organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 4-(butyrylamino)-5-methyl-2-nitro­benzoate

aDepartment of Applied Chemistry, College of Sciences, Nanjing University of Technolgy, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: yuan0304ls@eyou.com

(Received 3 December 2007; accepted 27 February 2008; online 29 March 2008)

The title compound, C13H16N2O5, is useful as an inter­mediate in the field of agrochemicals. Intra­molecular C—H⋯O hydrogen bonds result in the formation of one six- and one five-membered nearly planar ring; the six-membered ring is also nearly coplanar with the adjacent benzene ring. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules.

Related literature

For related literature, see: Ries et al. (1993[Ries, U. J., Mihm, G., Narr, B., Hasselbach, K. M., Wittneben, H., Entzeroth, M., van Meel, J. C. A., Wolfgang Wienen, W. & Hauel, N. H. (1993). J. Med. Chem. 36, 4040-4051.]); Engeli et al. (2000[Engeli, S., Negrel, R. & Sharma, A. M. (2000). Hypertension, 35, 1270-1277.]); Kintscher et al. (2004[Kintscher, U., Lyon, C. J. & Law, R. E. (2004). Front. Biosci. 9, 359-369.]); Goossens et al. (2003[Goossens, G. H., Blaak, E. E. & van Baak, M. A. (2003). Obes. Rev. 4, 43-55.]); Boustany et al. (2004[Boustany, C. M., Bharadwaj, K., Daugherty, A., Brown, D. R., Randall, D. C. & Cassis, L. A. (2004). Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R943-R949.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H16N2O5

  • Mr = 280.28

  • Triclinic, [P \overline 1]

  • a = 7.6370 (15) Å

  • b = 8.7880 (18) Å

  • c = 11.329 (2) Å

  • α = 81.06 (3)°

  • β = 78.48 (3)°

  • γ = 68.39 (3)°

  • V = 689.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 294 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.959, Tmax = 0.980

  • 2919 measured reflections

  • 2704 independent reflections

  • 1650 reflections with I > 2σ(I)

  • Rint = 0.032

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.161

  • S = 1.01

  • 2704 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯O1 0.93 2.20 2.809 (3) 122
C9—H9A⋯O4 0.93 2.41 2.734 (3) 100
C13—H13A⋯O1i 0.96 2.33 3.284 (4) 174
Symmetry code: (i) x, y, z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (I), is useful as an intermediate and agrochemicals. It is important as an intermediate for the preparation of telmisartan (Ries et al., 1993), that can be used as a therapeutic tool for metabolic syndrome, including visceral obesity (Engeli et al., 2000; Kintscher et al., 2004; Goossens et al., 2003; Boustany et al., 2004). As part of our ongoing studies in this area, we report herein the synthesis and crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen et al., 1987). The intramolecular C—H···O hydrogen bonds (Table 1) result in the formations of one six- and one five-membered nearly planar rings; B (N1/O1/C4—C6/H6A) and C (O4/C8/C9/C12/H9A). Ring A (C5—C10) is, of course, planar and the dihedral angles between them are A/B = 2.01 (3)°, A/C = 6.76 (3)° and B/C = 8.73 (2)°. So, rings A and B are also nearly co-planar.

In the crystal structure, intermolecular C—H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they seem to be effective in the stabilization of the structure.

Related literature top

For related literature, see: Ries et al. (1993); Engeli et al. (2000); Kintscher et al. (2004); Goossens et al. (2003); Boustany et al. (2004). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, methyl 4-amino-3-methylbenzoate (8.25 g, 50 mmol) was acylated with butyryl chloride (50 mmol, 5.3 ml) in chlorobenzene at 373 K. The resulting amide was reacted with fuming nitric acid in sulfuric acid (60%) at 273 K. The reaction mixture was poured into ice-water. The residue was filtered and recrystallized from methylene chloride to give the title compound, (I), (yield; 10.8 g, 77%). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms were positioned geometrically, with N—H = 0.86 Å (for NH) and C—H = 0.93, 0.97 and 0.96 Å for aromatic, methine and methyl H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: X-CAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
Methyl 4-(butyrylamino)-5-methyl-2-nitrobenzoate top
Crystal data top
C13H16N2O5Z = 2
Mr = 280.28F(000) = 296
Triclinic, P1Dx = 1.349 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6370 (15) ÅCell parameters from 25 reflections
b = 8.7880 (18) Åθ = 9–14°
c = 11.329 (2) ŵ = 0.11 mm1
α = 81.06 (3)°T = 294 K
β = 78.48 (3)°Block, colorless
γ = 68.39 (3)°0.30 × 0.20 × 0.10 mm
V = 689.9 (3) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
1650 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 26.0°, θmin = 1.8°
ω/2θ scansh = 99
Absorption correction: ψ scan
(North et al., 1968)
k = 1010
Tmin = 0.959, Tmax = 0.980l = 013
2919 measured reflections3 standard reflections every 120 min
2704 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.06P)2 + 0.4P]
where P = (Fo2 + 2Fc2)/3
2704 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C13H16N2O5γ = 68.39 (3)°
Mr = 280.28V = 689.9 (3) Å3
Triclinic, P1Z = 2
a = 7.6370 (15) ÅMo Kα radiation
b = 8.7880 (18) ŵ = 0.11 mm1
c = 11.329 (2) ÅT = 294 K
α = 81.06 (3)°0.30 × 0.20 × 0.10 mm
β = 78.48 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1650 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.032
Tmin = 0.959, Tmax = 0.9803 standard reflections every 120 min
2919 measured reflections intensity decay: none
2704 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.01Δρmax = 0.20 e Å3
2704 reflectionsΔρmin = 0.18 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2769 (4)0.1219 (3)0.0125 (2)0.0492 (6)
H1A0.30130.22420.01190.059*
O10.2083 (4)0.0590 (3)0.1748 (2)0.0845 (9)
C10.2766 (5)0.3253 (4)0.3938 (3)0.0681 (10)
H1B0.26070.29090.47690.102*
H1C0.18230.37270.35510.102*
H1D0.40160.40560.39010.102*
N20.1750 (4)0.4161 (3)0.1056 (2)0.0454 (6)
O20.0124 (3)0.5069 (2)0.1365 (2)0.0693 (7)
C20.2531 (5)0.1773 (4)0.3296 (3)0.0520 (8)
H2A0.34590.12780.37060.062*
H2B0.12700.09620.33410.062*
O30.3005 (3)0.4618 (3)0.0453 (2)0.0634 (7)
C30.2792 (4)0.2244 (3)0.1980 (2)0.0454 (7)
H3A0.18930.27760.15820.054*
H3B0.40660.30340.19410.054*
O40.2265 (3)0.1922 (2)0.46212 (17)0.0595 (6)
C40.2510 (4)0.0805 (3)0.1302 (2)0.0445 (7)
O50.2355 (3)0.4105 (2)0.33631 (17)0.0585 (6)
C50.2695 (4)0.0219 (3)0.0744 (2)0.0397 (6)
C60.2311 (4)0.1466 (3)0.0483 (2)0.0383 (6)
H6A0.21220.19620.02910.046*
C70.2217 (4)0.2382 (3)0.1391 (2)0.0356 (6)
C80.2483 (4)0.1712 (3)0.2565 (2)0.0394 (6)
C90.2896 (4)0.0022 (3)0.2777 (2)0.0461 (7)
H9A0.31060.04740.35480.055*
C100.3010 (4)0.0948 (3)0.1907 (2)0.0456 (7)
C110.3466 (7)0.2777 (4)0.2205 (3)0.0822 (13)
H11A0.36530.30650.30350.123*
H11B0.46070.33580.16910.123*
H11C0.24280.30690.20790.123*
C120.2353 (4)0.2736 (3)0.3534 (2)0.0402 (6)
C130.2136 (6)0.2797 (4)0.5634 (3)0.0723 (11)
H13A0.20950.20930.63700.108*
H13B0.09990.37540.56740.108*
H13C0.32300.31250.55310.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0804 (19)0.0346 (12)0.0354 (12)0.0212 (12)0.0131 (12)0.0035 (9)
O10.165 (3)0.0436 (13)0.0494 (13)0.0360 (15)0.0326 (15)0.0018 (10)
C10.090 (3)0.072 (2)0.0495 (19)0.032 (2)0.0078 (18)0.0197 (16)
N20.0652 (17)0.0380 (13)0.0380 (13)0.0210 (13)0.0154 (12)0.0009 (10)
O20.0695 (16)0.0383 (12)0.0819 (17)0.0019 (11)0.0134 (13)0.0029 (11)
C20.059 (2)0.0473 (16)0.0487 (17)0.0144 (14)0.0101 (15)0.0114 (13)
O30.0922 (18)0.0483 (12)0.0568 (13)0.0405 (12)0.0019 (12)0.0022 (10)
C30.0543 (18)0.0422 (15)0.0443 (16)0.0216 (13)0.0042 (13)0.0099 (12)
O40.1073 (18)0.0430 (11)0.0345 (11)0.0323 (11)0.0149 (11)0.0013 (9)
C40.0537 (18)0.0375 (15)0.0423 (16)0.0169 (13)0.0060 (13)0.0029 (12)
O50.1011 (18)0.0393 (11)0.0447 (12)0.0343 (11)0.0136 (11)0.0036 (9)
C50.0521 (17)0.0328 (13)0.0365 (14)0.0161 (12)0.0063 (12)0.0072 (11)
C60.0496 (17)0.0333 (13)0.0312 (13)0.0133 (12)0.0063 (12)0.0035 (10)
C70.0435 (16)0.0272 (12)0.0377 (14)0.0140 (11)0.0081 (12)0.0007 (10)
C80.0469 (17)0.0336 (13)0.0402 (15)0.0168 (12)0.0065 (12)0.0036 (11)
C90.071 (2)0.0356 (14)0.0319 (14)0.0193 (14)0.0096 (13)0.0002 (11)
C100.070 (2)0.0306 (13)0.0362 (14)0.0193 (13)0.0060 (13)0.0003 (11)
C110.164 (4)0.0358 (16)0.0499 (19)0.035 (2)0.026 (2)0.0017 (14)
C120.0459 (17)0.0356 (14)0.0384 (15)0.0138 (12)0.0063 (12)0.0028 (11)
C130.129 (3)0.0519 (19)0.0386 (18)0.032 (2)0.0169 (19)0.0070 (14)
Geometric parameters (Å, º) top
N1—C41.361 (3)O4—C131.446 (3)
N1—C51.398 (3)O5—C121.190 (3)
N1—H1A0.8600C5—C61.394 (3)
O1—C41.202 (3)C5—C101.399 (4)
C1—C21.524 (4)C6—C71.377 (3)
C1—H1B0.9600C6—H6A0.9300
C1—H1C0.9600C7—C81.391 (3)
C1—H1D0.9600C8—C91.391 (4)
N2—O31.218 (3)C8—C121.490 (4)
N2—O21.218 (3)C9—C101.370 (4)
N2—C71.474 (3)C9—H9A0.9300
C2—C31.516 (4)C10—C111.512 (4)
C2—H2A0.9700C11—H11A0.9600
C2—H2B0.9700C11—H11B0.9600
C3—C41.507 (4)C11—H11C0.9600
C3—H3A0.9700C13—H13A0.9600
C3—H3B0.9700C13—H13B0.9600
O4—C121.327 (3)C13—H13C0.9600
C4—N1—C5129.3 (2)C7—C6—C5118.9 (2)
C4—N1—H1A115.4C7—C6—H6A120.6
C5—N1—H1A115.4C5—C6—H6A120.6
C2—C1—H1B109.5C6—C7—C8123.3 (2)
C2—C1—H1C109.5C6—C7—N2115.7 (2)
H1B—C1—H1C109.5C8—C7—N2121.0 (2)
C2—C1—H1D109.5C7—C8—C9115.8 (2)
H1B—C1—H1D109.5C7—C8—C12122.1 (2)
H1C—C1—H1D109.5C9—C8—C12122.1 (2)
O3—N2—O2124.3 (2)C10—C9—C8123.4 (3)
O3—N2—C7117.5 (2)C10—C9—H9A118.3
O2—N2—C7118.1 (2)C8—C9—H9A118.3
C3—C2—C1112.0 (3)C9—C10—C5119.0 (2)
C3—C2—H2A109.2C9—C10—C11120.3 (2)
C1—C2—H2A109.2C5—C10—C11120.7 (2)
C3—C2—H2B109.2C10—C11—H11A109.5
C1—C2—H2B109.2C10—C11—H11B109.5
H2A—C2—H2B107.9H11A—C11—H11B109.5
C4—C3—C2113.6 (2)C10—C11—H11C109.5
C4—C3—H3A108.8H11A—C11—H11C109.5
C2—C3—H3A108.8H11B—C11—H11C109.5
C4—C3—H3B108.8O5—C12—O4123.6 (2)
C2—C3—H3B108.8O5—C12—C8124.7 (2)
H3A—C3—H3B107.7O4—C12—C8111.7 (2)
C12—O4—C13116.5 (2)O4—C13—H13A109.5
O1—C4—N1122.4 (3)O4—C13—H13B109.5
O1—C4—C3123.6 (3)H13A—C13—H13B109.5
N1—C4—C3114.0 (2)O4—C13—H13C109.5
C6—C5—N1122.0 (2)H13A—C13—H13C109.5
C6—C5—C10119.7 (2)H13B—C13—H13C109.5
N1—C5—C10118.3 (2)
C1—C2—C3—C4178.2 (3)C6—C7—C8—C12179.3 (3)
C5—N1—C4—O13.1 (5)N2—C7—C8—C121.3 (4)
C5—N1—C4—C3177.3 (3)C7—C8—C9—C101.1 (4)
C2—C3—C4—O11.4 (4)C12—C8—C9—C10179.5 (3)
C2—C3—C4—N1179.1 (3)C8—C9—C10—C50.1 (5)
C4—N1—C5—C60.1 (5)C8—C9—C10—C11180.0 (3)
C4—N1—C5—C10179.8 (3)C6—C5—C10—C91.3 (4)
N1—C5—C6—C7178.5 (3)N1—C5—C10—C9178.4 (3)
C10—C5—C6—C71.2 (4)C6—C5—C10—C11178.8 (3)
C5—C6—C7—C80.1 (4)N1—C5—C10—C111.5 (4)
C5—C6—C7—N2178.3 (2)C13—O4—C12—O51.0 (4)
O3—N2—C7—C675.9 (3)C13—O4—C12—C8179.9 (3)
O2—N2—C7—C6101.7 (3)C7—C8—C12—O513.9 (4)
O3—N2—C7—C8105.9 (3)C9—C8—C12—O5165.5 (3)
O2—N2—C7—C876.5 (3)C7—C8—C12—O4167.1 (3)
C6—C7—C8—C91.2 (4)C9—C8—C12—O413.5 (4)
N2—C7—C8—C9179.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O10.932.202.809 (3)122
C9—H9A···O40.932.412.734 (3)100
C13—H13A···O1i0.962.333.284 (4)174
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC13H16N2O5
Mr280.28
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)7.6370 (15), 8.7880 (18), 11.329 (2)
α, β, γ (°)81.06 (3), 78.48 (3), 68.39 (3)
V3)689.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.959, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
2919, 2704, 1650
Rint0.032
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.161, 1.01
No. of reflections2704
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.18

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), X-CAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O10.932.2002.809 (3)122.00
C9—H9A···O40.932.4102.734 (3)100.00
C13—H13A···O1i0.962.3303.284 (4)174.00
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBoustany, C. M., Bharadwaj, K., Daugherty, A., Brown, D. R., Randall, D. C. & Cassis, L. A. (2004). Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R943–R949.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEngeli, S., Negrel, R. & Sharma, A. M. (2000). Hypertension, 35, 1270–1277.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGoossens, G. H., Blaak, E. E. & van Baak, M. A. (2003). Obes. Rev. 4, 43–55.  CrossRef PubMed CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKintscher, U., Lyon, C. J. & Law, R. E. (2004). Front. Biosci. 9, 359–369.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRies, U. J., Mihm, G., Narr, B., Hasselbach, K. M., Wittneben, H., Entzeroth, M., van Meel, J. C. A., Wolfgang Wienen, W. & Hauel, N. H. (1993). J. Med. Chem. 36, 4040–4051.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds