organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(2-Hydr­­oxy-1-naphth­yl)methyl­­idene­amino]benzoic acid

aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, bChemistry Department, Faculty of Science, King Abdul-Aziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia, and cDepartment of Chemistry, Loughborough University, Leicestershire LE11 3TU, England
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 3 March 2008; accepted 5 March 2008; online 7 March 2008)

The mol­ecule of the title compound, C18H13NO3, is almost planar, the dihedral angle between the naphthalene and benzene ring systems being 4.04 (6)°. The mol­ecular conformation and packing are stabilized by intra­molecular O—H⋯N and inter­molecular O—H⋯O and C—H⋯O inter­actions.

Related literature

For background, see: Asiri & Badahdah (2007[Asiri, A. M. & Badahdah, K. O. (2007). Molecules, 12, 1796-1804.]).

[Scheme 1]

Experimental

Crystal data
  • C18H13NO3

  • Mr = 291.29

  • Monoclinic, C 2/c

  • a = 14.7490 (12) Å

  • b = 4.9850 (4) Å

  • c = 36.750 (3) Å

  • β = 91.305 (1)°

  • V = 2701.3 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 150 (2) K

  • 0.31 × 0.19 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.970, Tmax = 0.991

  • 13445 measured reflections

  • 3520 independent reflections

  • 2761 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.145

  • S = 1.07

  • 3520 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—HO1⋯N1 0.82 1.82 2.5572 (16) 148
O2—HO2⋯O3i 0.82 1.81 2.6281 (14) 171
C14—H14⋯O2ii 0.93 2.56 3.3611 (17) 145
C16—H16⋯O1iii 0.93 2.49 3.1542 (19) 128
Symmetry codes: (i) -x+1, -y-1, -z; (ii) [-x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z]; (iii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

2-Hydroxy Schiff base ligands and their complexes, derived from the reaction of salicylaldehyde and 2-hydroxy-1-naphthaldehyde with amines are of interest due to the existence of (O—H ···N and N—H ···O) type hydrogen bonds and tautomerism between the enol-imine and keto-enamine forms. Tautomerism in 2-hydroxy Schiff bases both in solution and in the solid state was investigated using different spectroscopic techniques (Asiri & Badahdah, 2007).

In the title compound, (I), the molecule is almost planar (Fig. 1). The maximum deviation of the non-H atoms from their mean plane is 0.087 (1) Å for O3. The dihedral angle between the naphthalene ring and the benzene ring is 4.04 (6)°.

The molecular conformation is stabilized by an intramolecular O—H···N hydrogen bond (Table 1). Then, classical inversion dimers are formed by head-to-head O—H···O linkages of the carboxylic acid groups. Finally, C—H ···O interactions link the dimers into sheets (Fig. 2).

Related literature top

For background, see: Asiri & Badahdah (2007).

Experimental top

A solution of 4-aminobenzoic acid (5.0 g, 36.5 mmol) in hot ethanol was mixed with an ethanolic solution of 2-hydroxynaphthaldehyde (7.23 g, 36.5 mmol) and the resulting mixture was refluxed for 3 h. The mxiture was cooled to recover the crude product. Orange laths of (I) were recrystalized from ethanol. IR ν (cm-1); 1683.3 (C?O), 1588.1 (C?N), 1427.1 (C?C), 1301.4 (C—O) and 1152 (C—N). [M.p.: > 573 K, yield: 54.7%].

Refinement top

The H atoms were positioned geometrically (C—H = 0.93 Å, O—H = 0.82 Å) and refined as riding with with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids for the non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing for (I) showing hydrogen bonds as dashed lines.
4-[(2-Hydroxy-1-naphthyl)methylideneamino]benzoic acid top
Crystal data top
C18H13NO3F(000) = 1216
Mr = 291.29Dx = 1.433 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2ycCell parameters from 3973 reflections
a = 14.7490 (12) Åθ = 2.2–28.8°
b = 4.9850 (4) ŵ = 0.10 mm1
c = 36.750 (3) ÅT = 150 K
β = 91.305 (1)°Lath, orange
V = 2701.3 (4) Å30.31 × 0.19 × 0.09 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
3520 independent reflections
Radiation source: sealed tube2761 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 28.9°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2019
Tmin = 0.970, Tmax = 0.991k = 66
13445 measured reflectionsl = 4949
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0792P)2 + 1.0642P]
where P = (Fo2 + 2Fc2)/3
3520 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C18H13NO3V = 2701.3 (4) Å3
Mr = 291.29Z = 8
Monoclinic, C2/cMo Kα radiation
a = 14.7490 (12) ŵ = 0.10 mm1
b = 4.9850 (4) ÅT = 150 K
c = 36.750 (3) Å0.31 × 0.19 × 0.09 mm
β = 91.305 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3520 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2761 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.991Rint = 0.031
13445 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.07Δρmax = 0.59 e Å3
3520 reflectionsΔρmin = 0.33 e Å3
210 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.11588 (7)0.8430 (3)0.11623 (4)0.0398 (4)
O20.39188 (7)0.3435 (2)0.00066 (3)0.0295 (3)
O30.52323 (6)0.2551 (2)0.03002 (3)0.0277 (3)
N10.26607 (8)0.6069 (2)0.10400 (3)0.0232 (3)
C10.15748 (10)0.9891 (3)0.13926 (4)0.0293 (4)
C20.10809 (11)1.1871 (4)0.15946 (5)0.0387 (5)
C30.14890 (11)1.3471 (3)0.18415 (5)0.0368 (5)
C40.24458 (10)1.3336 (3)0.19194 (4)0.0273 (4)
C50.28528 (12)1.5100 (3)0.21737 (4)0.0333 (4)
C60.37653 (13)1.5035 (3)0.22449 (4)0.0367 (5)
C70.43000 (12)1.3207 (3)0.20591 (5)0.0382 (5)
C80.39165 (11)1.1460 (3)0.18077 (4)0.0328 (4)
C90.29754 (10)1.1446 (3)0.17322 (4)0.0235 (4)
C100.25387 (9)0.9658 (3)0.14694 (4)0.0227 (3)
C110.30277 (9)0.7702 (3)0.12869 (4)0.0222 (3)
C120.31172 (9)0.4082 (3)0.08444 (4)0.0216 (3)
C130.26106 (9)0.2595 (3)0.05899 (4)0.0237 (4)
C140.30229 (9)0.0589 (3)0.03908 (4)0.0236 (4)
C150.39461 (9)0.0041 (3)0.04452 (4)0.0212 (3)
C160.44479 (9)0.1537 (3)0.07000 (4)0.0237 (4)
C170.40437 (9)0.3544 (3)0.08974 (4)0.0237 (4)
C180.44065 (9)0.2106 (3)0.02406 (4)0.0224 (3)
HO10.152500.749900.105500.0600*
H20.046001.204300.155200.053 (6)*
HO20.423100.459200.008800.0440*
H30.114101.470800.196600.046 (5)*
H50.249501.633000.229500.041 (5)*
H60.402701.619500.241500.045 (5)*
H70.492301.316300.210500.058 (6)*
H80.428701.026700.168600.037 (5)*
H110.364400.753400.134100.0270*
H130.199600.295000.055400.0280*
H140.268500.039300.022100.031 (4)*
H160.506200.117600.073700.022 (4)*
H170.438500.453800.106500.031 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0220 (5)0.0457 (7)0.0513 (7)0.0052 (5)0.0055 (5)0.0177 (6)
O20.0250 (5)0.0288 (5)0.0348 (6)0.0002 (4)0.0003 (4)0.0125 (4)
O30.0212 (5)0.0280 (5)0.0340 (5)0.0019 (4)0.0017 (4)0.0052 (4)
N10.0220 (5)0.0239 (6)0.0238 (6)0.0009 (4)0.0003 (4)0.0034 (4)
C10.0236 (7)0.0307 (7)0.0336 (8)0.0035 (6)0.0012 (6)0.0026 (6)
C20.0244 (7)0.0432 (9)0.0485 (10)0.0085 (7)0.0031 (7)0.0090 (8)
C30.0340 (8)0.0371 (8)0.0396 (9)0.0111 (7)0.0078 (7)0.0078 (7)
C40.0359 (8)0.0237 (7)0.0224 (7)0.0030 (6)0.0047 (5)0.0017 (5)
C50.0487 (9)0.0257 (7)0.0257 (7)0.0055 (7)0.0049 (6)0.0032 (6)
C60.0533 (10)0.0281 (7)0.0285 (8)0.0041 (7)0.0049 (7)0.0053 (6)
C70.0379 (9)0.0361 (8)0.0402 (9)0.0015 (7)0.0091 (7)0.0079 (7)
C80.0319 (8)0.0295 (7)0.0368 (8)0.0039 (6)0.0038 (6)0.0084 (6)
C90.0287 (7)0.0204 (6)0.0213 (6)0.0014 (5)0.0020 (5)0.0011 (5)
C100.0233 (6)0.0226 (6)0.0222 (6)0.0009 (5)0.0012 (5)0.0000 (5)
C110.0209 (6)0.0230 (6)0.0228 (6)0.0005 (5)0.0000 (5)0.0001 (5)
C120.0219 (6)0.0215 (6)0.0214 (6)0.0000 (5)0.0016 (5)0.0002 (5)
C130.0182 (6)0.0264 (7)0.0264 (7)0.0009 (5)0.0023 (5)0.0018 (5)
C140.0223 (6)0.0246 (6)0.0237 (7)0.0021 (5)0.0022 (5)0.0031 (5)
C150.0206 (6)0.0210 (6)0.0221 (6)0.0017 (5)0.0018 (5)0.0010 (5)
C160.0188 (6)0.0261 (7)0.0263 (7)0.0006 (5)0.0001 (5)0.0033 (5)
C170.0210 (6)0.0258 (7)0.0243 (6)0.0020 (5)0.0016 (5)0.0048 (5)
C180.0223 (6)0.0214 (6)0.0235 (6)0.0025 (5)0.0027 (5)0.0013 (5)
Geometric parameters (Å, º) top
O1—C11.265 (2)C12—C171.4018 (19)
O2—C181.2914 (18)C12—C131.397 (2)
O3—C181.2524 (16)C13—C141.388 (2)
O1—HO10.8200C14—C151.3987 (19)
O2—HO20.8200C15—C161.396 (2)
N1—C121.4047 (18)C15—C181.482 (2)
N1—C111.3254 (18)C16—C171.379 (2)
C1—C21.442 (2)C2—H20.9300
C1—C101.448 (2)C3—H30.9300
C2—C31.341 (3)C5—H50.9300
C3—C41.435 (2)C6—H60.9300
C4—C91.413 (2)C7—H70.9300
C4—C51.408 (2)C8—H80.9300
C5—C61.366 (3)C11—H110.9300
C6—C71.394 (2)C13—H130.9300
C7—C81.381 (2)C14—H140.9300
C8—C91.409 (2)C16—H160.9300
C9—C101.454 (2)C17—H170.9300
C10—C111.394 (2)
C1—O1—HO1109.00C14—C15—C18121.63 (13)
C18—O2—HO2109.00C15—C16—C17120.76 (13)
C11—N1—C12126.19 (12)C12—C17—C16119.83 (13)
O1—C1—C2119.70 (14)O3—C18—C15119.63 (13)
C2—C1—C10117.37 (13)O2—C18—O3123.39 (13)
O1—C1—C10122.92 (14)O2—C18—C15116.99 (12)
C1—C2—C3122.09 (15)C1—C2—H2119.00
C2—C3—C4122.11 (15)C3—C2—H2119.00
C3—C4—C9119.09 (14)C2—C3—H3119.00
C3—C4—C5120.38 (14)C4—C3—H3119.00
C5—C4—C9120.52 (14)C4—C5—H5119.00
C4—C5—C6121.06 (14)C6—C5—H5119.00
C5—C6—C7119.19 (15)C5—C6—H6120.00
C6—C7—C8120.81 (16)C7—C6—H6120.00
C7—C8—C9121.42 (14)C6—C7—H7120.00
C4—C9—C10119.40 (13)C8—C7—H7120.00
C4—C9—C8116.99 (13)C7—C8—H8119.00
C8—C9—C10123.59 (13)C9—C8—H8119.00
C1—C10—C11118.61 (13)N1—C11—H11118.00
C1—C10—C9119.90 (13)C10—C11—H11118.00
C9—C10—C11121.48 (12)C12—C13—H13120.00
N1—C11—C10123.46 (12)C14—C13—H13120.00
N1—C12—C17122.74 (13)C13—C14—H14120.00
C13—C12—C17119.77 (13)C15—C14—H14120.00
N1—C12—C13117.49 (12)C15—C16—H16120.00
C12—C13—C14120.09 (12)C17—C16—H16120.00
C13—C14—C15120.15 (13)C12—C17—H17120.00
C14—C15—C16119.41 (13)C16—C17—H17120.00
C16—C15—C18118.96 (12)
C12—N1—C11—C10179.29 (14)C7—C8—C9—C10179.74 (15)
C11—N1—C12—C13178.82 (14)C4—C9—C10—C12.2 (2)
C11—N1—C12—C171.6 (2)C4—C9—C10—C11177.85 (14)
O1—C1—C2—C3179.95 (18)C8—C9—C10—C1176.23 (14)
C10—C1—C2—C30.8 (3)C8—C9—C10—C113.8 (2)
O1—C1—C10—C9178.67 (15)C1—C10—C11—N11.4 (2)
O1—C1—C10—C111.3 (2)C9—C10—C11—N1178.55 (14)
C2—C1—C10—C92.1 (2)N1—C12—C13—C14179.43 (13)
C2—C1—C10—C11177.93 (15)C17—C12—C13—C140.1 (2)
C1—C2—C3—C40.5 (3)N1—C12—C17—C16179.04 (13)
C2—C3—C4—C5178.31 (16)C13—C12—C17—C160.5 (2)
C2—C3—C4—C90.5 (2)C12—C13—C14—C150.3 (2)
C3—C4—C5—C6178.57 (15)C13—C14—C15—C160.3 (2)
C9—C4—C5—C60.2 (2)C13—C14—C15—C18179.30 (14)
C3—C4—C9—C8177.61 (14)C14—C15—C16—C170.1 (2)
C3—C4—C9—C100.9 (2)C18—C15—C16—C17179.67 (14)
C5—C4—C9—C81.1 (2)C14—C15—C18—O20.7 (2)
C5—C4—C9—C10179.65 (14)C14—C15—C18—O3179.25 (14)
C4—C5—C6—C70.7 (2)C16—C15—C18—O2179.75 (13)
C5—C6—C7—C80.5 (2)C16—C15—C18—O30.3 (2)
C6—C7—C8—C90.5 (2)C15—C16—C17—C120.5 (2)
C7—C8—C9—C41.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—HO1···N10.821.822.5572 (16)148
O2—HO2···O3i0.821.812.6281 (14)171
C14—H14···O2ii0.932.563.3611 (17)145
C16—H16···O1iii0.932.493.1542 (19)128
Symmetry codes: (i) x+1, y1, z; (ii) x+1/2, y1/2, z; (iii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC18H13NO3
Mr291.29
Crystal system, space groupMonoclinic, C2/c
Temperature (K)150
a, b, c (Å)14.7490 (12), 4.9850 (4), 36.750 (3)
β (°) 91.305 (1)
V3)2701.3 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.31 × 0.19 × 0.09
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.970, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
13445, 3520, 2761
Rint0.031
(sin θ/λ)max1)0.679
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.145, 1.07
No. of reflections3520
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.33

Computer programs: APEX2 (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—HO1···N10.821.822.5572 (16)148
O2—HO2···O3i0.821.812.6281 (14)171
C14—H14···O2ii0.932.563.3611 (17)145
C16—H16···O1iii0.932.493.1542 (19)128
Symmetry codes: (i) x+1, y1, z; (ii) x+1/2, y1/2, z; (iii) x+1/2, y1/2, z.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAsiri, A. M. & Badahdah, K. O. (2007). Molecules, 12, 1796-1804.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds