organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Hydroxymethyl-3,12-dioxa-14-aza­tetra­cyclo[9.2.1.04,14.05,10]tetra­decane

aDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: taixishi@lzu.edu.cn

(Received 15 March 2008; accepted 24 March 2008; online 29 March 2008)

In the title fused-ring compound, C12H13NO3, the two five-membered C3NO rings both approximate to envelope conformations with C atoms in the flap positions. The OH group of the pendant CH2OH unit is disordered over two positions in a 0.528 (5):0.472 (5) ratio. One of the OH groups participates in an O—H⋯N hydrogen bond, generating centrosymmetric dimers in the crystal structure.

Related literature

For related literature, see: Tai et al. (2003[Tai, X. S., Yin, X. H., Liu, D. B., Tan, M. Y. & Yu, K. B. (2003). Chem. Res. Chinese Univ. 19, 434-436.]).

[Scheme 1]

Experimental

Crystal data
  • C12H13NO3

  • Mr = 219.23

  • Monoclinic, P 21 /c

  • a = 6.5045 (9) Å

  • b = 7.1799 (10) Å

  • c = 22.394 (2) Å

  • β = 94.516 (2)°

  • V = 1042.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 (2) K

  • 0.40 × 0.21 × 0.12 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.961, Tmax = 0.988

  • 5012 measured reflections

  • 1936 independent reflections

  • 1172 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.098

  • wR(F2) = 0.287

  • S = 1.03

  • 1936 reflections

  • 150 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N1i 0.82 2.11 2.882 (7) 156
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our ongoing studies of fused-ring systems (Tai et al., 2003) we now report the synthesis and structure of the title compound, (I).

The C1/C2/C7/C8/N1 ring is almost planar (r.m.s. deviation from the mean plane = 0.004Å). The C1/O1/C9/C10/N1 ring is a twisted envelope with C9 in the flap position. The C8/O2/C11/C10/N1 ring is a well defined envelope, with C11 deviating by 0.504 (7)Å from the mean plane of the other four atoms. The molecule of (I) is chiral, with C1 and C8 having R and S configurations respectively, in the arbitrarily chosen asymmetric molecule, but crystal symmetry generates a racemic mixture.

The pendant -CH2OH group is disordered over two orientations in almost equal proportions. One of the orientations participates in an intermolecular O-H···N hydrogen bond (Table 1), leading to inversion dimers in the crystal.

Related literature top

For related literature, see: Tai et al. (2003).

Experimental top

Ortho-phthaladehyde (5 mmol) was added to a solution of trihydroxymethyl aminomethane (5 mmol) in 10 ml of ethanol. The mixture was continuously stirred for 2 h at refluxing temperature, evaporating some ethanol, then, upon cooling, the solid product was collected by filtration and dried in vacuo (yield 58%). Colourless blocks of (I) were obtained by evaporation from a methanol solution after 10 days.

Refinement top

The H atoms were placed geometrically (C—H = 0.93–0.96 Å, O—H = 0.82 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% displacement ellipsoids for the non-hydrogen atoms. Only one orientation of the disordered -CH2OH group is shown.
1-hydroxymethyl-3,12-dioxa-14-azatetracyclo[9.2.1.04,14.05,10]tetradecane top
Crystal data top
C12H13NO3F(000) = 464
Mr = 219.23Dx = 1.397 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1373 reflections
a = 6.5045 (9) Åθ = 3.0–23.3°
b = 7.1799 (10) ŵ = 0.10 mm1
c = 22.394 (2) ÅT = 298 K
β = 94.516 (2)°Block, colourless
V = 1042.6 (2) Å30.40 × 0.21 × 0.12 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
1936 independent reflections
Radiation source: fine-focus sealed tube1172 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 87
Tmin = 0.961, Tmax = 0.988k = 78
5012 measured reflectionsl = 2721
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.098H-atom parameters constrained
wR(F2) = 0.287 w = 1/[σ2(Fo2) + (0.1727P)2 + 0.3664P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1936 reflectionsΔρmax = 0.39 e Å3
150 parametersΔρmin = 0.30 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.079 (19)
Crystal data top
C12H13NO3V = 1042.6 (2) Å3
Mr = 219.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.5045 (9) ŵ = 0.10 mm1
b = 7.1799 (10) ÅT = 298 K
c = 22.394 (2) Å0.40 × 0.21 × 0.12 mm
β = 94.516 (2)°
Data collection top
Bruker SMART CCD
diffractometer
1936 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1172 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.988Rint = 0.073
5012 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0980 restraints
wR(F2) = 0.287H-atom parameters constrained
S = 1.03Δρmax = 0.39 e Å3
1936 reflectionsΔρmin = 0.30 e Å3
150 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.3226 (5)0.5287 (5)0.42690 (14)0.0367 (9)
O10.4295 (5)0.6752 (5)0.34186 (13)0.0486 (10)
O20.0354 (5)0.5594 (5)0.42167 (15)0.0511 (10)
O30.4817 (11)0.7928 (9)0.5164 (3)0.0524 (13)0.528 (5)
H30.50910.68560.52690.079*0.528 (5)
O3'0.2177 (12)0.9609 (10)0.5081 (3)0.0524 (13)0.472 (5)
H3'0.27181.04540.49030.079*0.472 (5)
C10.4333 (7)0.5026 (6)0.37325 (18)0.0378 (11)
H10.57530.46170.38370.045*
C20.3133 (7)0.3565 (7)0.33750 (19)0.0403 (11)
C30.3589 (8)0.2725 (7)0.2844 (2)0.0494 (13)
H3A0.48190.29690.26730.059*
C40.2158 (9)0.1520 (7)0.2581 (2)0.0547 (14)
H40.24330.09140.22290.066*
C50.0313 (10)0.1188 (8)0.2829 (3)0.0650 (16)
H50.06650.04180.26290.078*
C60.0101 (8)0.1980 (7)0.3367 (2)0.0523 (13)
H60.13030.16990.35470.063*
C70.1354 (7)0.3223 (6)0.36316 (19)0.0409 (11)
C80.1283 (7)0.4262 (6)0.42126 (19)0.0402 (11)
H80.12170.33860.45460.048*
C90.4143 (8)0.8132 (7)0.3856 (2)0.0495 (13)
H9A0.35670.92700.36790.059*
H9B0.54840.84050.40570.059*
C100.2694 (7)0.7288 (6)0.42937 (19)0.0399 (11)
C110.0471 (7)0.7326 (7)0.4034 (2)0.0474 (12)
H11A0.02660.83660.41930.057*
H11B0.03950.74210.36010.057*
C120.2945 (8)0.8000 (9)0.4924 (2)0.0586 (15)
H12A0.24760.92820.49280.070*0.528 (5)
H12B0.20680.72770.51670.070*0.528 (5)
H12C0.23230.70850.51730.070*0.472 (5)
H12D0.44100.80040.50450.070*0.472 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.037 (2)0.035 (2)0.0380 (19)0.0013 (16)0.0021 (14)0.0041 (15)
O10.067 (2)0.0364 (19)0.0437 (18)0.0037 (16)0.0156 (15)0.0067 (13)
O20.0313 (17)0.047 (2)0.076 (2)0.0037 (14)0.0062 (14)0.0088 (16)
O30.065 (3)0.031 (3)0.059 (3)0.001 (2)0.008 (2)0.008 (2)
O3'0.065 (3)0.031 (3)0.059 (3)0.001 (2)0.008 (2)0.008 (2)
C10.038 (2)0.031 (2)0.043 (2)0.0015 (18)0.0019 (17)0.0038 (18)
C20.040 (2)0.037 (2)0.044 (2)0.0015 (19)0.0009 (18)0.0023 (19)
C30.059 (3)0.043 (3)0.045 (3)0.009 (2)0.001 (2)0.000 (2)
C40.066 (4)0.038 (3)0.058 (3)0.010 (3)0.003 (2)0.010 (2)
C50.080 (4)0.041 (3)0.070 (4)0.006 (3)0.023 (3)0.012 (3)
C60.048 (3)0.039 (3)0.069 (3)0.007 (2)0.004 (2)0.000 (2)
C70.042 (3)0.029 (2)0.050 (3)0.0015 (19)0.0026 (19)0.0014 (18)
C80.041 (2)0.034 (3)0.045 (2)0.0039 (19)0.0032 (18)0.0006 (18)
C90.053 (3)0.032 (3)0.064 (3)0.011 (2)0.006 (2)0.000 (2)
C100.036 (2)0.030 (2)0.053 (3)0.0043 (18)0.0030 (18)0.0027 (19)
C110.045 (3)0.033 (3)0.063 (3)0.004 (2)0.000 (2)0.006 (2)
C120.046 (3)0.057 (4)0.074 (3)0.014 (2)0.012 (2)0.020 (3)
Geometric parameters (Å, º) top
N1—C81.460 (6)C4—H40.9300
N1—C11.461 (6)C5—C61.379 (8)
N1—C101.480 (6)C5—H50.9300
O1—C91.402 (6)C6—C71.398 (7)
O1—C11.424 (5)C6—H60.9300
O2—C111.427 (6)C7—C81.504 (6)
O2—C81.431 (5)C8—H80.9800
O3—C121.293 (8)C9—C101.537 (7)
O3—H30.8200C9—H9A0.9700
O3—H12D0.3646C9—H9B0.9700
O3'—C121.317 (10)C10—C121.498 (7)
O3'—H3'0.8200C10—C111.516 (6)
C1—C21.501 (6)C11—H11A0.9700
C1—H10.9800C11—H11B0.9700
C2—C71.355 (7)C12—H12A0.9700
C2—C31.386 (7)C12—H12B0.9700
C3—C41.370 (8)C12—H12C0.9700
C3—H3A0.9300C12—H12D0.9700
C4—C51.382 (9)
C8—N1—C1110.1 (3)C7—C8—H8110.3
C8—N1—C10106.8 (3)O1—C9—C10104.3 (4)
C1—N1—C10106.7 (3)O1—C9—H9A110.9
C9—O1—C1105.7 (3)C10—C9—H9A110.9
C11—O2—C8106.4 (3)O1—C9—H9B110.9
C12—O3—H3109.5C10—C9—H9B110.9
H3—O3—H12D118.6H9A—C9—H9B108.9
C12—O3'—H3'109.5N1—C10—C12111.0 (4)
O1—C1—N1107.7 (3)N1—C10—C11102.8 (3)
O1—C1—C2110.9 (3)C12—C10—C11112.7 (4)
N1—C1—C2105.0 (4)N1—C10—C9101.7 (4)
O1—C1—H1111.0C12—C10—C9116.1 (4)
N1—C1—H1111.0C11—C10—C9111.2 (4)
C2—C1—H1111.0O2—C11—C10104.1 (4)
C7—C2—C3122.2 (5)O2—C11—H11A110.9
C7—C2—C1109.1 (4)C10—C11—H11A110.9
C3—C2—C1128.6 (4)O2—C11—H11B110.9
C4—C3—C2117.4 (5)C10—C11—H11B110.9
C4—C3—H3A121.3H11A—C11—H11B109.0
C2—C3—H3A121.3O3—C12—O3'106.8 (5)
C3—C4—C5121.2 (5)O3—C12—C10114.0 (5)
C3—C4—H4119.4O3'—C12—C10122.3 (6)
C5—C4—H4119.4O3—C12—H12A108.7
C6—C5—C4121.0 (5)C10—C12—H12A108.7
C6—C5—H5119.5O3—C12—H12B108.7
C4—C5—H5119.5C10—C12—H12B108.7
C5—C6—C7117.5 (5)H12A—C12—H12B107.6
C5—C6—H6121.2O3—C12—H12C99.0
C7—C6—H6121.2O3'—C12—H12C104.9
C2—C7—C6120.5 (4)C10—C12—H12C106.9
C2—C7—C8111.3 (4)H12A—C12—H12C119.4
C6—C7—C8128.1 (4)O3'—C12—H12D107.9
O2—C8—N1107.6 (4)C10—C12—H12D107.2
O2—C8—C7114.2 (3)H12A—C12—H12D107.3
N1—C8—C7103.9 (3)H12B—C12—H12D116.9
O2—C8—H8110.3H12C—C12—H12D106.7
N1—C8—H8110.3
C9—O1—C1—N127.5 (4)C10—N1—C8—C7120.2 (4)
C9—O1—C1—C2141.9 (4)C2—C7—C8—O2117.6 (4)
C8—N1—C1—O1110.3 (4)C6—C7—C8—O265.0 (6)
C10—N1—C1—O15.3 (4)C2—C7—C8—N10.7 (5)
C8—N1—C1—C28.0 (5)C6—C7—C8—N1178.1 (5)
C10—N1—C1—C2123.5 (4)C1—O1—C9—C1037.8 (5)
O1—C1—C2—C7107.7 (4)C8—N1—C10—C12101.6 (4)
N1—C1—C2—C78.4 (5)C1—N1—C10—C12140.7 (4)
O1—C1—C2—C368.2 (6)C8—N1—C10—C1119.1 (4)
N1—C1—C2—C3175.7 (4)C1—N1—C10—C1198.6 (4)
C7—C2—C3—C40.2 (7)C8—N1—C10—C9134.3 (3)
C1—C2—C3—C4175.2 (5)C1—N1—C10—C916.6 (4)
C2—C3—C4—C51.3 (8)O1—C9—C10—N133.4 (4)
C3—C4—C5—C63.6 (9)O1—C9—C10—C12154.0 (4)
C4—C5—C6—C74.1 (8)O1—C9—C10—C1175.4 (5)
C3—C2—C7—C60.4 (7)C8—O2—C11—C1034.6 (4)
C1—C2—C7—C6176.7 (4)N1—C10—C11—O232.8 (4)
C3—C2—C7—C8178.1 (4)C12—C10—C11—O286.7 (5)
C1—C2—C7—C85.7 (5)C9—C10—C11—O2140.9 (4)
C5—C6—C7—C22.5 (7)N1—C10—C12—O363.2 (6)
C5—C6—C7—C8179.8 (5)C11—C10—C12—O3177.9 (5)
C11—O2—C8—N122.8 (4)C9—C10—C12—O352.2 (7)
C11—O2—C8—C792.0 (4)N1—C10—C12—O3'165.7 (6)
C1—N1—C8—O2116.7 (4)C11—C10—C12—O3'51.1 (7)
C10—N1—C8—O21.2 (4)C9—C10—C12—O3'78.8 (7)
C1—N1—C8—C74.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N1i0.822.112.882 (7)156
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H13NO3
Mr219.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)6.5045 (9), 7.1799 (10), 22.394 (2)
β (°) 94.516 (2)
V3)1042.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.21 × 0.12
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.961, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
5012, 1936, 1172
Rint0.073
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.098, 0.287, 1.03
No. of reflections1936
No. of parameters150
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.30

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N1i0.822.112.882 (7)156
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (20671073), the National Natural Science Foundation of Shandong, the Science and Technology Foundation of Weifang and Weifang University for research grants.

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTai, X. S., Yin, X. H., Liu, D. B., Tan, M. Y. & Yu, K. B. (2003). Chem. Res. Chinese Univ. 19, 434–436.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds