metal-organic compounds
trans-Diaquabis(ethylenediamine-κ2N,N′)copper(II) bis[3-(3-pyridyl)propionate] dihydrate
aDepartment of Inorganic Chemistry, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovakia, and bInorganic Chemistry, Royal Institute of Technology, 100 44 Stockholm, Sweden
*Correspondence e-mail: jan.moncol@stuba.sk
The 2H8N2)2(H2O)2](C8H8NO2)2·2H2O, contains one anion, one half-cation and one water molecule. The CuII atom in the [Cu(en)2(H2O)2]2+ cation (en is ethylenediamine) lies on an inversion centre. The four N atoms of the en ligands in the equatorial plane around the CuII atom form a slightly distorted square-planar arrangement, while the slightly distorted Jahn–Teller octahedral coordination is completed by two water O atoms in axial positions. In the intra- and intermolecular N—H⋯O and O—H⋯O hydrogen bonds form a three-dimensional network.
of the title complex, [Cu(CRelated literature
For general background, see: Hathaway & Hodgson (1973); Bernstein et al. (1995); Janiak (2000); Jeffrey (1997). For similar structures, see: Jašková et al. (2007); Miminoshvili et al. (2005); Carballo et al. (2005); Segla et al. (2000); Liu et al. (2004); Sharma et al. (2005); Anacona et al. (2002); Emsley et al. (1988, 1990); Li et al. (2005); Gonzalez-Alvarez et al. (2003); Lee et al. (2005); Mahadevan et al. (1986); Kovbasyuk et al. (1997); Harrison et al. (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: KappaCCD Software (Nonius, 1997); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: enCIFer (Allen et al., 2004).
Supporting information
10.1107/S1600536808005400/hk2427sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808005400/hk2427Isup2.hkl
The violet [Cu(en)2(H2O)2](3-pypr)2.2H2O was formed in a methanolic solution of [Cu(3-pypr)2(H2O)2] (1.25 mmol) by adding ethylenediamine in the molar ratio of 1:2. The resulting solution was left to slowly evaporate at room temperature. In isolating the complex, it was necessary to add acetone to the concentrated solution. Well shaped violet crystals, suitable for X-ray structure analysis were collected after a few hours by filtration and finally dried in vacuo (yield; 90%). Anal. Calc. for C20H40N6O8; C, 43.20; H, 7.25; N, 15.11; Cu, 11.43. Found: C, 43.45; H, 7.47; N, 15.30; Cu, 11.21%. Selected IR data (cm-1): 1592 versus,br (νa(COO-) + ν(C?N)); 1392 versus (νs(COO-)); 605 s (δ(py), pyridine ring in-plane bending); 405 m (γ(py), pyridine ring out-of-plane bending). Electronic data (cm-1): 18 400 br.
H atoms were positioned geometrically, with O—H = 0.84 Å (for H2O), N—H = 0.92 Å (for NH2) and C—H = 0.95 and 0.99 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N,O), where x = 0.92 for O2W H and x = 1.2 for other H atoms.
Data collection: KappaCCD Software (Nonius, 1997); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: enCIFer (Allen et al., 2004).Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. | |
Fig. 2. Part of the crystal structure of (I), showing the formation of R21(4), R12(6), R24(8) and R22(8) motifs [symmetry codes: (i) x + 1, y, z; (ii) -x, -y + 1, -z + 1]. | |
Fig. 3. A packing diagram of (I), showing hydrogen bonds and π-π stacking interactions, as dashed lines [symmetry codes: (iii) x + 1, y, z - 1; (iv) -x, -y + 2, -z + 1]. |
[Cu(C2H8N2)2(H2O)2](C8H8NO2)2·2H2O | Z = 1 |
Mr = 556.13 | F(000) = 295 |
Triclinic, P1 | Dx = 1.411 Mg m−3 |
Hall symbol: -P 1 | Ag Kα radiation, λ = 0.56085 Å |
a = 6.2620 (1) Å | Cell parameters from 2489 reflections |
b = 8.5660 (2) Å | θ = 3.3–21.4° |
c = 13.3550 (4) Å | µ = 0.47 mm−1 |
α = 75.271 (1)° | T = 153 K |
β = 83.809 (1)° | Prism, violet |
γ = 70.863 (1)° | 0.45 × 0.25 × 0.20 mm |
V = 654.30 (3) Å3 |
Bruker–Nonius KappaCCD diffractometer | 2989 independent reflections |
Radiation source: fine-focus sealed tube | 2644 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.079 |
ω and ϕ scans | θmax = 21.4°, θmin = 3.3° |
Absorption correction: numerical (HABITUS; Herrendorf & Bärnighausen, 1997) | h = −8→8 |
Tmin = 0.808, Tmax = 0.915 | k = −11→11 |
15039 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.086 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0215P)2 + 0.3896P] where P = (Fo2 + 2Fc2)/3 |
2989 reflections | (Δ/σ)max < 0.001 |
160 parameters | Δρmax = 0.38 e Å−3 |
0 restraints | Δρmin = −0.31 e Å−3 |
[Cu(C2H8N2)2(H2O)2](C8H8NO2)2·2H2O | γ = 70.863 (1)° |
Mr = 556.13 | V = 654.30 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 6.2620 (1) Å | Ag Kα radiation, λ = 0.56085 Å |
b = 8.5660 (2) Å | µ = 0.47 mm−1 |
c = 13.3550 (4) Å | T = 153 K |
α = 75.271 (1)° | 0.45 × 0.25 × 0.20 mm |
β = 83.809 (1)° |
Bruker–Nonius KappaCCD diffractometer | 2989 independent reflections |
Absorption correction: numerical (HABITUS; Herrendorf & Bärnighausen, 1997) | 2644 reflections with I > 2σ(I) |
Tmin = 0.808, Tmax = 0.915 | Rint = 0.079 |
15039 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.086 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.38 e Å−3 |
2989 reflections | Δρmin = −0.31 e Å−3 |
160 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) 2.3086 (0.0059) x + 8.2273 (0.0023) y - 0.2376 (0.0130) z = 6.3254 (0.0154) * 0.0032 (0.0016) N3 * -0.0044 (0.0016) C6 * 0.0010 (0.0017) C7 * -0.0039 (0.0017) C8 * 0.0003 (0.0018) C9 * 0.0038 (0.0017) C10 3.3255 (0.0028) N3_$6 3.3331 (0.0028) C6_$6 3.3277 (0.0030) C7_$6 3.3326 (0.0031) C8_$6 3.3285 (0.0029) C9_$6 3.3249 (0.0030) C10_$6 Rms deviation of fitted atoms = 0.0032 |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu | 0.5000 | 0.5000 | 0.5000 | 0.02500 (12) | |
N1 | 0.5413 (3) | 0.7274 (2) | 0.48893 (14) | 0.0328 (4) | |
H1A | 0.6147 | 0.7242 | 0.5459 | 0.039* | |
H1B | 0.6270 | 0.7540 | 0.4306 | 0.039* | |
N2 | 0.1813 (3) | 0.6372 (2) | 0.45504 (14) | 0.0307 (4) | |
H2A | 0.1410 | 0.5969 | 0.4047 | 0.037* | |
H2B | 0.0813 | 0.6297 | 0.5104 | 0.037* | |
N3 | −0.0294 (4) | 0.8099 (3) | 1.12361 (17) | 0.0520 (6) | |
O1 | −0.0720 (3) | 0.6040 (3) | 0.66095 (13) | 0.0493 (5) | |
O2 | −0.4121 (3) | 0.7310 (2) | 0.71927 (15) | 0.0518 (5) | |
O1W | 0.3984 (3) | 0.4843 (2) | 0.68797 (15) | 0.0515 (5) | |
H1W | 0.4422 | 0.5531 | 0.7088 | 0.063* | |
H2W | 0.2570 | 0.5084 | 0.6916 | 0.063* | |
O2W | 0.6770 (4) | 0.9227 (3) | 0.29173 (16) | 0.0682 (6) | |
H3W | 0.7363 | 0.8948 | 0.2368 | 0.063* | |
H4W | 0.6086 | 1.0274 | 0.2809 | 0.063* | |
C1 | 0.1767 (4) | 0.8158 (3) | 0.41381 (19) | 0.0399 (5) | |
H1C | 0.0192 | 0.8928 | 0.4130 | 0.048* | |
H1D | 0.2402 | 0.8312 | 0.3421 | 0.048* | |
C2 | 0.3163 (4) | 0.8558 (3) | 0.4831 (2) | 0.0399 (5) | |
H2C | 0.3294 | 0.9709 | 0.4542 | 0.048* | |
H2D | 0.2442 | 0.8520 | 0.5530 | 0.048* | |
C3 | −0.2033 (4) | 0.6638 (3) | 0.72904 (17) | 0.0339 (5) | |
C4 | −0.1063 (4) | 0.6478 (3) | 0.83208 (19) | 0.0418 (5) | |
H4A | −0.2050 | 0.6083 | 0.8890 | 0.050* | |
H4B | 0.0448 | 0.5608 | 0.8387 | 0.050* | |
C5 | −0.0846 (6) | 0.8114 (3) | 0.8436 (2) | 0.0575 (8) | |
H5A | −0.2360 | 0.8978 | 0.8392 | 0.069* | |
H5B | 0.0113 | 0.8527 | 0.7860 | 0.069* | |
C6 | 0.0179 (4) | 0.7906 (3) | 0.94565 (19) | 0.0389 (5) | |
C7 | −0.1118 (4) | 0.8301 (3) | 1.0313 (2) | 0.0458 (6) | |
H7 | −0.2711 | 0.8749 | 1.0242 | 0.055* | |
C8 | 0.1937 (5) | 0.7467 (3) | 1.1312 (2) | 0.0507 (7) | |
H8 | 0.2567 | 0.7298 | 1.1962 | 0.061* | |
C9 | 0.3376 (4) | 0.7045 (3) | 1.0513 (2) | 0.0460 (6) | |
H9 | 0.4963 | 0.6603 | 1.0606 | 0.055* | |
C10 | 0.2489 (4) | 0.7271 (3) | 0.95738 (19) | 0.0417 (5) | |
H10 | 0.3462 | 0.6992 | 0.9005 | 0.050* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu | 0.02142 (18) | 0.02502 (19) | 0.0296 (2) | −0.00597 (13) | −0.00336 (13) | −0.00873 (14) |
N1 | 0.0370 (10) | 0.0319 (10) | 0.0332 (10) | −0.0132 (8) | −0.0058 (8) | −0.0086 (8) |
N2 | 0.0266 (8) | 0.0378 (10) | 0.0292 (9) | −0.0082 (7) | −0.0023 (7) | −0.0121 (8) |
N3 | 0.0777 (16) | 0.0397 (12) | 0.0397 (13) | −0.0190 (11) | 0.0090 (11) | −0.0145 (10) |
O1 | 0.0421 (9) | 0.0819 (14) | 0.0342 (9) | −0.0235 (9) | 0.0035 (7) | −0.0280 (9) |
O2 | 0.0401 (9) | 0.0620 (12) | 0.0555 (12) | −0.0036 (8) | −0.0106 (8) | −0.0300 (9) |
O1W | 0.0399 (9) | 0.0668 (12) | 0.0526 (11) | −0.0158 (8) | 0.0015 (8) | −0.0243 (9) |
O2W | 0.0781 (14) | 0.0525 (12) | 0.0540 (13) | −0.0063 (10) | 0.0207 (11) | −0.0053 (10) |
C1 | 0.0364 (12) | 0.0340 (12) | 0.0404 (13) | 0.0026 (9) | −0.0085 (10) | −0.0078 (10) |
C2 | 0.0478 (13) | 0.0284 (11) | 0.0425 (14) | −0.0068 (10) | −0.0010 (10) | −0.0129 (10) |
C3 | 0.0380 (12) | 0.0386 (12) | 0.0311 (12) | −0.0163 (9) | −0.0034 (9) | −0.0119 (9) |
C4 | 0.0532 (14) | 0.0418 (13) | 0.0336 (13) | −0.0141 (11) | −0.0079 (10) | −0.0126 (10) |
C5 | 0.089 (2) | 0.0386 (14) | 0.0508 (17) | −0.0225 (14) | −0.0349 (15) | −0.0035 (12) |
C6 | 0.0540 (14) | 0.0294 (11) | 0.0378 (13) | −0.0159 (10) | −0.0144 (11) | −0.0068 (10) |
C7 | 0.0436 (13) | 0.0338 (12) | 0.0636 (18) | −0.0142 (10) | −0.0036 (12) | −0.0137 (12) |
C8 | 0.083 (2) | 0.0384 (14) | 0.0338 (14) | −0.0169 (13) | −0.0209 (13) | −0.0078 (11) |
C9 | 0.0479 (14) | 0.0426 (14) | 0.0516 (16) | −0.0146 (11) | −0.0149 (12) | −0.0121 (12) |
C10 | 0.0519 (14) | 0.0419 (13) | 0.0353 (13) | −0.0169 (11) | −0.0005 (10) | −0.0132 (10) |
Cu—O1Wi | 2.503 (2) | C1—C2 | 1.506 (3) |
Cu—O1W | 2.503 (2) | C1—H1C | 0.9900 |
Cu—N1i | 2.015 (2) | C1—H1D | 0.9900 |
Cu—N1 | 2.015 (2) | C2—H2C | 0.9900 |
Cu—N2i | 2.022 (2) | C2—H2D | 0.9900 |
Cu—N2 | 2.022 (2) | C3—C4 | 1.521 (3) |
O1—C3 | 1.251 (3) | C4—C5 | 1.498 (3) |
O2—C3 | 1.250 (3) | C4—H4A | 0.9900 |
O1W—H1W | 0.84 | C4—H4B | 0.9900 |
O1W—H2W | 0.84 | C5—C6 | 1.513 (3) |
O2W—H3W | 0.84 | C5—H5A | 0.9900 |
O2W—H4W | 0.84 | C5—H5B | 0.9900 |
N1—C2 | 1.472 (3) | C6—C7 | 1.378 (4) |
N1—H1A | 0.9200 | C6—C10 | 1.379 (3) |
N1—H1B | 0.9200 | C7—H7 | 0.9500 |
N2—C1 | 1.480 (3) | C8—C9 | 1.363 (4) |
N2—H2A | 0.9200 | C8—H8 | 0.9500 |
N2—H2B | 0.9200 | C9—C10 | 1.370 (3) |
N3—C8 | 1.327 (4) | C9—H9 | 0.9500 |
N3—C7 | 1.337 (4) | C10—H10 | 0.9500 |
O1Wi—Cu—O1W | 180.0 | H1C—C1—H1D | 108.5 |
N1i—Cu—O1Wi | 88.72 (7) | N1—C2—C1 | 107.48 (18) |
N1—Cu—O1Wi | 91.28 (7) | N1—C2—H2C | 110.2 |
N2i—Cu—O1Wi | 93.19 (6) | C1—C2—H2C | 110.2 |
N2—Cu—O1Wi | 86.81 (6) | N1—C2—H2D | 110.2 |
N1i—Cu—O1W | 91.28 (7) | C1—C2—H2D | 110.2 |
N1—Cu—O1W | 88.72 (7) | H2C—C2—H2D | 108.5 |
N2i—Cu—O1W | 86.81 (6) | O2—C3—O1 | 124.1 (2) |
N2—Cu—O1W | 93.19 (6) | O2—C3—C4 | 117.4 (2) |
N1i—Cu—N1 | 180.00 (11) | O1—C3—C4 | 118.4 (2) |
N1i—Cu—N2i | 84.91 (7) | C5—C4—C3 | 113.0 (2) |
N1—Cu—N2i | 95.09 (7) | C5—C4—H4A | 109.0 |
N1i—Cu—N2 | 95.09 (7) | C3—C4—H4A | 109.0 |
N1—Cu—N2 | 84.91 (7) | C5—C4—H4B | 109.0 |
N2i—Cu—N2 | 180.0 | C3—C4—H4B | 109.0 |
C2—N1—Cu | 108.14 (13) | H4A—C4—H4B | 107.8 |
C2—N1—H1A | 110.1 | C4—C5—C6 | 111.8 (2) |
Cu—N1—H1A | 110.1 | C4—C5—H5A | 109.2 |
C2—N1—H1B | 110.1 | C6—C5—H5A | 109.2 |
Cu—N1—H1B | 110.1 | C4—C5—H5B | 109.2 |
H1A—N1—H1B | 108.4 | C6—C5—H5B | 109.2 |
C1—N2—Cu | 107.44 (13) | H5A—C5—H5B | 107.9 |
C1—N2—H2A | 110.2 | C7—C6—C10 | 116.7 (2) |
Cu—N2—H2A | 110.2 | C7—C6—C5 | 122.5 (2) |
C1—N2—H2B | 110.2 | C10—C6—C5 | 120.8 (2) |
Cu—N2—H2B | 110.2 | N3—C7—C6 | 124.6 (2) |
H2A—N2—H2B | 108.5 | N3—C7—H7 | 117.7 |
C8—N3—C7 | 116.3 (2) | C6—C7—H7 | 117.7 |
Cu—O1W—H1W | 110.3 | N3—C8—C9 | 123.8 (2) |
Cu—O1W—H2W | 104.9 | N3—C8—H8 | 118.1 |
H1W—O1W—H2W | 111.9 | C9—C8—H8 | 118.1 |
H3W—O2W—H4W | 111.2 | C8—C9—C10 | 118.7 (2) |
N2—C1—C2 | 107.81 (18) | C8—C9—H9 | 120.7 |
N2—C1—H1C | 110.1 | C10—C9—H9 | 120.7 |
C2—C1—H1C | 110.1 | C9—C10—C6 | 119.8 (2) |
N2—C1—H1D | 110.1 | C9—C10—H10 | 120.1 |
C2—C1—H1D | 110.1 | C6—C10—H10 | 120.1 |
N2i—Cu—N1—C2 | −165.34 (14) | O1—C3—C4—C5 | 104.8 (3) |
N2—Cu—N1—C2 | 14.66 (14) | C3—C4—C5—C6 | −178.5 (2) |
O1Wi—Cu—N1—C2 | 101.34 (14) | C4—C5—C6—C7 | −96.9 (3) |
O1W—Cu—N1—C2 | −78.66 (14) | C4—C5—C6—C10 | 81.8 (3) |
N1i—Cu—N2—C1 | −165.31 (14) | C8—N3—C7—C6 | −0.2 (4) |
N1—Cu—N2—C1 | 14.70 (14) | C10—C6—C7—N3 | −0.5 (4) |
O1Wi—Cu—N2—C1 | −76.88 (14) | C5—C6—C7—N3 | 178.2 (2) |
O1W—Cu—N2—C1 | 103.12 (14) | C7—N3—C8—C9 | 0.7 (4) |
Cu—N2—C1—C2 | −40.8 (2) | N3—C8—C9—C10 | −0.4 (4) |
Cu—N1—C2—C1 | −40.7 (2) | C8—C9—C10—C6 | −0.4 (4) |
N2—C1—C2—N1 | 54.5 (2) | C7—C6—C10—C9 | 0.8 (3) |
O2—C3—C4—C5 | −77.7 (3) | C5—C6—C10—C9 | −178.0 (2) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2ii | 0.92 | 2.32 | 3.130 (3) | 147 |
N1—H1A···O1ii | 0.92 | 2.41 | 3.247 (2) | 152 |
N1—H1B···O2W | 0.92 | 2.11 | 2.944 (3) | 151 |
N2—H2A···O1iii | 0.92 | 2.29 | 3.150 (3) | 155 |
N2—H2B···O1 | 0.92 | 2.12 | 3.019 (2) | 164 |
O1W—H1W···O2ii | 0.84 | 2.06 | 2.873 (3) | 164 |
O1W—H2W···O1 | 0.84 | 2.00 | 2.814 (2) | 164 |
O2W—H3W···N3iv | 0.84 | 2.08 | 2.899 (3) | 163 |
O2W—H4W···O2v | 0.84 | 2.03 | 2.859 (3) | 169 |
Symmetry codes: (ii) x+1, y, z; (iii) −x, −y+1, −z+1; (iv) x+1, y, z−1; (v) −x, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C2H8N2)2(H2O)2](C8H8NO2)2·2H2O |
Mr | 556.13 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 153 |
a, b, c (Å) | 6.2620 (1), 8.5660 (2), 13.3550 (4) |
α, β, γ (°) | 75.271 (1), 83.809 (1), 70.863 (1) |
V (Å3) | 654.30 (3) |
Z | 1 |
Radiation type | Ag Kα, λ = 0.56085 Å |
µ (mm−1) | 0.47 |
Crystal size (mm) | 0.45 × 0.25 × 0.20 |
Data collection | |
Diffractometer | Bruker–Nonius KappaCCD diffractometer |
Absorption correction | Numerical (HABITUS; Herrendorf & Bärnighausen, 1997) |
Tmin, Tmax | 0.808, 0.915 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15039, 2989, 2644 |
Rint | 0.079 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.086, 1.07 |
No. of reflections | 2989 |
No. of parameters | 160 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.38, −0.31 |
Computer programs: KappaCCD Software (Nonius, 1997), SCALEPACK (Otwinowski & Minor, 1997), SCALEPACK and DENZO (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), enCIFer (Allen et al., 2004).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2i | 0.92 | 2.32 | 3.130 (3) | 147.0 |
N1—H1A···O1i | 0.92 | 2.41 | 3.247 (2) | 151.9 |
N1—H1B···O2W | 0.92 | 2.11 | 2.944 (3) | 150.9 |
N2—H2A···O1ii | 0.92 | 2.29 | 3.150 (3) | 155.0 |
N2—H2B···O1 | 0.92 | 2.12 | 3.019 (2) | 164.4 |
O1W—H1W···O2i | 0.84 | 2.06 | 2.873 (3) | 164.2 |
O1W—H2W···O1 | 0.84 | 2.00 | 2.814 (2) | 164.1 |
O2W—H3W···N3iii | 0.84 | 2.08 | 2.899 (3) | 163.0 |
O2W—H4W···O2iv | 0.84 | 2.03 | 2.859 (3) | 169.0 |
Symmetry codes: (i) x+1, y, z; (ii) −x, −y+1, −z+1; (iii) x+1, y, z−1; (iv) −x, −y+2, −z+1. |
X2 | Cu–N1 | Cu–N2 | Cu–OW | Ta | N1–Cu–N2 |
(3-pypr)2.2H2O | 2.015 (2) | 2.022 (2) | 2.503 (2) | 0.81 | 84.91 (7) |
(2,6-(MeO)2nic)2b | 2.018 (2) | 2.020 (2) | 2.467 (2) | 0.82 | 83.96 (8) |
(4-O2Nbz)2c | 2.015 (2) | 2.027 (2) | 2.537 (2) | 0.80 | 84.92 (7) |
(2-NH2bz)2d | 2.012 (4) | 2.020 (5) | 2.503 (4) | 0.81 | 84.52 (9) |
(benz)2e | 2.009 (4) | 2.017 (4) | 2.653 (5) | 0.76 | 84.8 (2) |
(isonic)2f | 2.021 (2) | 2.018 (2) | 2.598 (2) | 0.78 | 84.98 (6) |
(4-Fbz)2g | 2.018 (4) | 2.021 (4) | 2.579 (4) | 0.78 | 85.0 (2) |
(naphs)2h | 2.020 (2) | 2.018 (2) | 2.513 (1) | 0.80 | 84.63 (7) |
(stz)2.2H2Oi | 2.042 (3) | 2.033 (3) | 2.484 (3) | 0.82 | 84.1 (1) |
F2.4H2Oj | 2.019 (5) | 2.023 (5) | 2.571 (6) | 0.78 | 84.6 (2) |
(NH2naphs)2.2H2Ok | 2.023 (2) | 2.012 (2) | 2.437 (2) | 0.83 | 84.30 (9) |
(Clbtts)2l | 2.019 (4) | 2.049 (3) | 2.416 (3) | 0.84 | 84.2 (2) |
(Cl-Fbz)2m | 2.009 (2) | 2.016 (2) | 2.618 (1) | 0.77 | 84.30 (6) |
(BPh4)2.2DMSOn | 2.022 (10) | 2.055 (8) | 2.693 (9) | 0.76 | 84.9 (4) |
(edcarb).2H2Oo | 1.996 (2) | 2.022 (2) | 2.556 (2) | 0.79 | 84.78 (7) |
(a) The value of the T parameter (T = RS/RL), indicating the degree of tetragonal distortion about the CuII atom (Hathaway & Hodgson, 1973); (b) Jašková et al. (2007) [2,6-(MeO)2nic is 2,6-dimethoxynicotinate]; (c) Harrison et al. (2007) [4-O2Nbz is 4-nitrobenzoate]; (d) Miminoshvili et al. (2005) [2-NH2bzc is 2-aminobenzoate]; (e) Carballo et al. (2005) [benz is benzilate]; (f) Segla et al. (2000) [isonic is isonicotinate]; (g) Liu et al. (2004) [4-Fbz is 4-fluorobenzoate]; (h) Sharma et al. (2005) [naphs is naphthalene-2-sulfonate]; (i) Anacona et al. (2002) [stz is sulfathiazole]; (j) Emsley et al. (1988; 1990); (k) Li et al. (2005) [NH2naphs is 4-aminonaphthalene-1-sulfonate]; (l) Gonzalez-Alvarez et al. (2003) [Clbtts is N-2-(6-chlorobenzothiazole)toluenesulfonamide]; (m) Lee et al. (2005); (n) Mahadevan et al. (1986); (o) Kovbasyuk et al. (1997) [edcarb is ethylene-1,2-dicarbonate]. |
Acknowledgements
We thank the Scientific Grant Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences (grant Nos. 1/4454/07 and 1/0353/08).
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Anacona, J. R., Ramos, N. & de Delgado, G. D. (2002). J. Coord. Chem. 55, 901–908. Web of Science CSD CrossRef CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Carballo, R., Covelo, B., Garcia-Matinez, E. & Vazquez-Lopez, E. M. (2005). Appl. Organomet. Chem. 19, 394–395. Web of Science CrossRef CAS Google Scholar
Emsley, J., Arif, M., Bates, P. A. & Hursthouse, M. B. (1988). Chem. Commun. pp. 1387–1388. CrossRef Google Scholar
Emsley, J., Arif, M., Bates, P. A. & Hursthouse, M. B. (1990). J. Mol. Struct. 220, 1–12. CSD CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gonzalez-Alvarez, M., Alzuet, G., Borras, J., Macias, B., Montejo-Bernardo, J. M. & Garcia-Granda, S. (2003). Z. Anorg. Allg. Chem. 629, 239–243. Web of Science CSD CrossRef CAS Google Scholar
Harrison, W. T. A., Slawin, A. M. Z., Sharma, R. P., Sharma, B. & Bhama, S. (2007). Acta Cryst. E63, m178–m180. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hathaway, B. J. & Hodgson, P. G. (1973). J. Inorg. Nucl. Chem. 35, 4071–4081. CrossRef Web of Science Google Scholar
Herrendorf, W. & Bärnighausen, H. (1997). HABITUS. Universities of Giessen and Karlsruhe, Germany. Google Scholar
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896. Web of Science CrossRef Google Scholar
Jašková, J., Mikloš, D., Korabik, M., Jorík, V., Segla, P., Kaliňáková, B., Hudecová, D., Švorec, J., Fischer, A., Mrozinski, J., Lis, T. & Melník, M. (2007). Inorg. Chim. Acta, 360, 2711–2720. Google Scholar
Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press. Google Scholar
Kovbasyuk, L. A., Fritsky, I. O., Kokozay, V. N. & Iskenderov, T. S. (1997). Polyhedron, 16, 1723–1729. CSD CrossRef CAS Web of Science Google Scholar
Lee, J.-C., Takahashi, H. & Matsui, Y. (2005). Z. Kristallogr. New Cryst. Struct. 220, 491–492. CAS Google Scholar
Li, M.-T., Wang, C.-G., Wu, Y. & Fu, X.-C. (2005). Acta Cryst. E61, m1660–m1661. Web of Science CSD CrossRef IUCr Journals Google Scholar
Liu, Z.-D., Tan, M.-Y. & Zhu, H.-L. (2004). Acta Cryst. E60, m1081–m1083. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mahadevan, C., Rout, G. C., Seshasayee, M. & Sastry, S. (1986). J. Crystallogr. Spectrosc. Res. 16, 799–805. CSD CrossRef CAS Web of Science Google Scholar
Miminoshvili, K. E., Sobolev, A. N., Miminoshvili, E. B., Beridze, L. A. & Kutelia, E. R. (2005). J. Struct. Chem. 46, 560–565. Web of Science CrossRef CAS Google Scholar
Nonius (1997). Kappa-CCD Server Software. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Segla, P., Palicová, M., Koman, M., Mikloš, D. & Melník, M. (2000). Inorg. Chem. Commun. 3, 120–125. CAS Google Scholar
Sharma, R. P., Sharma, R., Bala, R., Rychlewska, U. & Warzajtis, B. (2005). J. Mol. Struct. 738, 291–298. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
It is well known that copper(II) complexes having ethylenediamine (en) ligands show flexible coordination environment and adopt semi-coordation with tetragonal distortion. As part of our efforts to investigate metal(II) complexes based on pyridyl-carboxylic acids, we report herein the crystal structure of the title compound, (I).
The asymmetric unit of (I), (Fig. 1), contains one anion, one half-cation and one water molecule. The CuII atom in the centrosymmetric [Cu(en)2(H2O)2]2+ cation lies on the inversion centre. The four N atoms of the ethylenediamine ligands in the equatorial plane around the CuII atom form a slightly distorted square-planar arrangement, while the slightly distorted Jahn-Teller octahedral coordination is completed by the two O atoms of water molecules in the axial positions (Table 1 and Fig. 1).
The Cu—N1 [2.015 (2) Å] and Cu—N2 [2.022 (2) Å] bond lengths and N1—Cu—N2 [84.91 (7)°] bond angle agree with those found in other [Cu(en)2(H2O)2]2+ complexes (Table 1). The Cu—O1W [2.503 (2) Å] bond is much longer than Cu—N bonds, as a result of the Jahn-Teller distortion. The Cu—OW bonds in other [Cu(en)2(H2O)2]2+ complexes are in the range of 2.416 (3)–2.693 (9) Å (Table 1). The value of the T parameter (Hathaway & Hodgson, 1973), which indicates the degree of tetragonal distortion about the CuII atom, is 0.81 and it agrees with the reported values, in the range of 0.76–0.84, for other [Cu(en)2(H2O)2]2+ complexes (Table 1).
In the crystal structure, the [Cu(en)2(H2O)2]2+ coordination cations and 3-(3-pyridyl)propionate anions are linked by O—H···O and N—H···O hydrogen-bonds (Table 2, Fig. 2) in parallel to the a axis. The amine H atom is linked to both carboxylate O atoms of 3-(3-pyridyl)propionate by three-centered/bifurcated N—H···O hydrogen-bonds (Jeffrey, 1997) and both of them form the R12(4) ring motif (Bernstein et al., 1995). The similar R12(4) ring motifs with sulfonate or carboxylate groups are reported in[Cu(en)2(H2O)2](4-amino- naphthalene-1-sulfonate)2.2 H2O (Li et al., 2005)and [Cu(en)2(H2O)2]- (N-carboxyglycinate).H2O (Kovbasyuk et al., 1997).
The O—H···O hydrogen bonds between the coordinated water molecules and the carboxylate O atoms of 3-(3-pyridyl)propionate anions and N—H···O hydrogen bonds of amine H atoms form the R21(6) and R22(8) ring motifs (Bernstein et al., 1995). These ring motifs are also reported for other [Cu(en)2(H2O)2]X2 complexes, while only the R22(8) ring motifs are present in [Cu(en)2(H2O)2]X2 complexes, [where X = 4-chlorobenzoate (Lee et al., 2005); X = 4-fluorobenzoate (Liu et al., 2004), X = isonicotinate (Segla et al., 2000) and X = 4-nitrobenzoate (Harrison et al., 2007)]. On the other hand, the R21(6) ring motifs are reported for [Cu(en)2(H2O)2]X2 complexes, [where X = naphthalene-2-sulfonate (Sharma et al., 2005) and X = 2,6-dimethoxynicotinate (Jašková et al., 2007)]. To the best of our knowledge, only [Cu(en)2(H2O)2](2-aminobenzoate)2 complex (Miminoshvili et al., 2005), exhibits both R21(6) and R22(8) ring motifs, in the crystal structure.
The additional N—H···O hydrogen bonds form further R21(6) ring motifs. Finally, two [Cu(en)2(H2O)2]2+ cations and two 3-(3-pyridyl)propionate anions are joined through R42(8) ring motifs to form a layer parallel to the a axis. The layers of [Cu(en)2(H2O)2]2+ cations and 3-(3-pyridyl)- propionate anions are linked to form a three-dimensional network through uncoordinated water molecules by O—H···O and O—H···N hydrogen-bonds (Fig. 3).
The additional interactions between the 3-(3-pyridyl)propionate anions of (I) are the π-π stacking interactions (Janiak, 2000) between the two adjacent pyridine rings, (N3/C6—C10), with the centroid to centroid distances of Cg···Cgv = 3.66 Å [symmetry code: (v) -x,-y + 2,-z + 2]. The distance between parallel planes of the stacked pyridine rings is 3.33 Å.