organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Hydr­­oxy-N′-[1-(3-methyl­pyrazin-2-yl)ethyl­­idene]benzohydrazide

aDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: taixishi@lzu.edu.cn

(Received 10 March 2008; accepted 10 March 2008; online 14 March 2008)

The mol­ecule of the title compound, C14H14N4O2, is slightly twisted, with a dihedral angle of 10.06 (14)° between the aromatic rings. An intra­molecular N—H⋯O and an inter­molecular O—H⋯O hydrogen bond help to establish the crystal structure.

Related literature

For related literature, see: Tai et al. (2003[Tai, X.-S., Yin, X.-H., Tan, M.-Y. & Li, Y.-Z. (2003). Acta Cryst. E59, o681-o682.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14N4O2

  • Mr = 270.29

  • Orthorhombic, P b c n

  • a = 12.6326 (14) Å

  • b = 9.3346 (10) Å

  • c = 22.119 (3) Å

  • V = 2608.3 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 (2) K

  • 0.49 × 0.43 × 0.22 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.954, Tmax = 0.979

  • 12690 measured reflections

  • 2303 independent reflections

  • 1380 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.156

  • S = 1.07

  • 2303 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.86 1.95 2.624 (3) 134
O2—H2⋯O1i 0.82 1.82 2.631 (3) 168
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our ongoing studies of the chemistry of aroylhydrazone ligands (Tai et al., 2003), we now report the synthesis and structure of the title compound, (I), (Fig. 1).

The molecule is slightly twisted, with a dihedral angle of 10.06 (14)° between the aromatic rings. An intramolecular N—H···O and an intermolecular O—H···O hydrogen bond help to establish the structure (Table 1).

Related literature top

For related literature, see: Tai et al. (2003).

Experimental top

10 mmol of 2-acetyl-3-methylpyrazine (10 mmol) was added to a solution of salicyloyl hydrazine (10 mmol) in 10 ml of ethanol. The mixture was continuously stirred for 3 h at refluxing temperature, evaporating some ethanol. Upon cooling, the solid product was collected by filtration and dried in vacuo (yield 62%). Colourless blocks of (I) were obtained by evaporation from a methanol solution after one week.

Refinement top

The H atoms were placed geometrically (C—H = 0.93–0.96 Å, O—H = 0.82 Å, N—H = 0.86 Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% displacement ellipsoids. The hydrogen bond is indicated by a double-dashed line.
2-Hydroxy-N'-[1-(3-methylpyrazin-2-yl)ethylidene]benzohydrazide top
Crystal data top
C14H14N4O2F(000) = 1136
Mr = 270.29Dx = 1.377 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 2332 reflections
a = 12.6326 (14) Åθ = 2.5–23.7°
b = 9.3346 (10) ŵ = 0.10 mm1
c = 22.119 (3) ÅT = 298 K
V = 2608.3 (5) Å3Block, colourless
Z = 80.49 × 0.43 × 0.22 mm
Data collection top
Bruker SMART CCD
diffractometer
2303 independent reflections
Radiation source: fine-focus sealed tube1380 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1513
Tmin = 0.954, Tmax = 0.979k = 1110
12690 measured reflectionsl = 2624
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0649P)2 + 1.2514P]
where P = (Fo2 + 2Fc2)/3
2303 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C14H14N4O2V = 2608.3 (5) Å3
Mr = 270.29Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 12.6326 (14) ŵ = 0.10 mm1
b = 9.3346 (10) ÅT = 298 K
c = 22.119 (3) Å0.49 × 0.43 × 0.22 mm
Data collection top
Bruker SMART CCD
diffractometer
2303 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1380 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.979Rint = 0.052
12690 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.07Δρmax = 0.20 e Å3
2303 reflectionsΔρmin = 0.17 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.79886 (17)0.1654 (2)0.42259 (10)0.0408 (6)
H10.86580.17730.42780.049*
N20.76327 (17)0.0717 (2)0.37945 (10)0.0396 (6)
N30.8738 (2)0.1605 (3)0.27123 (12)0.0590 (8)
N40.6645 (2)0.2165 (3)0.24385 (12)0.0586 (8)
O10.63328 (14)0.2289 (2)0.44838 (9)0.0553 (6)
O20.95222 (14)0.2544 (2)0.49322 (9)0.0574 (6)
H21.01120.26790.50760.086*
C10.7298 (2)0.2386 (3)0.45667 (12)0.0379 (7)
C20.77414 (19)0.3353 (3)0.50398 (11)0.0356 (6)
C30.8809 (2)0.3424 (3)0.52082 (12)0.0401 (7)
C40.9125 (2)0.4359 (3)0.56555 (13)0.0478 (8)
H40.98340.43940.57670.057*
C50.8411 (2)0.5234 (3)0.59369 (13)0.0498 (8)
H50.86380.58650.62350.060*
C60.7359 (2)0.5186 (3)0.57807 (13)0.0465 (8)
H60.68720.57790.59730.056*
C70.7034 (2)0.4253 (3)0.53383 (12)0.0425 (7)
H70.63210.42210.52350.051*
C80.9508 (2)0.0190 (4)0.35800 (17)0.0733 (11)
H8A0.97010.11810.35420.110*
H8B0.98730.03600.32780.110*
H8C0.97010.01500.39750.110*
C90.8340 (2)0.0033 (3)0.34940 (13)0.0426 (7)
C100.7959 (2)0.0970 (3)0.30201 (12)0.0409 (7)
C110.6890 (2)0.1265 (3)0.28871 (12)0.0428 (7)
C120.5955 (2)0.0662 (4)0.32156 (14)0.0568 (9)
H12A0.53170.10660.30530.085*
H12B0.59410.03600.31670.085*
H12C0.60070.08920.36380.085*
C130.7439 (3)0.2763 (4)0.21323 (15)0.0627 (9)
H130.72830.33830.18150.075*
C140.8469 (3)0.2494 (4)0.22696 (15)0.0639 (10)
H140.89980.29450.20480.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0318 (12)0.0478 (15)0.0428 (14)0.0032 (11)0.0015 (10)0.0074 (12)
N20.0381 (13)0.0423 (14)0.0382 (13)0.0022 (11)0.0012 (10)0.0040 (11)
N30.0574 (17)0.0631 (18)0.0565 (17)0.0068 (14)0.0117 (13)0.0102 (15)
N40.0638 (18)0.0608 (18)0.0510 (16)0.0056 (15)0.0092 (13)0.0135 (14)
O10.0312 (11)0.0761 (16)0.0585 (13)0.0021 (10)0.0003 (9)0.0172 (12)
O20.0328 (11)0.0712 (15)0.0684 (14)0.0027 (10)0.0054 (9)0.0268 (12)
C10.0308 (15)0.0439 (18)0.0389 (15)0.0007 (13)0.0035 (12)0.0038 (13)
C20.0336 (15)0.0361 (16)0.0372 (15)0.0018 (12)0.0008 (11)0.0032 (13)
C30.0343 (15)0.0423 (17)0.0437 (16)0.0006 (13)0.0029 (12)0.0033 (14)
C40.0374 (16)0.0539 (19)0.0522 (18)0.0010 (15)0.0050 (13)0.0084 (16)
C50.0552 (19)0.0469 (19)0.0473 (17)0.0040 (15)0.0003 (15)0.0080 (15)
C60.0506 (18)0.0431 (18)0.0459 (17)0.0047 (14)0.0040 (14)0.0008 (14)
C70.0385 (15)0.0449 (18)0.0440 (16)0.0039 (14)0.0017 (13)0.0027 (15)
C80.0386 (18)0.087 (3)0.094 (3)0.0031 (18)0.0004 (17)0.033 (2)
C90.0359 (15)0.0455 (18)0.0464 (17)0.0021 (14)0.0031 (13)0.0001 (14)
C100.0453 (17)0.0388 (17)0.0386 (15)0.0063 (13)0.0041 (13)0.0013 (13)
C110.0474 (17)0.0437 (18)0.0374 (16)0.0061 (14)0.0021 (13)0.0019 (14)
C120.0408 (17)0.072 (2)0.0576 (19)0.0035 (16)0.0044 (14)0.0143 (17)
C130.078 (2)0.061 (2)0.0490 (19)0.011 (2)0.0054 (18)0.0167 (17)
C140.068 (2)0.069 (2)0.055 (2)0.013 (2)0.0114 (17)0.0118 (19)
Geometric parameters (Å, º) top
N1—C11.340 (3)C5—H50.9300
N1—N21.370 (3)C6—C71.373 (4)
N1—H10.8600C6—H60.9300
N2—C91.284 (3)C7—H70.9300
N3—C141.328 (4)C8—C91.495 (4)
N3—C101.335 (3)C8—H8A0.9600
N4—C131.332 (4)C8—H8B0.9600
N4—C111.336 (4)C8—H8C0.9600
O1—C11.236 (3)C9—C101.485 (4)
O2—C31.364 (3)C10—C111.409 (4)
O2—H20.8200C11—C121.497 (4)
C1—C21.492 (4)C12—H12A0.9600
C2—C71.393 (4)C12—H12B0.9600
C2—C31.400 (3)C12—H12C0.9600
C3—C41.378 (4)C13—C141.359 (5)
C4—C51.367 (4)C13—H130.9300
C4—H40.9300C14—H140.9300
C5—C61.374 (4)
C1—N1—N2120.2 (2)C9—C8—H8A109.5
C1—N1—H1119.9C9—C8—H8B109.5
N2—N1—H1119.9H8A—C8—H8B109.5
C9—N2—N1116.7 (2)C9—C8—H8C109.5
C14—N3—C10117.7 (3)H8A—C8—H8C109.5
C13—N4—C11117.8 (3)H8B—C8—H8C109.5
C3—O2—H2109.5N2—C9—C10117.0 (2)
O1—C1—N1121.5 (3)N2—C9—C8124.9 (3)
O1—C1—C2121.2 (2)C10—C9—C8118.1 (2)
N1—C1—C2117.3 (2)N3—C10—C11120.8 (3)
C7—C2—C3117.6 (2)N3—C10—C9113.7 (3)
C7—C2—C1117.2 (2)C11—C10—C9125.5 (2)
C3—C2—C1125.2 (2)N4—C11—C10120.0 (3)
O2—C3—C4120.7 (2)N4—C11—C12114.4 (3)
O2—C3—C2119.3 (2)C10—C11—C12125.5 (3)
C4—C3—C2120.0 (3)C11—C12—H12A109.5
C5—C4—C3120.9 (3)C11—C12—H12B109.5
C5—C4—H4119.6H12A—C12—H12B109.5
C3—C4—H4119.6C11—C12—H12C109.5
C4—C5—C6120.3 (3)H12A—C12—H12C109.5
C4—C5—H5119.9H12B—C12—H12C109.5
C6—C5—H5119.9N4—C13—C14121.9 (3)
C7—C6—C5119.3 (3)N4—C13—H13119.0
C7—C6—H6120.3C14—C13—H13119.0
C5—C6—H6120.3N3—C14—C13121.7 (3)
C6—C7—C2121.9 (3)N3—C14—H14119.2
C6—C7—H7119.1C13—C14—H14119.2
C2—C7—H7119.1
C1—N1—N2—C9178.6 (3)N1—N2—C9—C10179.2 (2)
N2—N1—C1—O13.4 (4)N1—N2—C9—C80.2 (4)
N2—N1—C1—C2178.2 (2)C14—N3—C10—C111.6 (4)
O1—C1—C2—C76.7 (4)C14—N3—C10—C9178.4 (3)
N1—C1—C2—C7171.7 (2)N2—C9—C10—N3177.8 (3)
O1—C1—C2—C3173.1 (3)C8—C9—C10—N31.3 (4)
N1—C1—C2—C38.6 (4)N2—C9—C10—C112.2 (4)
C7—C2—C3—O2179.0 (2)C8—C9—C10—C11178.7 (3)
C1—C2—C3—O20.7 (4)C13—N4—C11—C100.4 (4)
C7—C2—C3—C40.1 (4)C13—N4—C11—C12178.9 (3)
C1—C2—C3—C4179.6 (3)N3—C10—C11—N41.6 (4)
O2—C3—C4—C5179.4 (3)C9—C10—C11—N4178.4 (3)
C2—C3—C4—C50.6 (4)N3—C10—C11—C12177.6 (3)
C3—C4—C5—C60.6 (5)C9—C10—C11—C122.4 (5)
C4—C5—C6—C70.2 (4)C11—N4—C13—C140.8 (5)
C5—C6—C7—C20.2 (4)C10—N3—C14—C130.4 (5)
C3—C2—C7—C60.3 (4)N4—C13—C14—N30.9 (6)
C1—C2—C7—C6180.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.861.952.624 (3)134
O2—H2···O1i0.821.822.631 (3)168
Symmetry code: (i) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC14H14N4O2
Mr270.29
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)298
a, b, c (Å)12.6326 (14), 9.3346 (10), 22.119 (3)
V3)2608.3 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.49 × 0.43 × 0.22
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.954, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
12690, 2303, 1380
Rint0.052
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.156, 1.07
No. of reflections2303
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.17

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.861.952.624 (3)134
O2—H2···O1i0.821.822.631 (3)168
Symmetry code: (i) x+1/2, y+1/2, z+1.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (20671073), the National Natural Science Foundation of Shandong, the Science and Technology Foundation of Weifang and Weifang University for research grants.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTai, X.-S., Yin, X.-H., Tan, M.-Y. & Li, Y.-Z. (2003). Acta Cryst. E59, o681–o682.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds