organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-{2-[(5-Chloro-2-hy­droxy­benzyl­­idene)amino]eth­yl}benzene­sulfonamide

aDepartment of Chemistry, Bahauddin Zakariya University, Multan-60800, Pakistan, bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan, and cGovernment College University, Department of Chemistry, Lahore, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 17 February 2008; accepted 22 February 2008; online 20 March 2008)

In the mol­ecule of the title compound, C15H15ClN2O3S, the S atom adopts a distorted tetra­hedral coordination geometry with two O atoms, one N atom of the amide group and one C atom of the aromatic ring. An intra­molecular O—H⋯N hydrogen bond results in the formation of a planar six-membered ring, which is oriented with respect to the adjacent aromatic ring at a dihedral angle of 3.38 (11)°. Thus, the two rings are nearly coplanar. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers.

Related literature

For general background, see: Supuran & Scozzafava (2001[Supuran, C. T. & Scozzafava, A. (2001). Curr. Med. Chem.-Imm. Endoc. Metab. Agents, 1, 61-97.]); Chohan & Shad (2007[Chohan, Z. H. & Shad, H. A. (2007). J. Enz. Inhib. Med. Chem. http://dx.doi.org/10.1080/14756360701585692 .]). For related literature, see: Chohan et al. (2008[Chohan, Z. H., Tahir, M. N., Shad, H. A. & Khan, I. U. (2008). Acta Cryst. E64, o648.]); Shad et al. (2008[Shad, H. A., Chohan, Z. H., Tahir, M. N. & Khan, I. U. (2008). Acta Cryst. E64, o635.]); Tahir et al. (2008[Tahir, M. N., Chohan, Z. H., Shad, H. A. & Khan, I. U. (2008). Acta Cryst. E64, o720.]); Li (2006[Li, X. (2006). Acta Cryst. E62, o3019-o3020.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15ClN2O3S

  • Mr = 338.80

  • Monoclinic, C 2/c

  • a = 21.069 (2) Å

  • b = 4.8125 (6) Å

  • c = 30.838 (3) Å

  • β = 99.942 (9)°

  • V = 3079.9 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 296 (2) K

  • 0.22 × 0.18 × 0.14 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.920, Tmax = 0.940

  • 16002 measured reflections

  • 4067 independent reflections

  • 1851 reflections with I > 3σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.185

  • S = 1.02

  • 4067 reflections

  • 206 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Selected geometric parameters (Å, °)

S1—O2 1.430 (2)
S1—O3 1.423 (3)
S1—N2 1.616 (3)
S1—C13 1.752 (3)
O2—S1—O3 118.15 (14)
O2—S1—N2 105.67 (16)
O2—S1—C13 109.21 (15)
O3—S1—N2 108.20 (17)
O3—S1—C13 108.29 (15)
N2—S1—C13 106.76 (15)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.83 2.554 (4) 147.00
N2—H2⋯O2i 0.77 (4) 2.30 (4) 3.016 (4) 156 (4)
Symmetry code: (i) [-x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 (Version 1.27) and SAINT (Version 7.12a). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007[Bruker (2007). APEX2 (Version 1.27) and SAINT (Version 7.12a). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The significance of sulfonamide was realised when sulfanilamide was first time reported as antibacterial drug. Later on, many sulfanilamide derivatives were synthesized, characterized and tested for antibacterial, anti-tumour, anti-carbonic anhydrase (Supuran & Scozzafava 2001), diuretic, hypoglycemic, anti-thyroid or protease inhibitory activity. Thus, sulfanilamide is performing a leading role for the development and expansion of all other types of medicinally important sulfonamides (Chohan & Shad, 2007).

The title compound, (I), is a reaction product of 5-chlorosalicylaldehyde and 4-(2-aminoethyl)benzenesulfonamide. The 4-(2-aminoethyl)benzenesulfonamide moiety is present in 4-[2-(3-ethyl-4-methyl-2-oxo-3-pyrrolidine-1-carboxamido)- ethyl]benzenesulfonamide (Li, 2006) and 5-chlorosalicylaldehyde exists in 4-[(5-chloro-2-hydroxybenzylidene)amino]-N-(3,4-dimethylisoxazol-5-yl)benzene- sulfonamide (Chohan et al., 2008). In continuation of synthesizing Schiff base ligands of substituted halogen salicylaldehydes and various sulfonamides (Chohan et al., 2008; Shad et al., 2008; Tahir et al., 2008), we report herein the crystal structure of the title compound, (I).

In the molecule of (I), S1 atom has a distorted tetrahedral coordination completed by the two O atoms, one N atom of amide group and one C atom of the adjacent aromatic ring B (C10—C15) (Table 1, Fig. 1). The two aromatic rings A (C1—C6) and B are connected by C=N—C—C group in a zigzag way, in which they are oriented at a dihedral angle of A/B = 23.95 (18)°. The intramolecular O—H···N hydrogen bond (Table 2) results in the formation of a planar six-membered ring C (O1/H1/N1/C7/C1/C2), which is oriented with respect to the aromatic rings at dihedral angles of A/C = 3.38 (11)° and B/C = 22.33 (13)°. So, rings A and C are also nearly coplanar.

In (I), C7—N1 [1.278 (5) Å] bond has double bond character. The C2=O1 [1.343 (5) Å] bond is a little longer than the corresponding value [1.328 (4) Å], as reported by Chohan et al. (2008). All other bonds in 5-chlorosalicylaldehyde moiety remain nearly same. The bond angles around S1 atom of sulfonamide group are a little smaller, having the range of 106.76 (15)° - 118.15 (14)°, compared to the values, in the range of 105.91 (13)°-119.68 (12)°, as reported by Li (2006).

In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 2) link the molecules into centrosymmetric dimers (Fig. 2), in which they seem to be effective in the stabilization of the structure.

Related literature top

For general background, see: Supuran & Scozzafava (2001); Chohan & Shad (2007). For related literature, see: Chohan et al. (2008); Shad et al. (2008); Tahir et al. (2008); Li (2006).

Experimental top

For the preparation of the title compound, an ethanol solution (15 ml) of 4-(2-aminoethyl)benzenesulfonamide (400.5 mg, 2 mmol) was added to an ethanol solution (10 ml) of 5-chlorosalicylaldehyde (313.1 mg, 2 mmol). The reaction mixture was refluxed for 3 h. The colour of the solution gradually changed from colorless to greenish yellow. The solution was cooled to room temperature, filtered and the volume was reduced to about one-third on the rotary evaporator. It was allowed to stand for 10 d, bright yellow crystals of the title compound were obtained (m.p. 441 K).

Refinement top

H atoms (for NH2) were located in a difference synthesis and refined isotropically [N—H = 0.77 (4) and 0.78 (4) Å; Uiso(H) = 0.0767 and 0.0613 Å2]. The remaining H atoms were positioned geometrically, with O—H = 0.82 Å (for OH) and C—H = 0.93 and 0.97 Å for aromatic and methylene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,O), where x = 1.5 for OH H and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
4-{2-[(5-Chloro-2-hydroxybenzylidene)amino]ethyl}benzenesulfonamide top
Crystal data top
C15H15ClN2O3SF(000) = 1408
Mr = 338.80Dx = 1.461 Mg m3
Monoclinic, C2/cMelting point: 497 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 21.069 (2) ÅCell parameters from 2163 reflections
b = 4.8125 (6) Åθ = 1.3–29.2°
c = 30.838 (3) ŵ = 0.40 mm1
β = 99.942 (9)°T = 296 K
V = 3079.9 (6) Å3Prismatic, yellow
Z = 80.22 × 0.18 × 0.14 mm
Data collection top
Bruker KappaAPEXII CCD
diffractometer
4067 independent reflections
Radiation source: fine-focus sealed tube1851 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.060
Detector resolution: 7.40 pixels mm-1θmax = 29.2°, θmin = 1.3°
ω scansh = 2828
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 65
Tmin = 0.920, Tmax = 0.940l = 4142
16002 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.185H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0.0962P)2]
where P = (Fo2 + 2Fc2)/3
4067 reflections(Δ/σ)max < 0.001
206 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C15H15ClN2O3SV = 3079.9 (6) Å3
Mr = 338.80Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.069 (2) ŵ = 0.40 mm1
b = 4.8125 (6) ÅT = 296 K
c = 30.838 (3) Å0.22 × 0.18 × 0.14 mm
β = 99.942 (9)°
Data collection top
Bruker KappaAPEXII CCD
diffractometer
4067 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1851 reflections with I > 3σ(I)
Tmin = 0.920, Tmax = 0.940Rint = 0.060
16002 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.185H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.36 e Å3
4067 reflectionsΔρmin = 0.28 e Å3
206 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.32293 (6)0.3434 (3)0.35291 (5)0.1046 (5)
S10.14925 (4)0.84474 (16)0.01326 (3)0.0411 (3)
O10.07158 (14)0.1064 (6)0.27525 (10)0.0724 (11)
O20.19990 (11)1.0016 (4)0.00047 (8)0.0535 (9)
O30.10664 (12)0.9849 (5)0.03704 (8)0.0604 (9)
N10.06373 (16)0.2662 (6)0.21557 (9)0.0566 (10)
N20.18450 (17)0.5984 (6)0.04399 (11)0.0510 (11)
C10.15618 (18)0.2192 (8)0.27152 (11)0.0494 (11)
C20.12970 (19)0.0013 (8)0.29194 (12)0.0526 (11)
C30.1641 (2)0.1103 (9)0.33014 (13)0.0687 (16)
C40.2227 (2)0.0078 (9)0.34865 (13)0.0677 (16)
C50.24889 (19)0.2059 (9)0.32861 (14)0.0663 (14)
C60.2167 (2)0.3195 (9)0.29034 (13)0.0655 (14)
C70.1197 (2)0.3508 (8)0.23331 (12)0.0590 (12)
C80.0272 (2)0.4227 (8)0.17939 (12)0.0622 (14)
C90.0102 (2)0.2436 (8)0.13928 (12)0.0653 (14)
C100.02942 (19)0.3998 (7)0.10209 (11)0.0501 (11)
C110.09656 (19)0.3851 (7)0.09454 (12)0.0556 (12)
C120.13287 (17)0.5259 (7)0.06036 (11)0.0504 (11)
C130.10314 (14)0.6854 (6)0.03276 (10)0.0355 (9)
C140.03664 (16)0.7064 (8)0.03996 (12)0.0538 (11)
C150.00076 (18)0.5662 (9)0.07457 (13)0.0625 (13)
H10.054450.009640.254630.1087*
H20.212 (2)0.526 (9)0.0349 (15)0.0767*
H2A0.160 (2)0.495 (9)0.0511 (14)0.0613*
H30.146780.258110.343660.0825*
H40.244680.082760.374770.0812*
H60.235280.464030.276900.0786*
H70.137390.502800.221100.0710*
H8A0.052520.580260.172610.0746*
H8B0.011900.493180.188000.0746*
H9A0.049450.178190.130170.0782*
H9B0.013700.082660.146420.0782*
H110.117060.277610.113060.0667*
H120.177580.513680.055830.0607*
H140.016350.814930.021470.0647*
H150.043860.583890.079560.0747*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0648 (7)0.1294 (11)0.1019 (10)0.0029 (8)0.0357 (7)0.0252 (8)
S10.0365 (4)0.0370 (4)0.0461 (5)0.0006 (4)0.0030 (3)0.0111 (4)
O10.0634 (17)0.076 (2)0.0685 (19)0.0105 (16)0.0151 (14)0.0163 (14)
O20.0434 (14)0.0394 (12)0.0741 (18)0.0078 (11)0.0002 (13)0.0034 (12)
O30.0485 (14)0.0685 (15)0.0621 (16)0.0062 (14)0.0036 (13)0.0313 (13)
N10.0563 (18)0.0628 (18)0.0439 (17)0.0072 (17)0.0104 (15)0.0043 (14)
N20.054 (2)0.0502 (19)0.0440 (18)0.0025 (15)0.0054 (15)0.0014 (14)
C10.0497 (19)0.058 (2)0.0367 (18)0.0091 (18)0.0034 (16)0.0007 (16)
C20.057 (2)0.057 (2)0.0391 (19)0.012 (2)0.0050 (17)0.0024 (16)
C30.078 (3)0.069 (3)0.053 (2)0.012 (2)0.006 (2)0.010 (2)
C40.074 (3)0.076 (3)0.044 (2)0.024 (3)0.015 (2)0.002 (2)
C50.051 (2)0.086 (3)0.054 (2)0.015 (2)0.0134 (19)0.023 (2)
C60.057 (2)0.081 (3)0.053 (2)0.003 (2)0.0063 (19)0.001 (2)
C70.061 (2)0.066 (2)0.045 (2)0.001 (2)0.0047 (18)0.0111 (18)
C80.069 (3)0.055 (2)0.055 (2)0.014 (2)0.011 (2)0.0057 (18)
C90.083 (3)0.059 (2)0.045 (2)0.021 (2)0.014 (2)0.0039 (18)
C100.062 (2)0.046 (2)0.0371 (18)0.0077 (19)0.0063 (17)0.0017 (15)
C110.058 (2)0.061 (2)0.045 (2)0.005 (2)0.0013 (18)0.0167 (17)
C120.0418 (19)0.061 (2)0.045 (2)0.0051 (18)0.0017 (16)0.0101 (17)
C130.0348 (15)0.0331 (16)0.0366 (17)0.0014 (14)0.0003 (13)0.0030 (13)
C140.0354 (17)0.070 (2)0.054 (2)0.0030 (19)0.0025 (17)0.0195 (19)
C150.0372 (18)0.088 (3)0.058 (2)0.009 (2)0.0039 (17)0.012 (2)
Geometric parameters (Å, º) top
Cl1—C51.741 (4)C9—C101.499 (5)
S1—O21.430 (2)C10—C151.380 (5)
S1—O31.423 (3)C10—C111.395 (6)
S1—N21.616 (3)C11—C121.370 (5)
S1—C131.752 (3)C12—C131.375 (5)
O1—C21.343 (5)C13—C141.384 (5)
O1—H10.8200C14—C151.374 (5)
N1—C71.278 (5)C3—H30.9300
N1—C81.452 (5)C4—H40.9300
N2—H20.77 (4)C6—H60.9300
N2—H2A0.78 (4)C7—H70.9300
C1—C71.438 (5)C8—H8A0.9700
C1—C21.398 (5)C8—H8B0.9700
C1—C61.393 (6)C9—H9A0.9700
C2—C31.376 (6)C9—H9B0.9700
C3—C41.360 (6)C11—H110.9300
C4—C51.365 (6)C12—H120.9300
C5—C61.369 (6)C14—H140.9300
C8—C91.499 (5)C15—H150.9300
O2—S1—O3118.15 (14)S1—C13—C12119.8 (2)
O2—S1—N2105.67 (16)C12—C13—C14119.9 (3)
O2—S1—C13109.21 (15)S1—C13—C14120.2 (2)
O3—S1—N2108.20 (17)C13—C14—C15119.7 (3)
O3—S1—C13108.29 (15)C10—C15—C14121.5 (4)
N2—S1—C13106.76 (15)C2—C3—H3119.00
C2—O1—H1109.00C4—C3—H3119.00
C7—N1—C8119.4 (3)C3—C4—H4120.00
S1—N2—H2115 (3)C5—C4—H4120.00
S1—N2—H2A112 (3)C1—C6—H6120.00
H2—N2—H2A113 (5)C5—C6—H6120.00
C2—C1—C7120.3 (3)N1—C7—H7119.00
C6—C1—C7120.7 (4)C1—C7—H7119.00
C2—C1—C6118.9 (3)N1—C8—H8A109.00
O1—C2—C1121.4 (3)N1—C8—H8B110.00
O1—C2—C3119.7 (4)C9—C8—H8A109.00
C1—C2—C3118.9 (4)C9—C8—H8B110.00
C2—C3—C4121.8 (4)H8A—C8—H8B108.00
C3—C4—C5119.5 (4)C8—C9—H9A109.00
Cl1—C5—C4119.6 (3)C8—C9—H9B109.00
Cl1—C5—C6119.5 (3)C10—C9—H9A109.00
C4—C5—C6120.8 (4)C10—C9—H9B109.00
C1—C6—C5120.2 (4)H9A—C9—H9B108.00
N1—C7—C1122.3 (4)C10—C11—H11119.00
N1—C8—C9110.8 (3)C12—C11—H11119.00
C8—C9—C10111.4 (3)C11—C12—H12120.00
C9—C10—C15121.1 (4)C13—C12—H12120.00
C11—C10—C15117.8 (3)C13—C14—H14120.00
C9—C10—C11121.1 (3)C15—C14—H14120.00
C10—C11—C12121.3 (3)C10—C15—H15119.00
C11—C12—C13119.9 (3)C14—C15—H15119.00
O2—S1—C13—C1252.8 (3)C2—C3—C4—C51.1 (6)
O2—S1—C13—C14131.0 (3)C3—C4—C5—Cl1178.4 (3)
O3—S1—C13—C12177.3 (3)C3—C4—C5—C60.5 (6)
O3—S1—C13—C141.1 (3)Cl1—C5—C6—C1177.3 (3)
N2—S1—C13—C1261.0 (3)C4—C5—C6—C10.6 (6)
N2—S1—C13—C14115.2 (3)N1—C8—C9—C10178.1 (3)
C8—N1—C7—C1174.7 (3)C8—C9—C10—C1195.0 (4)
C7—N1—C8—C9122.1 (4)C8—C9—C10—C1584.1 (5)
C6—C1—C2—O1180.0 (4)C9—C10—C11—C12179.5 (3)
C6—C1—C2—C30.5 (6)C15—C10—C11—C121.5 (5)
C7—C1—C2—O13.9 (6)C9—C10—C15—C14178.9 (4)
C7—C1—C2—C3175.7 (4)C11—C10—C15—C142.0 (6)
C2—C1—C6—C51.1 (6)C10—C11—C12—C130.0 (5)
C7—C1—C6—C5175.1 (4)C11—C12—C13—S1175.4 (3)
C2—C1—C7—N13.0 (6)C11—C12—C13—C140.9 (5)
C6—C1—C7—N1179.1 (4)S1—C13—C14—C15175.9 (3)
O1—C2—C3—C4179.0 (4)C12—C13—C14—C150.3 (5)
C1—C2—C3—C40.6 (6)C13—C14—C15—C101.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.82001.83002.554 (4)147.00
N2—H2···O2i0.77 (4)2.30 (4)3.016 (4)156 (4)
Symmetry code: (i) x1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC15H15ClN2O3S
Mr338.80
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)21.069 (2), 4.8125 (6), 30.838 (3)
β (°) 99.942 (9)
V3)3079.9 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.22 × 0.18 × 0.14
Data collection
DiffractometerBruker KappaAPEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.920, 0.940
No. of measured, independent and
observed [I > 3σ(I)] reflections
16002, 4067, 1851
Rint0.060
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.185, 1.02
No. of reflections4067
No. of parameters206
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.28

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
S1—O21.430 (2)S1—N21.616 (3)
S1—O31.423 (3)S1—C131.752 (3)
O2—S1—O3118.15 (14)O3—S1—N2108.20 (17)
O2—S1—N2105.67 (16)O3—S1—C13108.29 (15)
O2—S1—C13109.21 (15)N2—S1—C13106.76 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.82001.83002.554 (4)147.00
N2—H2···O2i0.77 (4)2.30 (4)3.016 (4)156 (4)
Symmetry code: (i) x1/2, y+3/2, z.
 

Acknowledgements

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, for funding the purchase of the diffractometer.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 (Version 1.27) and SAINT (Version 7.12a). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChohan, Z. H. & Shad, H. A. (2007). J. Enz. Inhib. Med. Chem. http://dx.doi.org/10.1080/14756360701585692Google Scholar
First citationChohan, Z. H., Tahir, M. N., Shad, H. A. & Khan, I. U. (2008). Acta Cryst. E64, o648.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLi, X. (2006). Acta Cryst. E62, o3019–o3020.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShad, H. A., Chohan, Z. H., Tahir, M. N. & Khan, I. U. (2008). Acta Cryst. E64, o635.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSupuran, C. T. & Scozzafava, A. (2001). Curr. Med. Chem.-Imm. Endoc. Metab. Agents, 1, 61–97.  CrossRef CAS Google Scholar
First citationTahir, M. N., Chohan, Z. H., Shad, H. A. & Khan, I. U. (2008). Acta Cryst. E64, o720.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds