organic compounds
3,3′-Dibenzoyl-1,1′-(butane-1,4-diyl)dithiourea
aDepartment of Biochemical Engineering, Anhui University of Technology and Science, Wuhu 241000, People's Republic of China, bQinghai Saltlake Industry Group Limited Company, Technological Center of Chemical Engineering, Geermu 81600, People's Republic of China, and cSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: dongwk@mail.lzjtu.cn
In the centrosymmetric title compound, C20H22N4O2S2, the carbonyl group forms an intramolecular hydrogen bond with the NH group attached to the butanediyl linker, resulting in a six-membered ring. There are also intermolecular C—H⋯S interactions in the and π–π interactions between phenyl groups [2.425 (3) Å].
Related literature
For related literature, see: Breuzard et al. (2000); Burrows et al. (1997); Dong et al. (2006); Foss et al. (2004); Huang et al., 2006; Nan et al. (2000); Teoh et al. (1999); Valdés-Martínez et al. (2004); Zhang et al. (2006).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Siemens, 1996); cell SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Version 5.1; Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808004340/hg2377sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808004340/hg2377Isup2.hkl
Benzoyl chloride (1.41 g, 10 mmol) was reacted with ammonium thiocyanate (1.14 g, 15 mmol) in CH2Cl2 (25 ml) solution under solid–liquid phase transfer catalysis, using polyethylene glycol-400 (0.18 g) as the catalyst, to give the corresponding benzoyl isothiocyanate. Then a solution of 1,4-butylenediamine (0.40 g, 4.5 mmol) in CH2Cl2 (15 ml) was added dropwise to benzoyl isothiocyanate, to give the title compound. Yield, 81.8%. m.p. 196–198 °C. Anal. Calc. for C20H22N4O2S2 (%): C, 57.97; H, 5.31; N, 13.53. Found: C, 57.90; H, 5.45; N, 13.35. Selected IR data (cm-1, KBr pellet): 3416, 3222 (ν NH), 1672 (ν C?O), 1146 (ν C?S). 1H NMR (200 MHz, DMSO-d6, δ, p.p.m.): 1.71 (t, 4H, CH2); 3.69 (t, 4H, CH2); 7.48–7.93 (m, 10H, C6H5); 10.95 (s, 1H, NH); 11.06 (s, 1H, NH). A DMF solution of the title compound was placed in a diethyl ether atmosphere, after several days, along with diffusion of diethyl ether into the DMF solution of the title compound, colorless block-shaped single crystals suitable for X-ray crystallographic analysis were obtained.
Non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.97 (CH2), or 0.93 Å (CH), N—H = 0.86 Å, and Uiso(H) = 1.2Ueq(C) and 1.5Ueq(N).
Data collection: SMART (Siemens, 1996); cell
SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Version 5.1; Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Version 5.1; Sheldrick, 2008).C20H22N4O2S2 | F(000) = 436 |
Mr = 414.54 | Dx = 1.380 Mg m−3 |
Monoclinic, P21/c | Melting point = 469–471 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 6.0405 (11) Å | Cell parameters from 1545 reflections |
b = 23.358 (2) Å | θ = 2.9–27.5° |
c = 7.2877 (13) Å | µ = 0.29 mm−1 |
β = 104.018 (2)° | T = 298 K |
V = 997.6 (3) Å3 | Block, colourless |
Z = 2 | 0.22 × 0.16 × 0.07 mm |
Bruker SMART CCD area-detector diffractometer | 1735 independent reflections |
Radiation source: fine-focus sealed tube | 1044 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.058 |
ϕ and ω scans | θmax = 25.0°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −7→7 |
Tmin = 0.939, Tmax = 0.980 | k = −27→21 |
4845 measured reflections | l = −8→7 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.056 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0375P)2 + 0.093P] where P = (Fo2 + 2Fc2)/3 |
1735 reflections | (Δ/σ)max < 0.001 |
127 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
C20H22N4O2S2 | V = 997.6 (3) Å3 |
Mr = 414.54 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 6.0405 (11) Å | µ = 0.29 mm−1 |
b = 23.358 (2) Å | T = 298 K |
c = 7.2877 (13) Å | 0.22 × 0.16 × 0.07 mm |
β = 104.018 (2)° |
Bruker SMART CCD area-detector diffractometer | 1735 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1044 reflections with I > 2σ(I) |
Tmin = 0.939, Tmax = 0.980 | Rint = 0.058 |
4845 measured reflections |
R[F2 > 2σ(F2)] = 0.056 | 0 restraints |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.23 e Å−3 |
1735 reflections | Δρmin = −0.21 e Å−3 |
127 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.6333 (4) | 0.33193 (10) | 0.2464 (3) | 0.0436 (7) | |
H1 | 0.4996 | 0.3174 | 0.2342 | 0.052* | |
N2 | 0.8393 (4) | 0.41571 (9) | 0.2530 (3) | 0.0378 (6) | |
H2 | 0.9588 | 0.3944 | 0.2747 | 0.045* | |
O1 | 1.0080 (4) | 0.30751 (8) | 0.3060 (3) | 0.0556 (7) | |
S1 | 0.39076 (13) | 0.42652 (4) | 0.19513 (14) | 0.0579 (3) | |
C1 | 0.6387 (5) | 0.39150 (12) | 0.2345 (4) | 0.0367 (7) | |
C2 | 0.8669 (5) | 0.47772 (12) | 0.2383 (4) | 0.0403 (8) | |
H2A | 0.7351 | 0.4931 | 0.1482 | 0.048* | |
H2B | 1.0004 | 0.4853 | 0.1902 | 0.048* | |
C3 | 0.8930 (4) | 0.50817 (12) | 0.4263 (4) | 0.0415 (8) | |
H3A | 0.8946 | 0.5491 | 0.4051 | 0.050* | |
H3B | 0.7612 | 0.4996 | 0.4755 | 0.050* | |
C4 | 0.8082 (5) | 0.29268 (13) | 0.2746 (4) | 0.0395 (8) | |
C5 | 0.7380 (5) | 0.23119 (12) | 0.2626 (4) | 0.0383 (8) | |
C6 | 0.5157 (6) | 0.21226 (13) | 0.1896 (5) | 0.0530 (9) | |
H6 | 0.3997 | 0.2387 | 0.1462 | 0.064* | |
C7 | 0.4663 (6) | 0.15458 (15) | 0.1811 (5) | 0.0617 (10) | |
H7 | 0.3171 | 0.1425 | 0.1316 | 0.074* | |
C8 | 0.6341 (6) | 0.11496 (14) | 0.2445 (5) | 0.0557 (10) | |
H8 | 0.5993 | 0.0761 | 0.2394 | 0.067* | |
C9 | 0.8531 (6) | 0.13299 (14) | 0.3154 (5) | 0.0555 (9) | |
H9 | 0.9681 | 0.1062 | 0.3581 | 0.067* | |
C10 | 0.9057 (5) | 0.19086 (13) | 0.3241 (4) | 0.0462 (9) | |
H10 | 1.0558 | 0.2026 | 0.3720 | 0.055* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0352 (14) | 0.0346 (15) | 0.060 (2) | −0.0048 (12) | 0.0101 (13) | −0.0022 (13) |
N2 | 0.0309 (14) | 0.0340 (14) | 0.0476 (17) | 0.0051 (11) | 0.0077 (12) | −0.0024 (12) |
O1 | 0.0374 (13) | 0.0408 (13) | 0.0810 (18) | −0.0008 (10) | −0.0005 (12) | 0.0001 (12) |
S1 | 0.0363 (5) | 0.0507 (5) | 0.0883 (8) | 0.0062 (4) | 0.0181 (5) | 0.0070 (5) |
C1 | 0.0325 (17) | 0.0413 (18) | 0.036 (2) | 0.0030 (14) | 0.0078 (14) | 0.0004 (15) |
C2 | 0.0375 (17) | 0.0373 (18) | 0.047 (2) | 0.0039 (14) | 0.0125 (15) | 0.0036 (16) |
C3 | 0.0386 (17) | 0.0299 (17) | 0.055 (2) | 0.0042 (13) | 0.0102 (16) | 0.0017 (16) |
C4 | 0.043 (2) | 0.0399 (19) | 0.033 (2) | 0.0048 (15) | 0.0035 (16) | −0.0001 (15) |
C5 | 0.0455 (19) | 0.0358 (18) | 0.034 (2) | 0.0012 (15) | 0.0108 (16) | −0.0009 (15) |
C6 | 0.047 (2) | 0.042 (2) | 0.065 (3) | 0.0019 (16) | 0.0047 (18) | 0.0009 (19) |
C7 | 0.056 (2) | 0.049 (2) | 0.075 (3) | −0.0142 (18) | 0.007 (2) | −0.005 (2) |
C8 | 0.074 (3) | 0.039 (2) | 0.057 (3) | −0.0035 (19) | 0.021 (2) | 0.0001 (18) |
C9 | 0.071 (3) | 0.043 (2) | 0.054 (3) | 0.0150 (19) | 0.018 (2) | 0.0049 (18) |
C10 | 0.044 (2) | 0.044 (2) | 0.048 (2) | 0.0045 (16) | 0.0070 (17) | −0.0015 (17) |
N1—C4 | 1.376 (3) | C3—H3B | 0.9700 |
N1—C1 | 1.395 (3) | C4—C5 | 1.494 (4) |
N1—H1 | 0.8600 | C5—C10 | 1.376 (4) |
N2—C1 | 1.314 (3) | C5—C6 | 1.391 (4) |
N2—C2 | 1.465 (3) | C6—C7 | 1.378 (4) |
N2—H2 | 0.8600 | C6—H6 | 0.9300 |
O1—C4 | 1.223 (3) | C7—C8 | 1.368 (4) |
S1—C1 | 1.669 (3) | C7—H7 | 0.9300 |
C2—C3 | 1.518 (4) | C8—C9 | 1.365 (4) |
C2—H2A | 0.9700 | C8—H8 | 0.9300 |
C2—H2B | 0.9700 | C9—C10 | 1.387 (4) |
C3—C3i | 1.516 (5) | C9—H9 | 0.9300 |
C3—H3A | 0.9700 | C10—H10 | 0.9300 |
C4—N1—C1 | 130.2 (2) | O1—C4—N1 | 121.8 (3) |
C4—N1—H1 | 114.9 | O1—C4—C5 | 122.4 (3) |
C1—N1—H1 | 114.9 | N1—C4—C5 | 115.8 (3) |
C1—N2—C2 | 122.4 (2) | C10—C5—C6 | 118.2 (3) |
C1—N2—H2 | 118.8 | C10—C5—C4 | 117.6 (3) |
C2—N2—H2 | 118.8 | C6—C5—C4 | 124.2 (3) |
N2—C1—N1 | 117.2 (2) | C7—C6—C5 | 120.4 (3) |
N2—C1—S1 | 125.0 (2) | C7—C6—H6 | 119.8 |
N1—C1—S1 | 117.8 (2) | C5—C6—H6 | 119.8 |
N2—C2—C3 | 112.7 (2) | C8—C7—C6 | 120.8 (3) |
N2—C2—H2A | 109.1 | C8—C7—H7 | 119.6 |
C3—C2—H2A | 109.1 | C6—C7—H7 | 119.6 |
N2—C2—H2B | 109.1 | C9—C8—C7 | 119.3 (3) |
C3—C2—H2B | 109.1 | C9—C8—H8 | 120.3 |
H2A—C2—H2B | 107.8 | C7—C8—H8 | 120.3 |
C3i—C3—C2 | 114.0 (3) | C8—C9—C10 | 120.6 (3) |
C3i—C3—H3A | 108.8 | C8—C9—H9 | 119.7 |
C2—C3—H3A | 108.8 | C10—C9—H9 | 119.7 |
C3i—C3—H3B | 108.8 | C5—C10—C9 | 120.7 (3) |
C2—C3—H3B | 108.8 | C5—C10—H10 | 119.7 |
H3A—C3—H3B | 107.7 | C9—C10—H10 | 119.7 |
C2—N2—C1—N1 | 178.3 (2) | O1—C4—C5—C6 | −166.1 (3) |
C2—N2—C1—S1 | −0.9 (4) | N1—C4—C5—C6 | 13.4 (4) |
C4—N1—C1—N2 | −0.3 (4) | C10—C5—C6—C7 | 0.5 (5) |
C4—N1—C1—S1 | 179.0 (2) | C4—C5—C6—C7 | 179.0 (3) |
C1—N2—C2—C3 | 88.5 (3) | C5—C6—C7—C8 | 0.2 (5) |
N2—C2—C3—C3i | 64.4 (4) | C6—C7—C8—C9 | −0.6 (5) |
C1—N1—C4—O1 | 4.7 (5) | C7—C8—C9—C10 | 0.3 (5) |
C1—N1—C4—C5 | −174.8 (3) | C6—C5—C10—C9 | −0.8 (5) |
O1—C4—C5—C10 | 12.4 (4) | C4—C5—C10—C9 | −179.4 (3) |
N1—C4—C5—C10 | −168.1 (3) | C8—C9—C10—C5 | 0.4 (5) |
Symmetry code: (i) −x+2, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O1 | 0.86 | 2.06 | 2.717 (3) | 133 |
C2—H2A···S1 | 0.97 | 2.68 | 3.060 (3) | 103 |
C2—H2B···S1ii | 0.97 | 2.72 | 3.468 (3) | 134 |
Symmetry code: (ii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C20H22N4O2S2 |
Mr | 414.54 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 6.0405 (11), 23.358 (2), 7.2877 (13) |
β (°) | 104.018 (2) |
V (Å3) | 997.6 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.29 |
Crystal size (mm) | 0.22 × 0.16 × 0.07 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.939, 0.980 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4845, 1735, 1044 |
Rint | 0.058 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.056, 0.106, 1.02 |
No. of reflections | 1735 |
No. of parameters | 127 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.23, −0.21 |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Version 5.1; Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O1 | 0.8600 | 2.0600 | 2.717 (3) | 133.00 |
C2—H2A···S1 | 0.9700 | 2.6800 | 3.060 (3) | 103.00 |
C2—H2B···S1i | 0.9700 | 2.7200 | 3.468 (3) | 134.00 |
Symmetry code: (i) x+1, y, z. |
Acknowledgements
This work was supported by the Foundation of the Education Department of Gansu Province (grant No. 0604-01) and the Qing Lan Talent Engineering Fund of Lanzhou Jiaotong University (grant No. QL-03-01A), which are gratefully acknowledged.
References
Breuzard, J. A. J., Tommasino, M. L. & Toucard, F. (2000). J. Mol. Catal. A Chem. 156, 223–232. Web of Science CrossRef CAS Google Scholar
Burrows, A. D., Menzer, S. & Michael, D. (1997). J. Chem. Soc. Dalton Trans. pp. 4237–4240. CSD CrossRef Web of Science Google Scholar
Dong, W.-K., Yang, X.-Q. & Feng, J.-H. (2006). Acta Cryst. E62, o3459–o3460. Web of Science CSD CrossRef IUCr Journals Google Scholar
Foss, O., Husebye, S. & Törnroos, K. (2004). Polyhedron, 23, 3021–3032. Web of Science CSD CrossRef CAS Google Scholar
Huang, J., Song, J.-R. & Ren, Y.-H. (2006). Chin. J. Struct. Chem. 25, 168–172. CAS Google Scholar
Nan, Y., Miao, H. & Yang, Z. (2000). Org. Lett. 2, 297–299. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Teoh, S.-G., Ang, S.-H. & Fun, H.-K. (1999). J. Organomet. Chem. 580, 17–21. Web of Science CSD CrossRef CAS Google Scholar
Valdés-Martínez, J., Hernández-Ortega, S., Rubio, M., Li, D. T., Swearingen, J. K., Kaminsky, W., Kelman, D. R. & West, D. X. (2004). J. Chem. Crystallogr. 34, 533–540. Google Scholar
Zhang, Y.-M., Xu, W.-X. & Zhou, Y.-Q. (2006). Acta Chim. Sin. 64, 79–84. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Acylthioureas have been the subject of extensive investigation because of their biological activity and their ability to coordinate strongly with metal ions (Teoh et al., 1999; Huang et al., 2006; Foss et al., 2004). Some thioureas are organic catalysts in the metal-catalyzed asymmetric reduction of carbonyl compounds and carbonylative cyclization of o-hydroxyarylacetylenes (Nan et al., 2000; Breuzard et al., 2000). In recent years, thiourea derivatives have been studied because they are excellent H bonding donors and acceptors (Zhang et al., 2006; Valdés-Martínez et al., 2004), and readily form an intramolecular hydrogen bonding between the benzoyl (CO) and the N—H group (Dong et al., 2006). They also easily form intermolecular hydrogen bonds, which can be applied in the design and synthesis of three-dimension supramolecular structure (Burrows et al., 1997). Here we report synthesis and crystal structure of N, N'-(1, 4-tetramethylene)bisbenzoylthiourea (I), C20H22N4O2S2.
The crystal structure of (I) consists of discrete molecules. The carbonyl group forms an intramolecular hydrogen bond with the N2—H2 group, which forms a six-membered ring (C4/N1/C1/N2/H2/O1) structure, the H2···O1 bond length is 2.055 (3) Å. This is similar to the situation found in the structure of N-benzoyl-N'-(3-pyridyl)thiourea (Dong et al., 2006). There is intermolecular hydrogen bonding between N2—H2 and the C?S group of another molecule, the H2···S1(x + 1, y, z) bond length is 2.906 (3) Å. The C?O bond length of 1.223 (3) Å is longer than the average C?O bond length (1.200 Å), which is due to intramolecular hydrogen bonding. The torsion angles of C2—N2—C1—N1 and C2—N2—C1—S1 are 178.3 (2) and -0.9 (4)°. There are π–π interactions between phenyl groups in the crystal lattice.