549.86 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.41 × 0.40 × 0.37
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14719, 2046, 1726
Rint0.027
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.104, 1.11
No. of reflections2046
No. of parameters195
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.13

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
O1—C21.429 (2)O3—C41.454 (2)
O1—C111.441 (2)O3—C171.351 (2)
O2—C121.447 (2)O4—C171.198 (3)
O2—C131.444 (3)C9—C101.325 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14a···O20.962.582.936 (3)102
 

Acknowledgements

The work was supported by the Science and Technology Project of Zhejiang Province (No. 2004 C22008, 2006 C12088) and the National Natural Science Foundation of China (No. 30600002).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Amer. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationNielsen, K. F., Grafenhan, T., Zafari, D. & Thrane, U. (2005). J. Agric. Food Chem. 53, 8190–8196.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, C. M., Hansen, B. S., Vaughan, M. H. & McLaughlinm, C. S. (1974). Proc. Natl Acad. Sci. USA, 71, 713–717.  CrossRef CAS PubMed Web of Science Google Scholar
First citationZhang, C., Liu, S., Lin, F., Kubicek, C. P. & Druzhinina, I. S. (2007). Microbiol. Lett. 270, 90–96.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds