organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Hy­droxy­ethyl)phthalazin-1(2H)-one

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey, and bDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey
*Correspondence e-mail: orhanb@omu.edu.tr

(Received 19 March 2008; accepted 20 March 2008; online 29 March 2008)

In the mol­ecule of the title compound, C10H10N2O2, the rings are nearly coplanar, making a dihedral angle of 2.35 (5)°. In the crystal structure, inter­molecular C—H⋯O, C—H⋯N and O—H⋯O hydrogen bonds link the mol­ecules, generating R44(22) and R44(24) ring motifs to form a three-dimensional network. A weak ππ inter­action between the pyridazinone and benzene rings further stabilizes the crystal structure, with a centroid–centroid distance of 3.709 (3) Å and an inter­planar separation of 3.312 Å.

Related literature

For general background, see: Cheng et al. (1999[Cheng, Y., Ma, B. & Wuld, F. (1999). J. Mater. Chem. 9, 2183-88.]); Smith (2001[Smith, S. (2001). Trends Biochem. Sci. 26, 174-179.]); Dantzer et al. (1999[Dantzer, F., Schreiber, V., Niedergang, C., Trucco, C., Flatter, E., De la Rubia, G., Oliver, J., Rolli, V., Menissier-de Murcia, J. & de Murcia, G. (1999). Biochimie, 81, 69-75.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For a related structure, see: Büyükgüngör et al. (2007[Büyükgüngör, O., Odabaşoğlu, M., Narayana, B., Vijesh, A. M. & Yathirajan, H. S. (2007). Acta Cryst. E63, o3198. ]). For ring motif details, see: Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10N2O2

  • Mr = 190.20

  • Orthorhombic, P c a 21

  • a = 7.3278 (6) Å

  • b = 8.1823 (8) Å

  • c = 15.4108 (19) Å

  • V = 924.00 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.76 × 0.45 × 0.21 mm

Data collection
  • Stoe IPDSII diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.964, Tmax = 0.982

  • 4205 measured reflections

  • 944 independent reflections

  • 720 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.089

  • wR(F2) = 0.240

  • S = 1.90

  • 944 reflections

  • 98 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 1.91 2.704 (9) 163
C4—H4⋯N2ii 0.93 2.73 3.570 (10) 151
C8—H8⋯O2iii 0.93 2.53 3.376 (11) 152
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+1, z]; (ii) x, y-1, z; (iii) [-x+{\script{3\over 2}}, y, z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Phthalazines, also called benzo-ortho-diazines or benzopyridazines, are a group of heterocyclic compounds, isomeric with the cinnolines. The practical interest upon phthalazine derivatives is based on their widespread applications. Benzopyridazines, like other members of the isomeric diazene series, have found wide applications such as therapeutic agents, ligands in transition metal catalysis, chemiluminescent and optical materials (Cheng et al., 1999). 2-Substituted-8-(4,6-dimethoxypyrimidin-2-yloxy)-4-methylphthalazine-1-one derivatives are used as herbicides and imide-substituted-4-Benzyl-(2H) -phthalazin-1-ones are used as potent inhibitors of poly (ADP-ribose) polymerase-1 (PARP-1) (Smith, 2001; Dantzer et al., 1999). In view of the importance of the phthalazines, we herein report herein the crystal structure of the title compound, (I).

In the molecule of (I), (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges (Büyükgüngör et al., 2007). The homoaromatic and heterocyclic rings are, of course, planar and they are also nearly coplanar with a dihedral angle of 2.35 (5)°.

In the crystal structure, intermolecular C-H···O, C-H···N and O-H···O hydrogen bonds (Table 1) link the molecules, generating R44(22) (Fig. 2) and R44(24) (Fig. 4) ring motifs by C(7) chains (Fig. 3) (Bernstein et al., 1995; Etter, 1990), to form a three-dimensional network, in which they may be effective in the stabilization of the structure. A weak π···π interaction between the pyridazinone and benzene rings, at x, y, z and x - 1/2, 1 - y, z, respectively, further stabilizes the structure, with a centroid-centroid distance of 3.709 (3) Å and plane-plane separation of 3.312 Å (Fig. 5).

Related literature top

For general background, see: Cheng et al. (1999); Smith (2001); Dantzer et al. (1999). For bond-length data, see: Allen et al. (1987). For a related structure, see: Büyükgüngör et al. (2007). For ring motif details, see: Etter (1990); Bernstein et al. (1995).

Experimental top

A solution of phthalaldehydic acid (1.50 g, 10 mmol) and 3-aminopropan-1-ol (1.52 g, 20 mmol) in DMF (500 ml) was refluxed for 3 h. Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of a reaction mixture at room temperature (yield; 90%).

Refinement top

H atoms were positioned geometrically, with O-H = 0.82 Å (for OH) and C-H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,O), where x = 1.5 for OH H and x = 1.2 for all other H atoms.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of (I), showing the formation of R44(22) ring motifs. Hydrogen bonds are shown as dashed lines [symmetry codes: (i) 3/2 - x, y, z - 1/2; (ii) x - 1/2, 1 - y, z; (iii) 3/2 - x, y, 1/2 + z]. H atoms not involved in hydrogen bondings have been omitted for clarity.
[Figure 3] Fig. 3. A partial packing diagram of (I), showing the formation of C(7) chain [symmetry code: (i) x, y - 1, z]. H atoms not involved in hydrogen bondings have been omitted for clarity.
[Figure 4] Fig. 4. A partial packing diagram of (I), showing the formation of R44(24) ring motifs. Hydrogen bonds are shown as dashed lines [symmetry codes: (i) x, y + 1, z; (ii) 3/2 - x, y + 1, z - 1/2; (iii) 3/2 - x, y, z - 1/2]. H atoms not involved in hydrogen bondings have been omitted for clarity.
[Figure 5] Fig. 5. A packing diagram of (I), showing the π···π interactions [symmetry code: (i) x, y - 1, z]. Cg1 and Cg2 denote the centroids of the rings. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity.
2-(2-hydroxyethyl)phthalazin-1(2H)-one top
Crystal data top
C10H10N2O2F(000) = 400
Mr = 190.20Dx = 1.367 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 4205 reflections
a = 7.3278 (6) Åθ = 2.5–27.8°
b = 8.1823 (8) ŵ = 0.10 mm1
c = 15.4108 (19) ÅT = 296 K
V = 924.00 (16) Å3Prism, colorless
Z = 40.76 × 0.45 × 0.21 mm
Data collection top
Stoe IPDS II
diffractometer
944 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus720 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.067
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 2.5°
w–scan rotation methodh = 88
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 109
Tmin = 0.964, Tmax = 0.982l = 1818
4205 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.089Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.240H-atom parameters constrained
S = 1.90 w = 1/[σ2(Fo2) + (0.074P)2 + 0.0928P]
where P = (Fo2 + 2Fc2)/3
944 reflections(Δ/σ)max < 0.001
98 parametersΔρmax = 0.43 e Å3
1 restraintΔρmin = 0.40 e Å3
Crystal data top
C10H10N2O2V = 924.00 (16) Å3
Mr = 190.20Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 7.3278 (6) ŵ = 0.10 mm1
b = 8.1823 (8) ÅT = 296 K
c = 15.4108 (19) Å0.76 × 0.45 × 0.21 mm
Data collection top
Stoe IPDS II
diffractometer
944 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
720 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.982Rint = 0.067
4205 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0891 restraint
wR(F2) = 0.240H-atom parameters constrained
S = 1.90Δρmax = 0.43 e Å3
944 reflectionsΔρmin = 0.40 e Å3
98 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5413 (10)0.4049 (8)0.4806 (3)0.095 (2)
O20.7978 (10)0.7890 (10)0.3983 (4)0.110 (2)
H20.87540.74730.42960.166*
N10.5944 (8)0.6385 (7)0.5551 (4)0.0586 (15)
C10.5917 (10)0.4717 (9)0.5492 (4)0.0575 (17)
C20.6416 (14)0.3841 (8)0.6254 (6)0.0726 (10)
C30.6338 (13)0.2106 (9)0.6331 (6)0.0726 (10)
H30.59120.14910.58660.087*
C40.6862 (12)0.1342 (10)0.7055 (5)0.0726 (10)
H40.68270.02060.70750.087*
C50.7455 (13)0.2200 (9)0.7774 (6)0.0726 (10)
H50.78160.16400.82700.087*
C60.7513 (13)0.3874 (9)0.7757 (6)0.0726 (10)
H60.79070.44550.82400.087*
C70.6975 (14)0.4696 (9)0.7008 (5)0.0726 (10)
C80.6945 (12)0.6446 (8)0.6931 (5)0.0624 (19)
H80.73270.70410.74120.075*
N20.6454 (10)0.7246 (6)0.6280 (4)0.0609 (15)
C90.5268 (12)0.7439 (14)0.4850 (6)0.090 (3)
H9A0.47740.67530.43930.108*
H9B0.42770.81030.50730.108*
C100.6667 (14)0.8531 (12)0.4469 (6)0.092 (3)
H10A0.60360.93400.41200.110*
H10B0.72480.91120.49430.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.106 (5)0.124 (5)0.056 (3)0.042 (4)0.003 (3)0.022 (3)
O20.098 (5)0.156 (6)0.077 (4)0.036 (5)0.017 (4)0.032 (4)
N10.048 (3)0.066 (4)0.061 (3)0.004 (3)0.003 (3)0.002 (3)
C10.050 (4)0.073 (4)0.050 (3)0.017 (4)0.016 (3)0.002 (4)
C20.079 (2)0.0575 (16)0.081 (2)0.0007 (18)0.0200 (16)0.0076 (17)
C30.079 (2)0.0575 (16)0.081 (2)0.0007 (18)0.0200 (16)0.0076 (17)
C40.079 (2)0.0575 (16)0.081 (2)0.0007 (18)0.0200 (16)0.0076 (17)
C50.079 (2)0.0575 (16)0.081 (2)0.0007 (18)0.0200 (16)0.0076 (17)
C60.079 (2)0.0575 (16)0.081 (2)0.0007 (18)0.0200 (16)0.0076 (17)
C70.079 (2)0.0575 (16)0.081 (2)0.0007 (18)0.0200 (16)0.0076 (17)
C80.085 (5)0.051 (4)0.052 (4)0.008 (4)0.003 (3)0.004 (3)
N20.073 (4)0.048 (3)0.062 (3)0.002 (3)0.006 (3)0.011 (3)
C90.063 (5)0.124 (7)0.082 (6)0.013 (5)0.007 (5)0.040 (6)
C100.107 (8)0.084 (5)0.084 (5)0.039 (6)0.027 (5)0.032 (5)
Geometric parameters (Å, º) top
O2—H20.8200C6—H60.9300
C1—O11.246 (9)C7—C81.436 (10)
C1—N11.368 (9)C8—N21.251 (9)
C1—C21.423 (11)C8—H80.9300
C2—C71.417 (12)N2—N11.377 (9)
C2—C31.426 (10)C9—C101.481 (14)
C3—C41.335 (11)C9—N11.469 (10)
C3—H30.9300C9—H9A0.9700
C4—C51.382 (13)C9—H9B0.9700
C4—H40.9300C10—O21.327 (10)
C5—C61.371 (11)C10—H10A0.9700
C5—H50.9300C10—H10B0.9700
C6—C71.392 (12)
C10—O2—H2109.5C7—C6—H6120.3
C1—N1—N2124.7 (6)C6—C7—C2121.5 (7)
C1—N1—C9122.1 (7)C6—C7—C8123.7 (8)
N2—N1—C9113.0 (7)C2—C7—C8114.8 (7)
O1—C1—N1119.9 (7)N2—C8—C7126.4 (7)
O1—C1—C2123.7 (7)N2—C8—H8116.8
N1—C1—C2116.4 (7)C7—C8—H8116.8
C7—C2—C3115.8 (8)C8—N2—N1117.6 (5)
C7—C2—C1120.1 (6)C10—C9—N1114.3 (7)
C3—C2—C1124.0 (9)C10—C9—H9A108.7
C4—C3—C2121.6 (9)N1—C9—H9A108.7
C4—C3—H3119.2C10—C9—H9B108.7
C2—C3—H3119.2N1—C9—H9B108.7
C5—C4—C3121.5 (8)H9A—C9—H9B107.6
C5—C4—H4119.2O2—C10—C9119.1 (9)
C3—C4—H4119.2O2—C10—H10A107.5
C6—C5—C4120.1 (8)C9—C10—H10A107.5
C6—C5—H5119.9O2—C10—H10B107.5
C4—C5—H5119.9C9—C10—H10B107.5
C5—C6—C7119.3 (8)H10A—C10—H10B107.0
C5—C6—H6120.3
C8—N2—N1—C10.7 (11)C4—C5—C6—C70.2 (14)
C8—N2—N1—C9175.8 (7)C5—C6—C7—C21.8 (15)
O1—C1—N1—N2179.2 (6)C5—C6—C7—C8178.5 (8)
C2—C1—N1—N21.6 (10)C3—C2—C7—C63.6 (14)
O1—C1—N1—C94.6 (10)C1—C2—C7—C6178.5 (8)
C2—C1—N1—C9173.0 (7)C3—C2—C7—C8176.7 (8)
O1—C1—C2—C7180.0 (8)C1—C2—C7—C81.3 (13)
N1—C1—C2—C72.5 (12)C6—C7—C8—N2179.1 (9)
O1—C1—C2—C32.2 (13)C2—C7—C8—N21.2 (13)
N1—C1—C2—C3175.3 (8)C7—C8—N2—N12.2 (13)
C7—C2—C3—C43.7 (13)C10—C9—N1—C1118.4 (9)
C1—C2—C3—C4178.4 (8)C10—C9—N1—N266.5 (11)
C2—C3—C4—C51.9 (14)N1—C9—C10—O270.9 (12)
C3—C4—C5—C60.1 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.912.704 (9)163
C4—H4···N2ii0.932.733.570 (10)151
C8—H8···O2iii0.932.533.376 (11)152
Symmetry codes: (i) x+1/2, y+1, z; (ii) x, y1, z; (iii) x+3/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H10N2O2
Mr190.20
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)296
a, b, c (Å)7.3278 (6), 8.1823 (8), 15.4108 (19)
V3)924.00 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.76 × 0.45 × 0.21
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.964, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
4205, 944, 720
Rint0.067
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.089, 0.240, 1.90
No. of reflections944
No. of parameters98
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.40

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.912.704 (9)162.7
C4—H4···N2ii0.932.733.570 (10)151.0
C8—H8···O2iii0.932.533.376 (11)151.7
Symmetry codes: (i) x+1/2, y+1, z; (ii) x, y1, z; (iii) x+3/2, y, z+1/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDSII diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCheng, Y., Ma, B. & Wuld, F. (1999). J. Mater. Chem. 9, 2183–88.  Web of Science CrossRef CAS Google Scholar
First citationDantzer, F., Schreiber, V., Niedergang, C., Trucco, C., Flatter, E., De la Rubia, G., Oliver, J., Rolli, V., Menissier-de Murcia, J. & de Murcia, G. (1999). Biochimie, 81, 69–75.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationBüyükgüngör, O., Odabaşoğlu, M., Narayana, B., Vijesh, A. M. & Yathirajan, H. S. (2007). Acta Cryst. E63, o3198.   CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, S. (2001). Trends Biochem. Sci. 26, 174-179.  Web of Science CrossRef PubMed CAS Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds