organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-(4-Meth­oxy­phen­yl)-3,3,6,6-tetra­methyl-3,4,6,7-tetra­hydro-2H-xanthene-1,8(5H,9H)-dione

aDepartment of Chemistry, Faculty of Arts & Science, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey, bDepartment of Chemistry, Faculty of Arts & Science, Dumlupınar University, Kütahya, Turkey, cDepartment of Chemistry, Faculty of Arts & Science, Gazi University, Ankara, Turkey, and dDepartment of Physics, Faculty of Arts & Science, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey
*Correspondence e-mail: orhanb@omu.edu.tr

(Received 29 February 2008; accepted 4 March 2008; online 7 March 2008)

In the mol­ecule of the title compound, C24H28O4, the three six-membered rings of the xanthene system are not planar, having envelope, boat and envelope conformations. In the crystal structure, C—H⋯O hydrogen bonds link the mol­ecules, generating centrosymmetric R22(12), R44(28) and R22(16) ring motifs and forming a three-dimensional network.

Related literature

For general background, see: Menchen et al. (2003[Menchen, S. M., Benson, S. C., Lam, J. Y. L., Zhen, W., Sun, D., Rosenblum, B. B., Khan, S. H. & Taing, M. U. S. (2003). Patent US 6 583 168.]); Banerjee & Mukherjee (1981[Banerjee, A. & Mukherjee, A. K. (1981). Stain Technol. 56, 83-85.]); Nogradi (2003[Nogradi, M. (2003). Sci. Synth. 14, 201-273.]); Kamel & Shoeb (1964[Kamel, M. & Shoeb, H. (1964). Tetrahedron, 20, 491-495.]); Hideo (1981[Hideo, T. (1981). Jpn Tokkyo Koho JP 56 005 480.]); Poupelin et al. (1978[Poupelin, J. P., Saint-Rut, G., Foussard-Blanpin, O., Narcisse, G., Uchida- Ernouf, G. & Lacroix, R. (1978). Eur. J. Med. Chem. 13, 67-71.]); Lambert et al. (1997[Lambert, R. W., Martin, J. A., Merrett, J. H., Parkes, K. E. B. & Thomas, G. J. (1997). PCT Int. Appl. WO 9 706 178.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For ring motif details, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]). For related literature, see: Horning & Horning (1946[Horning, E. C. & Horning, M. G. (1946). J. Org. Chem. 11, 95-99.]).

[Scheme 1]

Experimental

Crystal data
  • C24H28O4

  • Mr = 380.46

  • Triclinic, [P \overline 1]

  • a = 9.346 (5) Å

  • b = 10.314 (5) Å

  • c = 11.733 (5) Å

  • α = 71.089 (5)°

  • β = 84.253 (5)°

  • γ = 73.386 (5)°

  • V = 1025.2 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.66 × 0.54 × 0.41 mm

Data collection
  • Stoe IPDSII diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREAand X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.947, Tmax = 0.975

  • 17059 measured reflections

  • 4035 independent reflections

  • 3450 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.108

  • S = 1.04

  • 4035 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O4i 0.97 2.57 3.364 (2) 139
C15—H15C⋯O3ii 0.96 2.58 3.506 (2) 161
C22—H22⋯O1iii 0.93 2.42 3.343 (2) 171
Symmetry codes: (i) x, y-1, z; (ii) -x, -y+1, -z+1; (iii) -x, -y+2, -z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREAand X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREAand X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Xanthenes are an important class of organic compounds that find use as dyes, fluorescent materials for visualization of biomolecules and in laser technologies, due to their useful spectroscopic properties (Menchen et al., 2003; Banerjee & Mukherjee, 1981). Oxidation of these compounds can be converted to the corresponding xanthylium salts, which are also effective as dyes and fluorescent materials (Nogradi, 2003; Kamel & Shoeb, 1964). Xanthenes have also received considerable attention from many pharmaceuticals and organic chemists, actually because of the broad spectrum of their biological and pharmaceutical properties such as agricultural bactericide effects (Hideo, 1981), photodynamic therapy, anti-inflammatory activities (Poupelin et al., 1978) and antiviral effects (Lambert et al., 1997). In view of the importance of the title compound, (I), we report herein its crystal structure.

In the molecule of (I), (Fig. 1), rings A (C1—C6), B (C1/C6/O2/C13/C14/C17) and C (C9—C14) are not planar, having total puckering amplitudes, QT, of 0.463 (3), 0.194 (3) and 0.459 (2) Å, respectively. They adopt envelope [ϕ = -2.43 (2)° and θ = 121.76 (3)°], boat [ϕ = 139.80 (3)° and θ = 88.77 (3)°] and envelope [ϕ = 176.89 (4)° and θ = 56.53 (3)°] conformations (Cremer & Pople, 1975). In rings A and C, atoms C4 and C12 displaced by -0.645 (3) and -0.641 (4) Å from the plane of the other ring atoms, respectively. Ring D (C18—C23) is, of course, planar.

In the crystal structure, intermolecular C—H···O hydrogen bonds (Table 1) link the molecules, generating centrosymmetric R22(12), R44(28) (Fig. 2) and R22(16) (Fig. 3) ring motifs (Bernstein et al., 1995; Etter, 1990), to form a three-dimensional network, in which they may be effective in the stabilization of the structure.

Related literature top

For general background, see: Menchen et al. (2003); Banerjee & Mukherjee (1981); Nogradi (2003); Kamel & Shoeb (1964); Hideo (1981); Poupelin et al. (1978); Lambert et al. (1997). For ring puckering parameters, see: Cremer & Pople (1975). For ring motif details, see: Bernstein et al. (1995); Etter (1990). For related literature, see: Horning & Horning (1946).

Experimental top

The syntheses of 2,2'-[(4-methoxyphenyl)methylene]bis(5,5-dimethylcyclohexane- 1,3-dione), (II), was achieved according to the procedure described in the literature (Horning & Horning, 1946). A mixture of (II) (5 mmol) and acetic acid (20 ml) was refluxed for 2 h. The reaction mixture was concentrated under reduced pressure and poured into crushed ice. The solid obtained was filtered off, dried and crystallized from EtOH-H2O (8:2) (yield: 92%, m.p. 515–517 K).

Refinement top

H atoms were positioned geometrically, with C—H = 0.93, 0.96, 0.97 and 0.98 Å for aromatic, methyl, methylene and methine H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of (I), showing the formation of R22(12) and R44(28) ring motifs. Hydrogen bonds are shown as dashed lines [symmetry codes: (i) x, 2 - y, z; (ii) -x, 1 - y, 1 - z]. H atoms not involved in hydrogen bondings have been omitted for clarity.
[Figure 3] Fig. 3. A packing diagram of (I). Hydrogen bonds are shown as dashed lines [symmetry codes: (i) -x, 1 - y, 1 - z; (ii) x + 1, y, z; (iii) x + 1, y + 1, z; (iv) -x, 2 - y, 1 - z; (v) x, y, z + 1]. H atoms not involved in hydrogen bondings have been omitted for clarity.
9-(4-Methoxyphenyl)-3,3,6,6-tetramethyl-3,4,6,7-tetrahydro-2H-xanthene- 1,8(5H,9H)-dione top
Crystal data top
C24H28O4Z = 2
Mr = 380.46F(000) = 408
Triclinic, P1Dx = 1.232 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.346 (5) ÅCell parameters from 17059 reflections
b = 10.314 (5) Åθ = 1.8–28.0°
c = 11.733 (5) ŵ = 0.08 mm1
α = 71.089 (5)°T = 296 K
β = 84.253 (5)°Prism, colorless
γ = 73.386 (5)°0.66 × 0.54 × 0.41 mm
V = 1025.2 (9) Å3
Data collection top
Stoe IPDSII
diffractometer
4035 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus3450 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.033
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 2.2°
ω–scan rotation methodh = 1111
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1212
Tmin = 0.947, Tmax = 0.975l = 1414
17059 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0512P)2 + 0.165P]
where P = (Fo2 + 2Fc2)/3
4035 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C24H28O4γ = 73.386 (5)°
Mr = 380.46V = 1025.2 (9) Å3
Triclinic, P1Z = 2
a = 9.346 (5) ÅMo Kα radiation
b = 10.314 (5) ŵ = 0.08 mm1
c = 11.733 (5) ÅT = 296 K
α = 71.089 (5)°0.66 × 0.54 × 0.41 mm
β = 84.253 (5)°
Data collection top
Stoe IPDSII
diffractometer
4035 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
3450 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.975Rint = 0.033
17059 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.04Δρmax = 0.16 e Å3
4035 reflectionsΔρmin = 0.17 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.32183 (13)0.81707 (14)0.08171 (10)0.0796 (4)
O20.55478 (9)0.45682 (9)0.26047 (8)0.0459 (2)
O30.03418 (11)0.52647 (13)0.26037 (11)0.0718 (3)
O40.02323 (12)1.09853 (11)0.34873 (10)0.0672 (3)
C10.42493 (13)0.64720 (13)0.09685 (11)0.0431 (3)
C20.43421 (15)0.74638 (14)0.02413 (12)0.0509 (3)
C30.58637 (16)0.75273 (16)0.07685 (12)0.0551 (3)
H3A0.57990.84910.12850.066*
H3B0.61490.69090.12710.066*
C40.70957 (15)0.70997 (14)0.01517 (12)0.0471 (3)
C50.70551 (13)0.56537 (13)0.10549 (12)0.0452 (3)
H5A0.74430.49210.06690.054*
H5B0.76990.54440.17270.054*
C60.55218 (13)0.56175 (12)0.15160 (11)0.0407 (3)
C70.68441 (19)0.82180 (16)0.07936 (15)0.0632 (4)
H7A0.76140.79330.13780.076*
H7B0.58880.83090.11910.076*
H7C0.68720.91160.02150.076*
C80.86223 (17)0.69525 (18)0.04741 (15)0.0649 (4)
H8A0.87820.62520.08820.078*
H8B0.93880.66620.01150.078*
H8C0.86560.78510.10480.078*
C90.28957 (13)0.50728 (13)0.25682 (12)0.0436 (3)
C100.15563 (14)0.46043 (16)0.30671 (13)0.0532 (3)
C110.17414 (17)0.32686 (18)0.41176 (15)0.0659 (4)
H11A0.18440.24770.38130.079*
H11B0.08390.33530.46060.079*
C120.30751 (16)0.29219 (16)0.49231 (13)0.0558 (3)
C130.44636 (15)0.29653 (14)0.41151 (13)0.0516 (3)
H13A0.52850.29210.45830.062*
H13B0.47430.21360.38380.062*
C140.42175 (13)0.42701 (13)0.30557 (11)0.0422 (3)
C150.2821 (2)0.4017 (2)0.55902 (16)0.0745 (5)
H15A0.26860.49500.50170.089*
H15B0.36720.38020.60820.089*
H15C0.19460.39880.60910.089*
C160.3294 (2)0.1439 (2)0.58349 (18)0.0846 (6)
H16A0.41540.12200.63170.102*
H16B0.34380.07510.54160.102*
H16C0.24260.14130.63450.102*
C170.27361 (13)0.64451 (13)0.15483 (12)0.0452 (3)
H170.20640.64700.09470.054*
C180.20586 (13)0.77091 (13)0.20118 (12)0.0443 (3)
C190.27809 (16)0.79386 (16)0.28732 (15)0.0641 (4)
H190.37170.73380.31380.077*
C200.21497 (18)0.90297 (17)0.33441 (15)0.0662 (4)
H200.26590.91630.39200.079*
C210.07566 (15)0.99328 (13)0.29641 (12)0.0486 (3)
C220.00317 (14)0.97443 (13)0.20907 (13)0.0490 (3)
H220.08961.03550.18150.059*
C230.06918 (13)0.86400 (14)0.16245 (12)0.0473 (3)
H230.01970.85230.10310.057*
C240.12136 (18)1.19079 (18)0.31659 (19)0.0738 (5)
H24A0.19321.13630.33660.089*
H24B0.12401.23950.23150.089*
H24C0.14481.25900.35980.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0601 (7)0.0888 (8)0.0657 (7)0.0011 (6)0.0250 (5)0.0010 (6)
O20.0324 (4)0.0461 (5)0.0500 (5)0.0061 (3)0.0027 (3)0.0058 (4)
O30.0375 (5)0.0919 (8)0.0881 (8)0.0172 (5)0.0057 (5)0.0291 (7)
O40.0681 (7)0.0516 (6)0.0810 (7)0.0021 (5)0.0087 (5)0.0331 (5)
C10.0391 (6)0.0435 (6)0.0477 (7)0.0058 (5)0.0068 (5)0.0183 (5)
C20.0514 (7)0.0497 (7)0.0486 (7)0.0032 (6)0.0126 (6)0.0166 (6)
C30.0613 (8)0.0545 (8)0.0429 (7)0.0093 (6)0.0030 (6)0.0111 (6)
C40.0473 (7)0.0454 (7)0.0463 (7)0.0117 (5)0.0010 (5)0.0123 (5)
C50.0368 (6)0.0444 (7)0.0490 (7)0.0054 (5)0.0006 (5)0.0120 (5)
C60.0385 (6)0.0386 (6)0.0441 (6)0.0068 (5)0.0025 (5)0.0141 (5)
C70.0657 (9)0.0573 (9)0.0751 (10)0.0215 (7)0.0006 (7)0.0278 (7)
C80.0572 (9)0.0680 (10)0.0608 (9)0.0195 (7)0.0102 (7)0.0090 (7)
C90.0363 (6)0.0461 (7)0.0539 (7)0.0085 (5)0.0008 (5)0.0248 (6)
C100.0391 (7)0.0654 (8)0.0660 (9)0.0161 (6)0.0009 (6)0.0332 (7)
C110.0534 (9)0.0766 (10)0.0753 (10)0.0318 (8)0.0059 (7)0.0232 (8)
C120.0480 (7)0.0623 (8)0.0571 (8)0.0193 (6)0.0078 (6)0.0171 (7)
C130.0450 (7)0.0470 (7)0.0575 (8)0.0089 (6)0.0049 (6)0.0138 (6)
C140.0357 (6)0.0432 (6)0.0507 (7)0.0095 (5)0.0026 (5)0.0203 (5)
C150.0671 (10)0.0969 (13)0.0628 (10)0.0153 (9)0.0069 (8)0.0372 (9)
C160.0777 (12)0.0837 (12)0.0802 (12)0.0335 (10)0.0134 (9)0.0029 (10)
C170.0341 (6)0.0495 (7)0.0537 (7)0.0034 (5)0.0102 (5)0.0222 (6)
C180.0347 (6)0.0447 (7)0.0520 (7)0.0040 (5)0.0077 (5)0.0168 (5)
C190.0501 (8)0.0606 (9)0.0794 (10)0.0128 (6)0.0310 (7)0.0339 (8)
C200.0646 (9)0.0612 (9)0.0744 (10)0.0057 (7)0.0304 (8)0.0341 (8)
C210.0481 (7)0.0390 (6)0.0544 (7)0.0054 (5)0.0017 (6)0.0140 (5)
C220.0335 (6)0.0427 (7)0.0641 (8)0.0013 (5)0.0076 (5)0.0134 (6)
C230.0358 (6)0.0490 (7)0.0563 (7)0.0060 (5)0.0113 (5)0.0167 (6)
C240.0550 (9)0.0597 (9)0.1074 (14)0.0030 (7)0.0101 (9)0.0406 (9)
Geometric parameters (Å, º) top
C1—C61.3380 (17)C12—C161.527 (2)
C1—C21.4676 (19)C12—C131.531 (2)
C1—C171.5103 (19)C13—C141.4849 (19)
C2—O11.2149 (17)C13—H13A0.9700
C2—C31.503 (2)C13—H13B0.9700
C3—C41.528 (2)C14—O21.3790 (16)
C3—H3A0.9700C15—H15A0.9600
C3—H3B0.9700C15—H15B0.9600
C4—C71.525 (2)C15—H15C0.9600
C4—C81.529 (2)C16—H16A0.9600
C4—C51.5325 (18)C16—H16B0.9600
C5—C61.4866 (18)C16—H16C0.9600
C5—H5A0.9700C17—C181.5214 (17)
C5—H5B0.9700C17—H170.9800
C6—O21.3779 (15)C18—C231.3756 (17)
C7—H7A0.9600C18—C191.3843 (19)
C7—H7B0.9600C19—C201.370 (2)
C7—H7C0.9600C19—H190.9300
C8—H8A0.9600C20—C211.384 (2)
C8—H8B0.9600C20—H200.9300
C8—H8C0.9600C21—O41.3649 (16)
C9—C141.3373 (18)C21—C221.3749 (19)
C9—C101.4693 (19)C22—C231.3826 (19)
C9—C171.5083 (19)C22—H220.9300
C10—O31.2205 (17)C23—H230.9300
C10—C111.501 (2)C24—O41.4170 (19)
C11—C121.529 (2)C24—H24A0.9600
C11—H11A0.9700C24—H24B0.9600
C11—H11B0.9700C24—H24C0.9600
C12—C151.525 (2)
C6—C1—C2118.25 (12)C16—C12—C13109.43 (13)
C6—C1—C17122.42 (12)C11—C12—C13107.83 (13)
C2—C1—C17119.33 (11)C14—C13—C12112.37 (11)
O1—C2—C1120.64 (14)C14—C13—H13A109.1
O1—C2—C3121.08 (13)C12—C13—H13A109.1
C1—C2—C3118.22 (11)C14—C13—H13B109.1
C2—C3—C4115.16 (12)C12—C13—H13B109.1
C2—C3—H3A108.5H13A—C13—H13B107.9
C4—C3—H3A108.5C9—C14—O2122.76 (12)
C2—C3—H3B108.5C9—C14—C13125.86 (12)
C4—C3—H3B108.5O2—C14—C13111.38 (10)
H3A—C3—H3B107.5C12—C15—H15A109.5
C7—C4—C3110.09 (12)C12—C15—H15B109.5
C7—C4—C8109.28 (12)H15A—C15—H15B109.5
C3—C4—C8110.25 (12)C12—C15—H15C109.5
C7—C4—C5110.58 (12)H15A—C15—H15C109.5
C3—C4—C5107.82 (11)H15B—C15—H15C109.5
C8—C4—C5108.82 (11)C12—C16—H16A109.5
C6—C5—C4112.35 (10)C12—C16—H16B109.5
C6—C5—H5A109.1H16A—C16—H16B109.5
C4—C5—H5A109.1C12—C16—H16C109.5
C6—C5—H5B109.1H16A—C16—H16C109.5
C4—C5—H5B109.1H16B—C16—H16C109.5
H5A—C5—H5B107.9C9—C17—C1108.73 (10)
C1—C6—O2122.58 (11)C9—C17—C18110.10 (11)
C1—C6—C5125.87 (12)C1—C17—C18112.24 (10)
O2—C6—C5111.55 (10)C9—C17—H17108.6
C4—C7—H7A109.5C1—C17—H17108.6
C4—C7—H7B109.5C18—C17—H17108.6
H7A—C7—H7B109.5C23—C18—C19117.39 (12)
C4—C7—H7C109.5C23—C18—C17121.70 (11)
H7A—C7—H7C109.5C19—C18—C17120.88 (11)
H7B—C7—H7C109.5C20—C19—C18121.55 (12)
C4—C8—H8A109.5C20—C19—H19119.2
C4—C8—H8B109.5C18—C19—H19119.2
H8A—C8—H8B109.5C19—C20—C21120.15 (13)
C4—C8—H8C109.5C19—C20—H20119.9
H8A—C8—H8C109.5C21—C20—H20119.9
H8B—C8—H8C109.5O4—C21—C22125.20 (12)
C14—C9—C10118.31 (13)O4—C21—C20115.43 (12)
C14—C9—C17122.32 (11)C22—C21—C20119.34 (12)
C10—C9—C17119.36 (11)C21—C22—C23119.53 (12)
O3—C10—C9120.22 (14)C21—C22—H22120.2
O3—C10—C11121.56 (13)C23—C22—H22120.2
C9—C10—C11118.17 (12)C18—C23—C22122.01 (12)
C10—C11—C12115.00 (12)C18—C23—H23119.0
C10—C11—H11A108.5C22—C23—H23119.0
C12—C11—H11A108.5O4—C24—H24A109.5
C10—C11—H11B108.5O4—C24—H24B109.5
C12—C11—H11B108.5H24A—C24—H24B109.5
H11A—C11—H11B107.5O4—C24—H24C109.5
C15—C12—C16109.43 (15)H24A—C24—H24C109.5
C15—C12—C11110.00 (13)H24B—C24—H24C109.5
C16—C12—C11110.23 (14)C6—O2—C14117.94 (9)
C15—C12—C13109.89 (13)C21—O4—C24117.83 (12)
C6—C1—C2—O1173.50 (13)C10—C9—C14—C133.52 (19)
C17—C1—C2—O16.3 (2)C17—C9—C14—C13175.26 (12)
C6—C1—C2—C33.61 (18)C12—C13—C14—C923.36 (19)
C17—C1—C2—C3176.58 (11)C12—C13—C14—O2157.27 (11)
O1—C2—C3—C4156.50 (14)C14—C9—C17—C117.55 (16)
C1—C2—C3—C426.40 (18)C10—C9—C17—C1163.68 (10)
C2—C3—C4—C769.32 (16)C14—C9—C17—C18105.79 (13)
C2—C3—C4—C8170.04 (12)C10—C9—C17—C1872.98 (14)
C2—C3—C4—C551.38 (15)C6—C1—C17—C917.61 (16)
C7—C4—C5—C672.00 (14)C2—C1—C17—C9162.18 (11)
C3—C4—C5—C648.39 (14)C6—C1—C17—C18104.44 (14)
C8—C4—C5—C6167.96 (12)C2—C1—C17—C1875.76 (14)
C2—C1—C6—O2174.28 (11)C9—C17—C18—C23116.51 (13)
C17—C1—C6—O25.52 (18)C1—C17—C18—C23122.23 (13)
C2—C1—C6—C55.41 (19)C9—C17—C18—C1961.45 (17)
C17—C1—C6—C5174.79 (11)C1—C17—C18—C1959.82 (17)
C4—C5—C6—C122.49 (18)C23—C18—C19—C201.4 (2)
C4—C5—C6—O2157.79 (10)C17—C18—C19—C20176.62 (16)
C14—C9—C10—O3175.89 (13)C18—C19—C20—C210.2 (3)
C17—C9—C10—O35.29 (19)C19—C20—C21—O4179.83 (16)
C14—C9—C10—C111.51 (18)C19—C20—C21—C221.5 (2)
C17—C9—C10—C11177.32 (12)O4—C21—C22—C23179.39 (13)
O3—C10—C11—C12154.88 (14)C20—C21—C22—C231.3 (2)
C9—C10—C11—C1227.76 (19)C19—C18—C23—C221.7 (2)
C10—C11—C12—C1568.08 (18)C17—C18—C23—C22176.34 (13)
C10—C11—C12—C16171.16 (14)C21—C22—C23—C180.3 (2)
C10—C11—C12—C1351.75 (17)C1—C6—O2—C149.04 (17)
C15—C12—C13—C1471.43 (16)C5—C6—O2—C14170.69 (10)
C16—C12—C13—C14168.39 (13)C9—C14—O2—C69.10 (17)
C11—C12—C13—C1448.47 (16)C13—C14—O2—C6170.29 (10)
C10—C9—C14—O2175.78 (11)C22—C21—O4—C244.2 (2)
C17—C9—C14—O25.43 (18)C20—C21—O4—C24177.63 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O4i0.972.573.364 (2)139
C15—H15C···O3ii0.962.583.506 (2)161
C22—H22···O1iii0.932.423.343 (2)171
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z+1; (iii) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC24H28O4
Mr380.46
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.346 (5), 10.314 (5), 11.733 (5)
α, β, γ (°)71.089 (5), 84.253 (5), 73.386 (5)
V3)1025.2 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.66 × 0.54 × 0.41
Data collection
DiffractometerStoe IPDSII
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.947, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
17059, 4035, 3450
Rint0.033
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.109, 1.04
No. of reflections4035
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.17

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O4i0.972.573.364 (2)139.2
C15—H15C···O3ii0.962.583.506 (2)160.9
C22—H22···O1iii0.932.423.343 (2)171.0
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z+1; (iii) x, y+2, z.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDSII diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationBanerjee, A. & Mukherjee, A. K. (1981). Stain Technol. 56, 83–85.  CAS PubMed Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHideo, T. (1981). Jpn Tokkyo Koho JP 56 005 480.  Google Scholar
First citationHorning, E. C. & Horning, M. G. (1946). J. Org. Chem. 11, 95–99.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKamel, M. & Shoeb, H. (1964). Tetrahedron, 20, 491–495.  CrossRef CAS Web of Science Google Scholar
First citationLambert, R. W., Martin, J. A., Merrett, J. H., Parkes, K. E. B. & Thomas, G. J. (1997). PCT Int. Appl. WO 9 706 178.  Google Scholar
First citationMenchen, S. M., Benson, S. C., Lam, J. Y. L., Zhen, W., Sun, D., Rosenblum, B. B., Khan, S. H. & Taing, M. U. S. (2003). Patent US 6 583 168.  Google Scholar
First citationNogradi, M. (2003). Sci. Synth. 14, 201–273.  CAS Google Scholar
First citationPoupelin, J. P., Saint-Rut, G., Foussard-Blanpin, O., Narcisse, G., Uchida- Ernouf, G. & Lacroix, R. (1978). Eur. J. Med. Chem. 13, 67–71.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREAand X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds