organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2-Chloro­anilino)isobenzo­furan-1(3H)-one

aDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey, and bDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey
*Correspondence e-mail: orhanb@omu.edu.tr

(Received 19 March 2008; accepted 20 March 2008; online 29 March 2008)

In the mol­ecule of the title compound, C14H10ClNO2, the essentially planar phthalide group is oriented at a dihedral angle of 59.43 (4)° with respect to the substituted aromatic ring. In the crystal structure, inter­molecular C—H⋯O and N—H⋯O hydrogen bonds link the mol­ecules, generating R44(21) ring motifs to form a three-dimensional network.

Related literature

For general background, see: Aoki et al. (1973[Aoki, K., Furusho, T., Kimura, T., Satake, K. & Funayama, S. (1973). Jpn Patent No. 7 324 724.], 1974[Aoki, K., Furusho, T., Kimura, T., Satake, K. & Funayama, S. (1974). Chem. Abstr. 80, 129246.]); Tsi & Tan (1997[Tsi, D. & Tan, B. K. H. (1997). Phytother. Res. 11, 576-582.]); Roy & Sarkar (2005[Roy, H. N. & Sarkar, M. S. (2005). Synth. Commun. 35, 2177-2181.]); Bellasio (1974[Bellasio, E. (1974). German Patent No. 2 422 193.], 1975[Bellasio, E. (1975). Chem. Abstr. 83, 9788.]). For related structures, see: Büyükgüngör & Odabaşoğlu (2006[Büyükgüngör, O. & Odabaşoğlu, M. (2006). Acta Cryst. E62, o2003-o2004.]); Odabaşoğlu & Büyükgüngör (2006[Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o1879-o1881.]). For ring motif details, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10ClNO2

  • Mr = 259.68

  • Monoclinic, C c

  • a = 9.2485 (8) Å

  • b = 22.7915 (13) Å

  • c = 7.1111 (6) Å

  • β = 123.823 (6)°

  • V = 1245.25 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 296 K

  • 0.51 × 0.34 × 0.11 mm

Data collection
  • Stoe IPDSII diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.880, Tmax = 0.969

  • 7423 measured reflections

  • 2433 independent reflections

  • 2200 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.067

  • S = 1.05

  • 2433 reflections

  • 168 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.15 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1205 Friedel pairs

  • Flack parameter: 0.01 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.84 (3) 2.29 (3) 3.091 (2) 159 (2)
C4—H4⋯O2ii 0.93 2.54 3.397 (2) 153
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) [x+1, -y+1, z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Phthalides (isobenzofuranones) are five-membered lactones found in plants and they are known to show diverse biological activities, such as fungicidal, bactericidal, herbicidal, analgesic, pesticidal, hypotensive and vasorelaxant activities (Aoki et al., 1973; Tsi & Tan, 1997; Roy & Sarkar, 2005). In addition, phthalide derivatives are useful in the treatment of circulatory and heart-related diseases (Bellasio, 1974). As part of our ongoing research on 3-substituted phthalides, the title compound, (I), has been synthesized and its crystal structure is reported here.

In the molecule of (I), (Fig. 1), rings A (C2-C7), B (C1/C2/C7/C8/O2) and C (C9-C14) are, of course, planar. The dihedral angles between them are A/B = 2.45 (4)°, A/C = 59.93 (4)° and B/C = 58.90 (4)°. So, rings A and B are also nearly coplanar. Ring C is oriented with respect to the coplanar ring system at a dihedral angle of 59.43 (4)°. The geometry of (I) does not show any significant difference from the average geometry found for 3-(4-chloroanilino)isobenzofuran-1(3H)-one (Büyükgüngör & Odabaşoğlu, 2006).

In the crystal structure, intermolecular C-H···O and N-H···O hydrogen bonds (Table 1) link the molecules, generating R44(21) (Fig. 2) ring motifs (Bernstein et al., 1995; Etter, 1990), to form a three-dimensional network, in which they may be effective in the stabilization of the structure.

Related literature top

For general background, see: Aoki et al. (1973, 1974); Tsi & Tan (1997); Roy & Sarkar (2005); Bellasio (1974, 1975). For related structures, see: Büyükgüngör & Odabaşoğlu (2006); Odabaşoğlu & Büyükgüngör (2006). For ring motif details, see: Bernstein et al. (1995); Etter (1990).

Experimental top

The title compound was prepared according to the method described by Odabaşoğlu & Büyükgüngör (2006), using phthalaldehydic acid and 2-chloroaniline as starting materials (yield; 84%). Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an ethanol-DMF (1:1) solution at room temperature.

Refinement top

H atom (for NH) was located in difference synthesis and refined freely [N-H = 0.84 (3) Å and Uiso(H) = 0.061 (6) Å2]. The remaining H atoms were positioned geometrically, with C-H = 0.93 and 0.98 Å for aromatic and methine H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of (I), showing the formation of R44(21) ring motif. Hydrogen bonds are shown as dashed lines [symmetry codes: (i) x - 1/2, 1 - y, z - 1/2; (ii) x - 1, y, z; (iii) x, 1 - y, 1/2 + z]. H atoms not involved in hydrogen bondings have been omitted for clarity.
3-(2-chloroanilino)isobenzofuran-1(3H)-one top
Crystal data top
C14H10ClNO2F(000) = 536
Mr = 259.68Dx = 1.385 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 7423 reflections
a = 9.2485 (8) Åθ = 1.8–28.0°
b = 22.7915 (13) ŵ = 0.30 mm1
c = 7.1111 (6) ÅT = 296 K
β = 123.823 (6)°Prism, colorless
V = 1245.25 (19) Å30.51 × 0.34 × 0.11 mm
Z = 4
Data collection top
Stoe IPDS II
diffractometer
2433 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2200 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.038
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 1.8°
w–scan rotation methodh = 1111
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 2828
Tmin = 0.880, Tmax = 0.969l = 88
7423 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0412P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2433 reflectionsΔρmax = 0.12 e Å3
168 parametersΔρmin = 0.15 e Å3
2 restraintsAbsolute structure: Flack (1983), with 1205 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (5)
Crystal data top
C14H10ClNO2V = 1245.25 (19) Å3
Mr = 259.68Z = 4
Monoclinic, CcMo Kα radiation
a = 9.2485 (8) ŵ = 0.30 mm1
b = 22.7915 (13) ÅT = 296 K
c = 7.1111 (6) Å0.51 × 0.34 × 0.11 mm
β = 123.823 (6)°
Data collection top
Stoe IPDS II
diffractometer
2433 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2200 reflections with I > 2σ(I)
Tmin = 0.880, Tmax = 0.969Rint = 0.038
7423 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.067Δρmax = 0.12 e Å3
S = 1.05Δρmin = 0.15 e Å3
2433 reflectionsAbsolute structure: Flack (1983), with 1205 Friedel pairs
168 parametersAbsolute structure parameter: 0.01 (5)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.32584 (7)0.29431 (2)0.03793 (8)0.06502 (16)
O10.48884 (19)0.56863 (6)0.4723 (2)0.0568 (4)
O20.43774 (16)0.47290 (5)0.4752 (2)0.0462 (3)
N10.4488 (2)0.37749 (6)0.3398 (3)0.0446 (3)
H10.462 (3)0.3829 (10)0.233 (5)0.061 (6)*
C10.5400 (2)0.51868 (7)0.5030 (3)0.0418 (4)
C20.7123 (2)0.49617 (8)0.5728 (3)0.0401 (4)
C30.8602 (3)0.52646 (9)0.6291 (3)0.0507 (4)
H30.86040.56720.62090.061*
C41.0076 (3)0.49429 (11)0.6977 (3)0.0616 (5)
H41.10950.51340.73680.074*
C51.0055 (3)0.43377 (11)0.7092 (4)0.0622 (6)
H51.10680.41290.75680.075*
C60.8566 (3)0.40333 (9)0.6516 (3)0.0545 (5)
H60.85580.36260.65840.065*
C70.7097 (2)0.43588 (7)0.5838 (3)0.0404 (4)
C80.5336 (2)0.41624 (7)0.5234 (3)0.0400 (3)
H80.54560.39770.65580.048*
C90.2979 (2)0.34797 (7)0.2808 (3)0.0385 (4)
C100.2263 (3)0.30630 (8)0.1070 (3)0.0473 (4)
C110.0825 (3)0.27393 (9)0.0501 (3)0.0610 (6)
H110.03880.24620.06510.073*
C120.0027 (3)0.28242 (11)0.1632 (4)0.0678 (6)
H120.09590.26100.12350.081*
C130.0701 (3)0.32296 (9)0.3359 (4)0.0588 (5)
H130.01740.32850.41410.071*
C140.2156 (2)0.35546 (8)0.3937 (3)0.0488 (4)
H140.25920.38280.51010.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0858 (4)0.0647 (3)0.0552 (2)0.0121 (3)0.0459 (3)0.0150 (2)
O10.0704 (10)0.0411 (7)0.0633 (8)0.0097 (6)0.0399 (8)0.0004 (6)
O20.0393 (6)0.0438 (7)0.0576 (7)0.0011 (5)0.0282 (6)0.0031 (5)
N10.0508 (9)0.0446 (8)0.0439 (8)0.0085 (7)0.0297 (7)0.0057 (6)
C10.0468 (10)0.0416 (9)0.0371 (8)0.0008 (8)0.0234 (7)0.0028 (7)
C20.0406 (9)0.0446 (9)0.0332 (8)0.0032 (7)0.0192 (7)0.0032 (6)
C30.0494 (11)0.0577 (11)0.0431 (8)0.0141 (9)0.0245 (8)0.0071 (8)
C40.0403 (11)0.0914 (16)0.0487 (11)0.0170 (10)0.0221 (9)0.0092 (10)
C50.0379 (10)0.0905 (17)0.0527 (11)0.0122 (10)0.0218 (9)0.0000 (10)
C60.0496 (11)0.0555 (11)0.0552 (10)0.0111 (9)0.0271 (9)0.0032 (9)
C70.0379 (9)0.0445 (9)0.0363 (8)0.0015 (7)0.0192 (7)0.0013 (7)
C80.0408 (9)0.0381 (8)0.0404 (8)0.0015 (7)0.0220 (7)0.0001 (7)
C90.0399 (9)0.0313 (8)0.0405 (8)0.0008 (7)0.0201 (7)0.0033 (6)
C100.0552 (11)0.0431 (9)0.0378 (8)0.0032 (8)0.0223 (8)0.0001 (7)
C110.0629 (14)0.0537 (11)0.0523 (11)0.0203 (10)0.0233 (10)0.0118 (9)
C120.0591 (13)0.0671 (14)0.0748 (14)0.0228 (10)0.0358 (12)0.0053 (10)
C130.0551 (12)0.0593 (13)0.0726 (13)0.0092 (10)0.0422 (11)0.0001 (10)
C140.0535 (11)0.0456 (10)0.0522 (10)0.0025 (8)0.0324 (9)0.0022 (7)
Geometric parameters (Å, º) top
N1—H10.84 (3)C8—N11.400 (2)
C1—O11.205 (2)C8—O21.494 (2)
C1—O21.347 (2)C8—H80.9800
C1—C21.472 (3)C9—N11.387 (2)
C2—C71.377 (2)C9—C141.391 (2)
C2—C31.378 (3)C9—C101.399 (2)
C3—C41.376 (3)C10—C111.370 (3)
C3—H30.9300C10—Cl11.744 (2)
C4—C51.383 (4)C11—C121.375 (3)
C4—H40.9300C11—H110.9300
C5—C61.385 (3)C12—C131.377 (3)
C5—H50.9300C12—H120.9300
C6—C71.378 (3)C13—C141.383 (3)
C6—H60.9300C13—H130.9300
C7—C81.503 (3)C14—H140.9300
C1—O2—C8110.92 (13)N1—C8—O2112.25 (14)
C8—N1—H1117.4 (16)N1—C8—C7114.17 (15)
C9—N1—C8122.34 (16)O2—C8—C7102.62 (13)
C9—N1—H1115.2 (17)N1—C8—H8109.2
O1—C1—O2122.15 (17)O2—C8—H8109.2
O1—C1—C2129.22 (17)C7—C8—H8109.2
O2—C1—C2108.63 (14)N1—C9—C14123.22 (15)
C7—C2—C3121.94 (17)N1—C9—C10119.92 (15)
C7—C2—C1108.50 (15)C14—C9—C10116.80 (16)
C3—C2—C1129.53 (17)C11—C10—C9122.08 (18)
C4—C3—C2117.61 (19)C11—C10—Cl1119.09 (14)
C4—C3—H3121.2C9—C10—Cl1118.82 (14)
C2—C3—H3121.2C10—C11—C12120.02 (19)
C3—C4—C5120.61 (19)C10—C11—H11120.0
C3—C4—H4119.7C12—C11—H11120.0
C5—C4—H4119.7C11—C12—C13119.48 (19)
C4—C5—C6121.76 (19)C11—C12—H12120.3
C4—C5—H5119.1C13—C12—H12120.3
C6—C5—H5119.1C12—C13—C14120.4 (2)
C7—C6—C5117.26 (19)C12—C13—H13119.8
C7—C6—H6121.4C14—C13—H13119.8
C5—C6—H6121.4C13—C14—C9121.18 (17)
C2—C7—C6120.82 (17)C13—C14—H14119.4
C2—C7—C8109.32 (14)C9—C14—H14119.4
C6—C7—C8129.80 (16)
O1—C1—O2—C8179.77 (16)C2—C7—C8—O20.52 (17)
C2—C1—O2—C80.24 (16)C6—C7—C8—O2177.69 (17)
O1—C1—C2—C7179.43 (17)N1—C8—O2—C1123.18 (15)
O2—C1—C2—C70.59 (17)C7—C8—O2—C10.16 (16)
O1—C1—C2—C32.8 (3)O2—C8—N1—C973.5 (2)
O2—C1—C2—C3177.14 (15)C7—C8—N1—C9170.20 (15)
C7—C2—C3—C40.0 (3)C14—C9—N1—C81.9 (3)
C1—C2—C3—C4177.43 (17)C10—C9—N1—C8174.97 (15)
C2—C3—C4—C50.0 (3)N1—C9—C10—C11176.68 (18)
C3—C4—C5—C60.3 (3)C14—C9—C10—C110.3 (2)
C4—C5—C6—C70.5 (3)N1—C9—C10—Cl12.1 (2)
C3—C2—C7—C60.2 (3)C14—C9—C10—Cl1179.13 (13)
C1—C2—C7—C6178.15 (15)C9—C10—C11—C120.8 (3)
C3—C2—C7—C8177.25 (14)Cl1—C10—C11—C12179.56 (18)
C1—C2—C7—C80.68 (18)C10—C11—C12—C131.0 (4)
C5—C6—C7—C20.5 (3)C11—C12—C13—C140.8 (4)
C5—C6—C7—C8176.40 (17)C12—C13—C14—C90.3 (3)
C2—C7—C8—N1122.25 (16)N1—C9—C14—C13176.81 (18)
C6—C7—C8—N160.6 (2)C10—C9—C14—C130.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.84 (3)2.29 (3)3.091 (2)159 (2)
C4—H4···O2ii0.932.543.397 (2)153
Symmetry codes: (i) x, y+1, z1/2; (ii) x+1, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H10ClNO2
Mr259.68
Crystal system, space groupMonoclinic, Cc
Temperature (K)296
a, b, c (Å)9.2485 (8), 22.7915 (13), 7.1111 (6)
β (°) 123.823 (6)
V3)1245.25 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.51 × 0.34 × 0.11
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.880, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
7423, 2433, 2200
Rint0.038
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.067, 1.05
No. of reflections2433
No. of parameters168
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.12, 0.15
Absolute structureFlack (1983), with 1205 Friedel pairs
Absolute structure parameter0.01 (5)

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.84 (3)2.29 (3)3.091 (2)159 (2)
C4—H4···O2ii0.932.543.397 (2)153.2
Symmetry codes: (i) x, y+1, z1/2; (ii) x+1, y+1, z+1/2.
 

Footnotes

3-Substituted phthalides. Part XXXIV.

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDSII diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAoki, K., Furusho, T., Kimura, T., Satake, K. & Funayama, S. (1973). Jpn Patent No. 7 324 724.  Google Scholar
First citationAoki, K., Furusho, T., Kimura, T., Satake, K. & Funayama, S. (1974). Chem. Abstr. 80, 129246.  Google Scholar
First citationBellasio, E. (1974). German Patent No. 2 422 193.  Google Scholar
First citationBellasio, E. (1975). Chem. Abstr. 83, 9788.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBüyükgüngör, O. & Odabaşoğlu, M. (2006). Acta Cryst. E62, o2003–o2004.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOdabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o1879–o1881.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRoy, H. N. & Sarkar, M. S. (2005). Synth. Commun. 35, 2177–2181.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTsi, D. & Tan, B. K. H. (1997). Phytother. Res. 11, 576–582.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds