organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,5′-Bis(di­ethyl­amino)-2,2′-[butane-1,4-diyldi­oxy­bis­(nitrilo­methyl­­idyne)]­diphenol

aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: dongwk@mail.lzjtu.cn

(Received 29 November 2007; accepted 13 February 2008; online 5 March 2008)

The title complex, C26H38N4O4, was synthesized by the reaction of 4-diethyl­amino-2-hydroxy­benzaldehyde with 1,4-bis­(amino­oxy)butane in ethanol. It crystallizes as discrete centrosymmetric molecules adopting an extended conformation where the two salicylaldoxime groups are separated from each other. Intra­molecular O—H⋯N hydrogen bonding is observed between the hydr­oxy groups and oxime N atoms. Inter­molecular ππ stacking inter­actions [3.979 (2) Å] between aromatic rings are apparent in the crystal structure. Each ethyl group is disordered over two positions; in one the site occupancy factors are 0.55 and 0.45, in the other 0.53 and 0.47.

Related literature

For related literature, see: Abu-Surrah et al. (1999[Abu-Surrah, A. S., Thewalt, U. & Rieger, B. (1999). J. Organomet. Chem. 587, 58-66.]); Boghaei et al. (2006[Boghaei, D. M., Bezaatpour, A. & Behzad, M. (2006). J. Mol. Catal. A Chem. 245, 12-16.]); Costes et al. (2000[Costes, J. P., Dahan, F. & Dupuis, A. (2000). Inorg. Chem. 39, 165-168.]); Dong, Duan et al. (2007[Dong, W. K., Duan, J. G., Dong, C. M., Ren, Z. L. & Shi, J. Y. (2007). Z. Kristallogr. New Cryst. Struct. 222, 327-328.]); Dong, He et al. (2007[Dong, W. K., He, X. N., Dong, C. M., Wang, L., Zhong, J. K., Chen, X. & Yu, T. Z. (2007). Z. Kristallogr. New Cryst. Struct. 222, 289-290.]); Lacroix (2001[Lacroix, P. G. (2001). Eur. J. Inorg. Chem. pp. 339-348.]); Zhang et al. (2007[Zhang, Y.-P., Chen, X., Shi, J.-Y., Xu, L. & Dong, W.-K. (2007). Acta Cryst. E63, o3852.]).

[Scheme 1]

Experimental

Crystal data
  • C26H38N4O4

  • Mr = 470.60

  • Monoclinic, P 21 /c

  • a = 7.6888 (9) Å

  • b = 13.777 (2) Å

  • c = 12.6547 (19) Å

  • β = 101.627 (2)°

  • V = 1313.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 (2) K

  • 0.45 × 0.43 × 0.37 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.965, Tmax = 0.971

  • 6450 measured reflections

  • 2303 independent reflections

  • 1176 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.152

  • S = 1.06

  • 2303 reflections

  • 196 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N1 0.82 1.91 2.639 (2) 147

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

A great deal of attention has recently been attracted to the study of salen and its derivatives (Boghaei et al., 2006; Abu-Surrah et al., 1999) due to the ease of formation of metal complexes which model reaction centers of metalloenzymes. These compounds also have excellent magnetic properties (Costes et al., 2000) and form nonlinear optical materials (Lacroix, 2001). Recently, we have reported some salen-type bisoxime derivatives (Dong, Duan et al., 2007; Dong, He et al., 2007; Zhang et al., 2007), Now, the title compound, (I) was synthesized and its crystal structure determined. (Fig. 1). The molecule of (I) is disposed about a crystallographic centre of symmetry, and adopts an extended conformation with the two salicylaldoxime groups separated from each other.

The oxime groups and phenolic groups adopt a trans conformation about the C?N bond, and there is a strong O—H···N intramolecular hydrogen bond, O2—H2···N1 (d(O2—H2) = 0.820 Å, d(H2···N1) = 1.913 Å, d(O2···N1) = 2.639 (2) Å, <O2—H2···N1 = 147.01°). The carbon atoms of N,N'-diethylamino of the ligands (C10, C11, C12, C13 and C10', C11', C12', C13') are disordered over two different positions, which were allowed for during refinement.

Related literature top

For related literature, see: Abu-Surrah et al. (1999); Boghaei et al. (2006); Costes et al. (2000); Dong, Duan et al. (2007); Dong, He et al. (2007); Lacroix (2001); Zhang et al. (2007).

Experimental top

5,5'-di(N,N'-diethylamino)-2,2'-[(1,4-butylene) dioxybis(nitrilomethylidyne)]diphenol was synthesized according to an method reported earlier (Zhang et al., 2007). To an ethanol solution (5 ml) of 4-(N,N-diethylamino)-2-hydroxybenzaldehyde (398.07 mg, 2.06 mmol) was added an ethanol (3 ml) solution of 1,4-bis(aminooxy)butane (121.66 mg, 1.03 mmol). The solution was stirred at 328 K for 4 h. then concentrated to about 2 ml under reduced pressure, and washed successively with ethanol and hexane, respectively. The product was dried under vacuum and purified with recrystallization from ethanol to yield 436.26 mg of the title compound. Yield, 45%. mp. 397–398 K. Anal. Calc. for C26H38N4O4: C, 66.36; H, 8.14; N, 11.91%. Found: C, 66.25; H, 8.08; N, 12.07%. Colorless prismatic single crystals suitable for X-ray diffraction studies were obtained after about two weeks by slow evaporation of (I) at room temperature from an acetone/chloroform solution

Refinement top

H atoms were treated as riding atoms with distances C—H = 0.97 (CH2), or 0.93 Å (CH), O—H = 0.82 Å, and Uiso(H) = 1.2 Ueq(C) and 1.5 Ueq(O). The hydroxyl protons were located directly from a Fourier difference map. Each ethyl group is disordered over two positions; in one the site occupancy factors are 0.55 and 0.45, in the other 0.53 and 0.47.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecule structure of (I) with atom labelling and displacement ellipsoids at the 30% probability level for non-hydrogen atoms.
5,5'-Bis(diethylamino)-2,2'-[butane-1,4- diyldioxybis(nitrilomethylidyne)]diphenol top
Crystal data top
C26H38N4O4F(000) = 508
Mr = 470.60Dx = 1.190 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1484 reflections
a = 7.6888 (9) Åθ = 3.0–23.4°
b = 13.777 (2) ŵ = 0.08 mm1
c = 12.6547 (19) ÅT = 298 K
β = 101.627 (2)°Block, colourless
V = 1313.0 (3) Å30.45 × 0.43 × 0.37 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
2303 independent reflections
Radiation source: fine-focus sealed tube1176 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 98
Tmin = 0.965, Tmax = 0.971k = 1616
6450 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0421P)2 + 0.5356P]
where P = (Fo2 + 2Fc2)/3
2303 reflections(Δ/σ)max = 0.001
196 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C26H38N4O4V = 1313.0 (3) Å3
Mr = 470.60Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.6888 (9) ŵ = 0.08 mm1
b = 13.777 (2) ÅT = 298 K
c = 12.6547 (19) Å0.45 × 0.43 × 0.37 mm
β = 101.627 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2303 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1176 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.971Rint = 0.034
6450 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.06Δρmax = 0.12 e Å3
2303 reflectionsΔρmin = 0.15 e Å3
196 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.4824 (3)0.15042 (16)0.05037 (19)0.0661 (6)
N21.2014 (4)0.3925 (2)0.0621 (2)0.1031 (10)
O10.3420 (3)0.10682 (14)0.08908 (15)0.0762 (6)
O20.6803 (3)0.21500 (17)0.08246 (16)0.1077 (9)
H20.59620.18740.06470.162*
C10.2185 (4)0.0666 (2)0.0010 (2)0.0731 (8)
H1A0.27630.01800.03540.088*
H1B0.17250.11710.05050.088*
C20.0702 (3)0.0215 (2)0.0445 (2)0.0721 (8)
H2A0.01620.07030.08280.086*
H2B0.11780.02910.09540.086*
C30.5929 (4)0.1909 (2)0.1266 (2)0.0640 (8)
H30.57270.18770.19650.077*
C40.7474 (3)0.24132 (19)0.1074 (2)0.0578 (7)
C50.7878 (4)0.2523 (2)0.0062 (2)0.0638 (7)
C60.9367 (4)0.3015 (2)0.0082 (2)0.0736 (9)
H60.95850.30770.07760.088*
C71.0547 (4)0.3419 (2)0.0766 (2)0.0765 (9)
C81.0136 (4)0.3313 (3)0.1787 (2)0.1091 (14)
H81.08930.35720.23870.131*
C90.8640 (4)0.2835 (3)0.1913 (2)0.0949 (11)
H90.83970.27920.26020.114*
C101.2063 (14)0.4298 (8)0.0475 (9)0.086 (3)0.546 (16)
H10A1.27050.49080.04040.104*0.546 (16)
H10B1.08570.44280.08520.104*0.546 (16)
C111.2923 (12)0.3612 (8)0.1148 (11)0.117 (4)0.546 (16)
H11A1.41150.34740.07790.175*0.546 (16)
H11B1.29460.39080.18320.175*0.546 (16)
H11C1.22540.30200.12610.175*0.546 (16)
C121.3562 (12)0.3955 (8)0.1481 (10)0.094 (4)0.525 (13)
H12A1.46520.39430.12050.112*0.525 (13)
H12B1.35690.34250.19860.112*0.525 (13)
C131.3294 (17)0.4919 (10)0.1982 (10)0.094 (4)0.525 (13)
H13A1.31610.54170.14410.141*0.525 (13)
H13B1.43040.50630.25420.141*0.525 (13)
H13C1.22450.48940.22840.141*0.525 (13)
C10'1.2900 (15)0.3771 (9)0.0279 (11)0.086 (4)0.454 (16)
H10C1.27140.31110.05420.104*0.454 (16)
H10D1.41670.38800.00510.104*0.454 (16)
C11'1.2124 (14)0.4477 (10)0.1155 (12)0.105 (4)0.454 (16)
H11D1.08560.44080.13220.158*0.454 (16)
H11E1.25940.43460.17880.158*0.454 (16)
H11F1.24270.51270.09130.158*0.454 (16)
C12'1.298 (2)0.4652 (12)0.1485 (10)0.083 (4)0.475 (13)
H12C1.35260.51580.11280.100*0.475 (13)
H12D1.21130.49560.18380.100*0.475 (13)
C13'1.4401 (12)0.4176 (7)0.2334 (9)0.091 (4)0.475 (13)
H13D1.38990.36320.26400.136*0.475 (13)
H13E1.48460.46370.28910.136*0.475 (13)
H13F1.53550.39570.20070.136*0.475 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0676 (15)0.0703 (15)0.0680 (15)0.0002 (13)0.0315 (13)0.0105 (13)
N20.080 (2)0.156 (3)0.0764 (19)0.036 (2)0.0222 (17)0.008 (2)
O10.0714 (13)0.0932 (15)0.0707 (13)0.0087 (11)0.0302 (11)0.0124 (11)
O20.135 (2)0.137 (2)0.0643 (14)0.0630 (17)0.0500 (13)0.0323 (13)
C10.070 (2)0.082 (2)0.0717 (19)0.0014 (17)0.0248 (16)0.0077 (16)
C20.0660 (19)0.081 (2)0.0742 (19)0.0035 (16)0.0250 (14)0.0138 (16)
C30.0654 (19)0.077 (2)0.0546 (16)0.0103 (16)0.0241 (15)0.0148 (15)
C40.0542 (16)0.0727 (18)0.0495 (15)0.0095 (14)0.0179 (13)0.0136 (13)
C50.0772 (19)0.0689 (18)0.0508 (16)0.0059 (16)0.0262 (15)0.0074 (14)
C60.087 (2)0.086 (2)0.0577 (17)0.0134 (18)0.0392 (17)0.0018 (15)
C70.064 (2)0.105 (2)0.0617 (19)0.0059 (18)0.0168 (16)0.0116 (17)
C80.069 (2)0.203 (4)0.0511 (18)0.034 (2)0.0026 (15)0.017 (2)
C90.069 (2)0.172 (3)0.0444 (17)0.015 (2)0.0130 (15)0.0235 (19)
C100.078 (6)0.103 (7)0.082 (7)0.016 (5)0.024 (5)0.006 (6)
C110.118 (6)0.125 (8)0.124 (10)0.000 (6)0.063 (6)0.014 (6)
C120.074 (6)0.095 (7)0.115 (10)0.007 (5)0.027 (7)0.001 (6)
C130.083 (7)0.086 (7)0.106 (9)0.006 (6)0.003 (7)0.012 (7)
C10'0.067 (6)0.105 (8)0.089 (9)0.004 (5)0.020 (5)0.012 (6)
C11'0.099 (7)0.119 (10)0.096 (8)0.006 (6)0.016 (6)0.022 (7)
C12'0.068 (7)0.102 (11)0.079 (8)0.021 (7)0.011 (7)0.002 (7)
C13'0.070 (6)0.111 (7)0.083 (7)0.003 (5)0.004 (5)0.016 (5)
Geometric parameters (Å, º) top
N1—C31.278 (3)C9—H90.9300
N1—O11.407 (2)C10—C111.51 (2)
N2—C71.370 (4)C10—H10A0.9700
N2—C121.442 (12)C10—H10B0.9700
N2—C10'1.456 (14)C11—H11A0.9600
N2—C101.486 (12)C11—H11B0.9600
N2—C12'1.557 (13)C11—H11C0.9600
O1—C11.422 (3)C12—C131.50 (2)
O2—C51.353 (3)C12—H12A0.9700
O2—H20.8200C12—H12B0.9700
C1—C21.497 (3)C13—H13A0.9600
C1—H1A0.9700C13—H13B0.9600
C1—H1B0.9700C13—H13C0.9600
C2—C2i1.515 (5)C10'—C11'1.50 (3)
C2—H2A0.9700C10'—H10C0.9700
C2—H2B0.9700C10'—H10D0.9700
C3—C41.438 (3)C11'—H11D0.9600
C3—H30.9300C11'—H11E0.9600
C4—C91.372 (4)C11'—H11F0.9600
C4—C51.386 (3)C12'—C13'1.52 (2)
C5—C61.374 (4)C12'—H12C0.9700
C6—C71.376 (4)C12'—H12D0.9700
C6—H60.9300C13'—H13D0.9600
C7—C81.398 (4)C13'—H13E0.9600
C8—C91.363 (4)C13'—H13F0.9600
C8—H80.9300
C3—N1—O1111.3 (2)C9—C8—H8119.6
C7—N2—C12119.3 (4)C7—C8—H8119.6
C7—N2—C10'124.0 (5)C8—C9—C4123.4 (3)
C12—N2—C10'98.6 (6)C8—C9—H9118.3
C7—N2—C10118.5 (4)C4—C9—H9118.3
C12—N2—C10121.4 (5)N2—C10—C11114.0 (12)
C10'—N2—C1038.4 (4)N2—C10—H10A108.7
C7—N2—C12'121.5 (5)C11—C10—H10A108.7
C12—N2—C12'41.1 (6)N2—C10—H10B108.7
C10'—N2—C12'114.2 (6)C11—C10—H10B108.7
C10—N2—C12'109.6 (6)H10A—C10—H10B107.6
N1—O1—C1109.36 (19)N2—C12—C13100.4 (9)
C5—O2—H2109.5N2—C12—H12A111.7
O1—C1—C2108.2 (2)C13—C12—H12A111.7
O1—C1—H1A110.1N2—C12—H12B111.7
C2—C1—H1A110.1C13—C12—H12B111.7
O1—C1—H1B110.1H12A—C12—H12B109.5
C2—C1—H1B110.1N2—C10'—C11'107.7 (13)
H1A—C1—H1B108.4N2—C10'—H10C110.2
C1—C2—C2i111.8 (3)C11'—C10'—H10C110.2
C1—C2—H2A109.3N2—C10'—H10D110.2
C2i—C2—H2A109.3C11'—C10'—H10D110.2
C1—C2—H2B109.3H10C—C10'—H10D108.5
C2i—C2—H2B109.3C10'—C11'—H11D109.5
H2A—C2—H2B107.9C10'—C11'—H11E109.5
N1—C3—C4122.0 (2)H11D—C11'—H11E109.5
N1—C3—H3119.0C10'—C11'—H11F109.5
C4—C3—H3119.0H11D—C11'—H11F109.5
C9—C4—C5115.8 (2)H11E—C11'—H11F109.5
C9—C4—C3120.5 (2)C13'—C12'—N2113.2 (13)
C5—C4—C3123.7 (3)C13'—C12'—H12C108.9
O2—C5—C6117.6 (2)N2—C12'—H12C108.9
O2—C5—C4120.8 (2)C13'—C12'—H12D108.9
C6—C5—C4121.6 (3)N2—C12'—H12D108.9
C5—C6—C7122.1 (3)H12C—C12'—H12D107.8
C5—C6—H6118.9C12'—C13'—H13D109.5
C7—C6—H6118.9C12'—C13'—H13E109.5
N2—C7—C6122.1 (3)H13D—C13'—H13E109.5
N2—C7—C8121.5 (3)C12'—C13'—H13F109.5
C6—C7—C8116.3 (3)H13D—C13'—H13F109.5
C9—C8—C7120.8 (3)H13E—C13'—H13F109.5
C3—N1—O1—C1177.3 (2)N2—C7—C8—C9177.8 (4)
N1—O1—C1—C2179.6 (2)C6—C7—C8—C90.1 (5)
O1—C1—C2—C2i178.8 (3)C7—C8—C9—C41.4 (6)
O1—N1—C3—C4179.4 (2)C5—C4—C9—C81.7 (5)
N1—C3—C4—C9179.6 (3)C3—C4—C9—C8179.3 (3)
N1—C3—C4—C51.5 (4)C7—N2—C10—C1192.1 (8)
C9—C4—C5—O2178.9 (3)C12—N2—C10—C1178.4 (9)
C3—C4—C5—O20.1 (4)C10'—N2—C10—C1117.7 (8)
C9—C4—C5—C60.7 (4)C12'—N2—C10—C11122.3 (9)
C3—C4—C5—C6179.7 (3)C7—N2—C12—C1397.9 (8)
O2—C5—C6—C7179.8 (3)C10'—N2—C12—C13125.0 (8)
C4—C5—C6—C70.6 (5)C10—N2—C12—C1391.8 (9)
C12—N2—C7—C6152.3 (6)C12'—N2—C12—C137.7 (11)
C10'—N2—C7—C626.5 (8)C7—N2—C10'—C11'93.2 (9)
C10—N2—C7—C618.3 (7)C12—N2—C10'—C11'132.5 (8)
C12'—N2—C7—C6159.7 (8)C10—N2—C10'—C11'1.3 (8)
C12—N2—C7—C829.9 (7)C12'—N2—C10'—C11'92.7 (10)
C10'—N2—C7—C8155.7 (7)C7—N2—C12'—C13'88.0 (10)
C10—N2—C7—C8159.5 (6)C12—N2—C12'—C13'11.8 (7)
C12'—N2—C7—C818.1 (9)C10'—N2—C12'—C13'86.3 (10)
C5—C6—C7—N2178.7 (3)C10—N2—C12'—C13'127.6 (9)
C5—C6—C7—C80.8 (5)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.821.912.639 (2)147

Experimental details

Crystal data
Chemical formulaC26H38N4O4
Mr470.60
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.6888 (9), 13.777 (2), 12.6547 (19)
β (°) 101.627 (2)
V3)1313.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.45 × 0.43 × 0.37
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.965, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
6450, 2303, 1176
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.152, 1.06
No. of reflections2303
No. of parameters196
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.15

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.821.9132.639 (2)147.01
 

Acknowledgements

This work was supported by the Foundation of the Education Department of Gansu Province (grant No. 0604-01) and the Qing Lan Talent Engineering Fund of Lanzhou Jiaotong University (grant No. QL-03-01A), which are gratefully acknowledged.

References

First citationAbu-Surrah, A. S., Thewalt, U. & Rieger, B. (1999). J. Organomet. Chem. 587, 58–66.  Web of Science CSD CrossRef CAS Google Scholar
First citationBoghaei, D. M., Bezaatpour, A. & Behzad, M. (2006). J. Mol. Catal. A Chem. 245, 12–16.  Web of Science CrossRef CAS Google Scholar
First citationCostes, J. P., Dahan, F. & Dupuis, A. (2000). Inorg. Chem. 39, 165–168.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDong, W. K., Duan, J. G., Dong, C. M., Ren, Z. L. & Shi, J. Y. (2007). Z. Kristallogr. New Cryst. Struct. 222, 327–328.  CAS Google Scholar
First citationDong, W. K., He, X. N., Dong, C. M., Wang, L., Zhong, J. K., Chen, X. & Yu, T. Z. (2007). Z. Kristallogr. New Cryst. Struct. 222, 289–290.  CAS Google Scholar
First citationLacroix, P. G. (2001). Eur. J. Inorg. Chem. pp. 339–348.  CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationZhang, Y.-P., Chen, X., Shi, J.-Y., Xu, L. & Dong, W.-K. (2007). Acta Cryst. E63, o3852.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds