metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m514-m515

1-Acetyl-3-ferrocenyl-5-(2-nitro­phen­yl)-2-pyrazoline

aDepartment of Chemistry, Faculty of Arts and Sciences, Akdeniz University, TR-07058 Antalya, Turkey, bSamsun Vocational School, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, and cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Samsun, Turkey
*Correspondence e-mail: gturgut@akdeniz.edu.tr

(Received 11 January 2008; accepted 11 February 2008; online 5 March 2008)

In the title compound, [Fe(C5H5)(C16H14N3O3)], the pyrazoline ring and the substituted cyclo­penta­dienyl ring are nearly coplanar, with a dihedral angle of 8.17 (2)°, while the nitro-substituted benzene ring is twisted out of the pyrazoline ring plane by 70.76 (1)°. The mol­ecules in the crystal structure are held together by three inter­molecular C—H⋯O hydrogen bonds. There is also an intra­molecular C—H⋯N hydrogen bond. The H atoms of the methyl group are disordered equally over two positions.

Related literature

For related literature, see: Amr et al. (2006[Amr, A. E. E., Abdel-Latif, N. A. & Abdalla, M. M. (2006). Bioorg. Med. Chem. 14, 373-384.]); Biot et al. (2004[Biot, C., Dessolin, J., Richard, I. & Dive, D. (2004). J. Organomet. Chem. 689, 4678-4682.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Fang et al. (2003[Fang, J., Jin, Z., Li, Z. & Liu, W. (2003). J. Organomet. Chem. 674, 1-9.]); Fouda et al. (2007[Fouda, M. F. R., Abd-Elzaher, M. M., Abdelsamaia, R. A. & Labib, A. A. (2007). Appl. Organomet. Chem. 21, 613-625.]); Guirado et al. (2004[Guirado, A., Martiz, B. & Andreu, R. (2004). Tetrahedron Lett. 45, 8523-8526.]); Jaouen et al. (2004[Jaouen, G., Top, S., Vessireres, A., Leclercq, G., Vaissermann, J. & McGlinchey, M. J. (2004). Curr. Med. Chem. 11, 2505-2517.]); Karthikeyan et al. (2007[Karthikeyan, M. S., Holla, B. S. & Kumari, N. S. (2007). Eur. J. Med. Chem. 42, 30-36.]); Küçükgüzel et al. (2000[Küçükgüzel, G. Ş., Rollas, S., Erdeniz, H., Kiraz, M., Ekinci, A. C. & Vidin, A. (2000). Eur. J. Med. Chem. 35, 761-771.]); Kudar et al. (2005[Kudar, V., Mady-Zsoldos, V., Simon, K., Csampai, A. & Sohar, P. (2005). J. Organomet. Chem. 690, 4018-4026.]); Özdemir et al. (2007[Özdemir, Z., Kandilci, H. B., Gümüşel, B., Çalış, Ü. & Bilgin, A. A. (2007). Eur. J. Med. Chem. 42, 373-379.]); Shi et al. (2006a[Shi, Y.-C., Zhu, B.-B. & Sui, C.-X. (2006a). Acta Cryst. C62, m577-m580.],b[Shi, Y.-C., Zhu, B.-B. & Sui, C.-X. (2006b). Acta Cryst. E62, m1651-m1653.]); Shi et al. (2006[Shi, Y.-C., Sui, C.-X. & Zhu, B.-B. (2006). Acta Cryst. E62, m1954-m1955.]); Zora et al. (2006[Zora, M., Açıkgöz, C., Tumay, T. A., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. C62, m327-m330.], 2008[Zora, M., Pınar, A. N., Odabaşoğlu, M., Büyükgüngör, O. & Turgut Cin, G. (2008). J. Organomet. Chem. 693, 145-154.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C16H14N3O3)]

  • Mr = 417.24

  • Orthorhombic, P b c a

  • a = 8.6691 (6) Å

  • b = 13.4779 (7) Å

  • c = 31.4930 (15) Å

  • V = 3679.7 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 296 K

  • 0.50 × 0.31 × 0.06 mm

Data collection
  • Stoe IPDSII diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.636, Tmax = 0.862

  • 17799 measured reflections

  • 3613 independent reflections

  • 2409 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.086

  • S = 0.94

  • 3613 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Selected bond lengths (Å)

C12—Fe1 2.035 (3)
C13—Fe1 2.044 (3)
C14—Fe1 2.051 (3)
C15—Fe1 2.034 (3)
C16—Fe1 2.016 (3)
C17—Fe1 2.047 (3)
C18—Fe1 2.033 (3)
C19—Fe1 2.036 (3)
C20—Fe1 2.035 (3)
C21—Fe1 2.045 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯N3 0.96 2.29 2.788 (4) 112
C8—H8A⋯O3i 0.97 2.57 3.476 (3) 154
C8—H8B⋯O2ii 0.97 2.63 3.551 (4) 158
C21—H21⋯O2ii 0.93 2.46 3.136 (4) 130
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Pyrazolines are widely studied as five-membered heterocyclic compounds. Condensation of nitrogen-containing binucleophilic agents with α-β unsaturated ketones is one of the most suitable synthetic pathways for 2-pyrazolines (Kudar et al., 2005), which possess widespread pharmaceutical properties such as antimicrobial (Küçükgüzel et al., 2000), anticonvulsant (Karthikeyan et al., 2007), antidepressant Özdemir et al., 2007), antiandrogenic (Amr et al., 2006), antifungal and anti-inflammatory (Guirado et al., 2004) activities. Metallocenes are also known to exhibit a wide range of biological activity. Among them ferrocenyl compounds display interesting antibacterial (Fouda et al., 2007), antitumor (Jaouen et al., 2004), antimalarial and antifungal (Biot et al., 2004) activities. Therefore, incorporation of a ferrocene fragment into a heterocyclic ring may enhance their biological activities or generate new medicinal properties (Fang et al., 2003). As a part of an ongoing investigation of the chemistry of ferrocenyl pyrazolines, the title compound was synthesized and its crystal structure was determined.

The molecular structure of the title compound is shown in Fig. 1. The puckering parameters (Cremer & Pople, 1975) are q2=0.037 (3)Å and ϕ=43.3 (8)° for the pyrazoline ring, q2=0.008 (3)Å and ϕ=156.3 (2)° for the substituted cyclopentadienyl (Cp) ring and q2=0.004 (3)Å and ϕ=69.6 (5)° for the unsubstituted Cp ring. The dihedral angle of 8.17 (2)° between the pyrazoline ring and the substituted Cp ring indicates that they are conjugated with each other; this is in accord with the C9—C12 bond [1.456 (4) Å], showing a double-bond character (Shi et al., 2006a). Furthermore, N3—C9 bond length [1.284 (3) Å] increases as a result of this conjugation. This observation is in good agreement with those reported for 2,6-bis(3-ferrocenyl-5-methyl-1H-pyrazol-1-ylcarbonyl)pyridine (Shi et al., 2006b) and 1,3-bis(3-ferrocenyl-5-methyl-1H-pyrazol-1-ylcarbonyl)benzene (Shi et al., 2006).

The Fe—Cgs and Fe—Cgas distances are 1.6398 (14) and 1.6544 (14) Å, respectively, and the Cgs—Fe—Cgas angle is 177.78 (7)°, where Cgs and Cgas are the centroids of the substituted and unsubstituted Cp rings. The small dihedral angle of 3.68 (2)° between the unsubstituted and substituted Cp rings indicates that the two Cp rings are parallel to each other (Shi et al., 2006a). The C12—CgsCgas—C20 torsion angle of 3.71 (2)° indicates that the two Cp rings of the ferrocenyl group is nearly in an eclipsed conformation, as was previously observed in a ferrocene-containing compound (Zora et al., 2008). The C—C bond distances in the Cp rings range from 1.389 (4) to 1.434 (4) Å, while Fe—C bond lengths range between 2.016 (3) and 2.051 (3)Å (Table 1), all of which are as expected (Zora et al., 2006).

The pyrazoline ring and the nitro substituted phenyl group make a dihedral angle of 70.76 (1)°. The dihedral angle between the nitro plane and pheny ring is 18.30 (5)°. The dihedral angles between the phenyl ring and the substituted and unsubstituted Cp planes are 76.16 (1) and 76.12 (1)°, respectively. The molecules in crystal are held together by three intermolecular C—H···O hydrogen bonds (Table 2; Fig. 2). There is one intramolecular C—H···N hydrogen bond.

Related literature top

For related literature, see: Amr et al. (2006); Biot et al. (2004); Cremer & Pople (1975); Fang et al. (2003); Fouda et al. (2007); Guirado et al. (2004); Jaouen et al. (2004); Karthikeyan et al. (2007); Küçükgüzel et al. (2000); Kudar et al. (2005); Özdemir et al. (2007); Shi et al. (2006a,b); Shi et al. (2006); Zora et al. (2006, 2008).

Experimental top

A mixture of 1-ferrocenyl-3-(2-nitrophenyl)-2-propenone (0.09 g, 0.24 mmol), 80% hydrazine hydrate (0.264 g, 5.28 mmol) and glacial acetic acid (10 ml) was refluxed under nitrogen atmosphere for 5 h. TLC indicated the formation of the reaction product. It was poured into ice-water to give dark orange solid. The participate was separated by filtration and washed with water. The solid product was dried at room temperature. Single crystals of the title compound suitable for X-ray measurements were obtained by recrystallization from methanol at room temperature (yield 50.5%; m.p. 425–426 K). IR (KBr, cm-1): 1653 (C?O), 1601 (C?C), 1574 (C?N), 1527 (asym N?O), 1333 (sym N?O), 1107 (C—N). 1H-NMR (CDCl3, p.p.m.): 2.33 (s, 1H, CH3), 2.89 (dd, 1H, pyrazoline H4), 3.84 (dd, 1H, pyrazoline H4), 4.04 (s, 5H, ferrocene), 4.36 (s, 2H, ferrocene), 4.53 (s, 1H, ferrocene), 4.60 (s, 1H, ferrocene), 6.03 (dd, 1H, pyrazoline H5), 7.23–8.05 (m, 4H, aromatic). 13C-NMR (CDCl3, p.p.m.): 21.75 (CH3), 43.83 (C4), 56.52 (C5), 67.30, 67.78 (C2', C5'), 69.46 (C6'–C10'), 70.61, 71.10 (C3', C4'), 74.86 (C1'), 125.56 (C8), 126.37 (C9), 128.50 (C11), 134.28 (C10), 137.33 (C6), 147.08 (C7), 156.63 (C3), 168.30 (C?O).

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic), 0.98 (CH) and 0.97 Å (CH2) and with Uiso(H) = 1.2Ueq(C). H atoms of the methyl group (C11) show rotational disorder from a difference Fourier map. These H atoms were refined as riding atoms, with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the hydrogen-bonding network in the title compound. The dashed lines denote hydrogen bonds. [Symmetry codes: (i) -x + 1/2, y + 1/2, z; (ii) x + 1/2, y, -z + 3/2.]
1-Acetyl-3-ferrocenyl-5-(2-nitrophenyl)-2-pyrazoline top
Crystal data top
[Fe(C5H5)(C16H14N3O3)]F(000) = 1728
Mr = 417.24Dx = 1.506 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 16565 reflections
a = 8.6691 (6) Åθ = 1.6–27.9°
b = 13.4779 (7) ŵ = 0.85 mm1
c = 31.4930 (15) ÅT = 296 K
V = 3679.7 (4) Å3Prism, red
Z = 80.50 × 0.31 × 0.06 mm
Data collection top
Stoe IPDSII
diffractometer
3613 independent reflections
Radiation source: fine-focus sealed tube2409 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ω scansθmax = 26.0°, θmin = 2.6°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 1010
Tmin = 0.636, Tmax = 0.862k = 1613
17799 measured reflectionsl = 3838
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.044P)2]
where P = (Fo2 + 2Fc2)/3
3613 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Fe(C5H5)(C16H14N3O3)]V = 3679.7 (4) Å3
Mr = 417.24Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.6691 (6) ŵ = 0.85 mm1
b = 13.4779 (7) ÅT = 296 K
c = 31.4930 (15) Å0.50 × 0.31 × 0.06 mm
Data collection top
Stoe IPDSII
diffractometer
3613 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2409 reflections with I > 2σ(I)
Tmin = 0.636, Tmax = 0.862Rint = 0.061
17799 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 0.94Δρmax = 0.19 e Å3
3613 reflectionsΔρmin = 0.29 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4226 (3)0.55162 (19)0.68996 (7)0.0419 (6)
C20.3958 (3)0.5738 (2)0.73262 (8)0.0481 (7)
C30.4637 (4)0.5207 (2)0.76547 (9)0.0617 (8)
H30.44340.53760.79350.074*
C40.5601 (4)0.4437 (2)0.75645 (9)0.0674 (9)
H40.60580.40780.77830.081*
C50.5895 (4)0.4195 (2)0.71485 (10)0.0636 (8)
H50.65610.36750.70850.076*
C60.5201 (3)0.4723 (2)0.68231 (9)0.0518 (7)
H60.53980.45390.65440.062*
C70.3550 (3)0.61147 (18)0.65354 (7)0.0413 (6)
H70.24830.62990.66010.050*
C80.4494 (3)0.70502 (18)0.64348 (7)0.0434 (6)
H8A0.38600.76420.64520.052*
H8B0.53630.71180.66270.052*
C90.5024 (3)0.68659 (19)0.59887 (8)0.0409 (6)
C100.2617 (3)0.48364 (19)0.60260 (8)0.0461 (6)
C110.2627 (4)0.4488 (2)0.55716 (9)0.0591 (8)
H11A0.33490.48770.54110.089*0.50
H11B0.16140.45620.54530.089*0.50
H11C0.29250.38020.55620.089*0.50
H11D0.19100.39500.55390.089*0.50
H11E0.36440.42650.54980.089*0.50
H11F0.23340.50250.53890.089*0.50
C120.6069 (3)0.7528 (2)0.57636 (8)0.0456 (6)
C130.6708 (3)0.84249 (19)0.59343 (9)0.0523 (7)
H130.64670.87050.61960.063*
C140.7769 (4)0.8809 (2)0.56346 (10)0.0593 (8)
H140.83460.93870.56650.071*
C150.7799 (4)0.8165 (3)0.52835 (9)0.0615 (8)
H150.83970.82470.50410.074*
C160.6772 (3)0.7373 (2)0.53603 (8)0.0558 (7)
H160.65860.68410.51790.067*
C171.0530 (4)0.7425 (2)0.60978 (10)0.0635 (8)
H171.11300.79840.61490.076*
C181.0552 (4)0.6843 (3)0.57284 (10)0.0665 (9)
H181.11660.69480.54910.080*
C190.9461 (4)0.6060 (2)0.57837 (10)0.0628 (8)
H190.92380.55600.55900.075*
C200.8795 (4)0.6185 (2)0.61815 (9)0.0560 (8)
H200.80390.57820.63000.067*
C210.9452 (4)0.7019 (2)0.63740 (9)0.0581 (8)
H210.92080.72620.66420.070*
N10.2950 (3)0.6566 (2)0.74518 (7)0.0580 (7)
N20.3604 (3)0.55775 (15)0.61266 (6)0.0421 (5)
N30.4499 (2)0.60674 (15)0.58194 (6)0.0446 (5)
O10.2640 (4)0.72062 (19)0.71980 (7)0.0857 (8)
O20.2464 (3)0.6580 (2)0.78155 (7)0.0818 (7)
O30.1803 (2)0.44698 (15)0.63000 (6)0.0583 (5)
Fe10.84006 (4)0.74057 (2)0.581679 (10)0.04091 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0399 (16)0.0440 (15)0.0416 (13)0.0072 (12)0.0011 (11)0.0002 (10)
C20.0490 (17)0.0539 (16)0.0413 (13)0.0120 (13)0.0013 (12)0.0019 (12)
C30.074 (2)0.068 (2)0.0428 (14)0.0177 (18)0.0069 (15)0.0037 (14)
C40.082 (3)0.062 (2)0.0585 (19)0.0102 (18)0.0196 (17)0.0154 (15)
C50.066 (2)0.0507 (17)0.074 (2)0.0045 (15)0.0186 (17)0.0042 (14)
C60.0549 (19)0.0486 (16)0.0519 (14)0.0029 (13)0.0086 (13)0.0040 (12)
C70.0393 (15)0.0431 (13)0.0415 (12)0.0030 (12)0.0012 (11)0.0015 (10)
C80.0465 (17)0.0377 (14)0.0459 (13)0.0015 (11)0.0004 (12)0.0004 (10)
C90.0366 (15)0.0453 (14)0.0410 (12)0.0036 (12)0.0000 (11)0.0027 (11)
C100.0453 (17)0.0407 (15)0.0523 (14)0.0038 (12)0.0092 (14)0.0006 (12)
C110.065 (2)0.0535 (17)0.0591 (17)0.0014 (15)0.0124 (15)0.0099 (14)
C120.0397 (13)0.0507 (15)0.0463 (13)0.0012 (12)0.0023 (10)0.0069 (12)
C130.0491 (17)0.0425 (14)0.0654 (17)0.0040 (13)0.0066 (14)0.0035 (12)
C140.0485 (18)0.0491 (17)0.080 (2)0.0027 (14)0.0036 (16)0.0182 (15)
C150.0476 (18)0.081 (2)0.0553 (16)0.0004 (16)0.0005 (14)0.0281 (16)
C160.0494 (17)0.0726 (19)0.0453 (13)0.0041 (15)0.0064 (12)0.0084 (13)
C170.0484 (18)0.0617 (19)0.080 (2)0.0082 (16)0.0178 (15)0.0164 (17)
C180.051 (2)0.077 (2)0.072 (2)0.0194 (16)0.0159 (15)0.0255 (17)
C190.066 (2)0.0487 (17)0.0741 (19)0.0129 (14)0.0016 (18)0.0015 (15)
C200.0488 (19)0.0531 (17)0.0661 (18)0.0028 (13)0.0005 (14)0.0162 (14)
C210.063 (2)0.0604 (19)0.0511 (15)0.0017 (15)0.0096 (15)0.0077 (13)
N10.0575 (17)0.0695 (17)0.0470 (13)0.0097 (13)0.0061 (12)0.0141 (12)
N20.0446 (14)0.0448 (12)0.0370 (10)0.0040 (10)0.0023 (9)0.0012 (8)
N30.0421 (13)0.0491 (12)0.0427 (10)0.0009 (10)0.0021 (11)0.0011 (10)
O10.118 (2)0.0697 (16)0.0695 (14)0.0264 (15)0.0219 (14)0.0057 (12)
O20.0805 (18)0.114 (2)0.0514 (12)0.0059 (15)0.0203 (12)0.0183 (12)
O30.0565 (14)0.0540 (12)0.0644 (12)0.0097 (10)0.0030 (10)0.0044 (9)
Fe10.0390 (2)0.0419 (2)0.04183 (17)0.00169 (17)0.00009 (16)0.00513 (16)
Geometric parameters (Å, º) top
C1—C61.384 (4)C12—Fe12.035 (3)
C1—C21.396 (3)C13—C141.416 (4)
C1—C71.519 (3)C13—Fe12.044 (3)
C2—C31.389 (4)C13—H130.9300
C2—N11.472 (4)C14—C151.407 (4)
C3—C41.362 (5)C14—Fe12.051 (3)
C3—H30.9300C14—H140.9300
C4—C51.374 (4)C15—C161.411 (4)
C4—H40.9300C15—Fe12.034 (3)
C5—C61.385 (4)C15—H150.9300
C5—H50.9300C16—Fe12.016 (3)
C6—H60.9300C16—H160.9300
C7—N21.478 (3)C17—C211.389 (4)
C7—C81.536 (3)C17—C181.403 (5)
C7—H70.9800C17—Fe12.047 (3)
C8—C91.499 (3)C17—H170.9300
C8—H8A0.9700C18—C191.428 (5)
C8—H8B0.9700C18—Fe12.033 (3)
C9—N31.284 (3)C18—H180.9300
C9—C121.456 (4)C19—C201.390 (4)
C10—O31.219 (3)C19—Fe12.036 (3)
C10—N21.353 (3)C19—H190.9300
C10—C111.506 (4)C20—C211.398 (4)
C11—H11A0.9600C20—Fe12.035 (3)
C11—H11B0.9600C20—H200.9300
C11—H11C0.9600C21—Fe12.045 (3)
C11—H11D0.9600C21—H210.9300
C11—H11E0.9600N1—O11.206 (3)
C11—H11F0.9600N1—O21.221 (3)
C12—C161.424 (4)N2—N31.405 (3)
C12—C131.434 (4)
C6—C1—C2115.7 (2)C12—C16—H16125.9
C6—C1—C7120.9 (2)Fe1—C16—H16125.2
C2—C1—C7123.3 (2)C21—C17—C18108.0 (3)
C3—C2—C1122.4 (3)C21—C17—Fe170.08 (17)
C3—C2—N1116.3 (3)C18—C17—Fe169.33 (18)
C1—C2—N1121.3 (2)C21—C17—H17126.0
C4—C3—C2119.8 (3)C18—C17—H17126.0
C4—C3—H3120.1Fe1—C17—H17126.1
C2—C3—H3120.1C17—C18—C19107.6 (3)
C3—C4—C5119.6 (3)C17—C18—Fe170.44 (18)
C3—C4—H4120.2C19—C18—Fe169.60 (18)
C5—C4—H4120.2C17—C18—H18126.2
C4—C5—C6120.2 (3)C19—C18—H18126.2
C4—C5—H5119.9Fe1—C18—H18125.4
C6—C5—H5119.9C20—C19—C18107.2 (3)
C1—C6—C5122.2 (3)C20—C19—Fe170.00 (17)
C1—C6—H6118.9C18—C19—Fe169.32 (17)
C5—C6—H6118.9C20—C19—H19126.4
N2—C7—C1112.7 (2)C18—C19—H19126.4
N2—C7—C8101.87 (19)Fe1—C19—H19125.8
C1—C7—C8112.7 (2)C19—C20—C21108.6 (3)
N2—C7—H7109.8C19—C20—Fe170.08 (16)
C1—C7—H7109.8C21—C20—Fe170.33 (16)
C8—C7—H7109.8C19—C20—H20125.7
C9—C8—C7102.7 (2)C21—C20—H20125.7
C9—C8—H8A111.2Fe1—C20—H20125.5
C7—C8—H8A111.2C17—C21—C20108.6 (3)
C9—C8—H8B111.2C17—C21—Fe170.24 (16)
C7—C8—H8B111.2C20—C21—Fe169.58 (16)
H8A—C8—H8B109.1C17—C21—H21125.7
N3—C9—C12122.1 (2)C20—C21—H21125.7
N3—C9—C8114.8 (2)Fe1—C21—H21126.1
C12—C9—C8123.1 (2)O1—N1—O2122.3 (3)
O3—C10—N2120.0 (2)O1—N1—C2119.8 (2)
O3—C10—C11123.3 (3)O2—N1—C2117.9 (3)
N2—C10—C11116.7 (3)C10—N2—N3122.3 (2)
C10—C11—H11A109.5C10—N2—C7123.1 (2)
C10—C11—H11B109.5N3—N2—C7112.77 (19)
H11A—C11—H11B109.5C9—N3—N2107.67 (19)
C10—C11—H11C109.5C16—Fe1—C18122.47 (13)
H11A—C11—H11C109.5C16—Fe1—C1540.78 (12)
H11B—C11—H11C109.5C18—Fe1—C15108.04 (13)
C10—C11—H11D109.5C16—Fe1—C1241.17 (11)
H11A—C11—H11D141.1C18—Fe1—C12158.50 (14)
H11B—C11—H11D56.3C15—Fe1—C1268.71 (11)
H11C—C11—H11D56.3C16—Fe1—C20120.16 (13)
C10—C11—H11E109.5C18—Fe1—C2067.76 (12)
H11A—C11—H11E56.3C15—Fe1—C20156.25 (14)
H11B—C11—H11E141.1C12—Fe1—C20106.19 (11)
H11C—C11—H11E56.3C16—Fe1—C19105.08 (13)
H11D—C11—H11E109.5C18—Fe1—C1941.08 (13)
C10—C11—H11F109.5C15—Fe1—C19121.42 (14)
H11A—C11—H11F56.3C12—Fe1—C19121.10 (13)
H11B—C11—H11F56.3C20—Fe1—C1939.92 (12)
H11C—C11—H11F141.1C16—Fe1—C1368.97 (12)
H11D—C11—H11F109.5C18—Fe1—C13159.13 (14)
H11E—C11—H11F109.5C15—Fe1—C1368.14 (12)
C16—C12—C13107.0 (2)C12—Fe1—C1341.18 (11)
C16—C12—C9127.6 (3)C20—Fe1—C13124.17 (12)
C13—C12—C9125.1 (2)C19—Fe1—C13158.78 (13)
C16—C12—Fe168.67 (15)C16—Fe1—C21156.74 (12)
C13—C12—Fe169.73 (16)C18—Fe1—C2167.26 (13)
C9—C12—Fe1121.89 (18)C15—Fe1—C21161.94 (14)
C14—C13—C12108.0 (3)C12—Fe1—C21122.28 (12)
C14—C13—Fe170.04 (17)C20—Fe1—C2140.08 (12)
C12—C13—Fe169.09 (15)C19—Fe1—C2167.40 (13)
C14—C13—H13126.0C13—Fe1—C21109.62 (12)
C12—C13—H13126.0C16—Fe1—C17160.09 (13)
Fe1—C13—H13126.5C18—Fe1—C1740.24 (13)
C15—C14—C13108.1 (3)C15—Fe1—C17125.55 (13)
C15—C14—Fe169.23 (17)C12—Fe1—C17158.46 (12)
C13—C14—Fe169.50 (16)C20—Fe1—C1767.35 (12)
C15—C14—H14126.0C19—Fe1—C1768.06 (14)
C13—C14—H14126.0C13—Fe1—C17124.09 (13)
Fe1—C14—H14126.9C21—Fe1—C1739.68 (12)
C14—C15—C16108.7 (3)C16—Fe1—C1468.53 (13)
C14—C15—Fe170.50 (16)C18—Fe1—C14123.41 (13)
C16—C15—Fe168.89 (15)C15—Fe1—C1440.27 (13)
C14—C15—H15125.6C12—Fe1—C1468.73 (12)
C16—C15—H15125.6C20—Fe1—C14161.46 (12)
Fe1—C15—H15126.5C19—Fe1—C14158.08 (13)
C15—C16—C12108.2 (3)C13—Fe1—C1440.47 (11)
C15—C16—Fe170.33 (16)C21—Fe1—C14126.43 (13)
C12—C16—Fe170.16 (15)C17—Fe1—C14110.47 (13)
C15—C16—H16125.9
C6—C1—C2—C30.7 (4)C16—C15—Fe1—C14120.1 (3)
C7—C1—C2—C3177.3 (3)C13—C12—Fe1—C16118.6 (2)
C6—C1—C2—N1179.6 (3)C9—C12—Fe1—C16121.9 (3)
C7—C1—C2—N11.7 (4)C16—C12—Fe1—C1847.3 (4)
C1—C2—C3—C40.1 (5)C13—C12—Fe1—C18166.0 (3)
N1—C2—C3—C4179.1 (3)C9—C12—Fe1—C1874.6 (4)
C2—C3—C4—C50.1 (5)C16—C12—Fe1—C1537.92 (18)
C3—C4—C5—C60.7 (5)C13—C12—Fe1—C1580.71 (18)
C2—C1—C6—C51.3 (4)C9—C12—Fe1—C15159.9 (3)
C7—C1—C6—C5176.7 (3)C16—C12—Fe1—C20117.56 (18)
C4—C5—C6—C11.3 (5)C13—C12—Fe1—C20123.81 (17)
C6—C1—C7—N219.3 (3)C9—C12—Fe1—C204.4 (2)
C2—C1—C7—N2162.9 (2)C16—C12—Fe1—C1976.8 (2)
C6—C1—C7—C895.4 (3)C13—C12—Fe1—C19164.57 (17)
C2—C1—C7—C882.5 (3)C9—C12—Fe1—C1945.1 (3)
N2—C7—C8—C93.4 (3)C16—C12—Fe1—C13118.6 (2)
C1—C7—C8—C9117.6 (2)C9—C12—Fe1—C13119.4 (3)
C7—C8—C9—N33.9 (3)C16—C12—Fe1—C21158.19 (18)
C7—C8—C9—C12175.3 (2)C13—C12—Fe1—C2183.18 (18)
N3—C9—C12—C166.5 (4)C9—C12—Fe1—C2136.3 (3)
C8—C9—C12—C16172.7 (3)C16—C12—Fe1—C17173.3 (3)
N3—C9—C12—C13179.4 (3)C13—C12—Fe1—C1754.7 (4)
C8—C9—C12—C130.3 (4)C9—C12—Fe1—C1764.7 (4)
N3—C9—C12—Fe193.0 (3)C16—C12—Fe1—C1481.28 (19)
C8—C9—C12—Fe186.2 (3)C13—C12—Fe1—C1437.35 (16)
C16—C12—C13—C140.7 (3)C9—C12—Fe1—C14156.8 (2)
C9—C12—C13—C14174.8 (3)C19—C20—Fe1—C1677.0 (2)
Fe1—C12—C13—C1459.4 (2)C21—C20—Fe1—C16163.69 (18)
C16—C12—C13—Fe158.77 (19)C19—C20—Fe1—C1838.7 (2)
C9—C12—C13—Fe1115.4 (3)C21—C20—Fe1—C1880.6 (2)
C12—C13—C14—C150.2 (3)C19—C20—Fe1—C1545.6 (4)
Fe1—C13—C14—C1558.6 (2)C21—C20—Fe1—C15165.0 (3)
C12—C13—C14—Fe158.83 (19)C19—C20—Fe1—C12119.41 (19)
C13—C14—C15—C160.4 (3)C21—C20—Fe1—C12121.23 (19)
Fe1—C14—C15—C1658.4 (2)C21—C20—Fe1—C19119.4 (3)
C13—C14—C15—Fe158.8 (2)C19—C20—Fe1—C13160.80 (19)
C14—C15—C16—C120.8 (3)C21—C20—Fe1—C1379.8 (2)
Fe1—C15—C16—C1260.21 (19)C19—C20—Fe1—C21119.4 (3)
C14—C15—C16—Fe159.4 (2)C19—C20—Fe1—C1782.4 (2)
C13—C12—C16—C150.9 (3)C21—C20—Fe1—C1736.95 (19)
C9—C12—C16—C15174.8 (3)C19—C20—Fe1—C14169.4 (4)
Fe1—C12—C16—C1560.3 (2)C21—C20—Fe1—C1450.0 (5)
C13—C12—C16—Fe159.44 (19)C20—C19—Fe1—C16119.27 (19)
C9—C12—C16—Fe1114.5 (3)C18—C19—Fe1—C16122.48 (19)
C21—C17—C18—C190.3 (4)C20—C19—Fe1—C18118.2 (3)
Fe1—C17—C18—C1959.9 (2)C20—C19—Fe1—C15160.29 (19)
C21—C17—C18—Fe159.7 (2)C18—C19—Fe1—C1581.5 (2)
C17—C18—C19—C200.4 (3)C20—C19—Fe1—C1277.7 (2)
Fe1—C18—C19—C2060.0 (2)C18—C19—Fe1—C12164.07 (18)
C17—C18—C19—Fe160.4 (2)C18—C19—Fe1—C20118.2 (3)
C18—C19—C20—C210.4 (3)C20—C19—Fe1—C1348.7 (4)
Fe1—C19—C20—C2160.0 (2)C18—C19—Fe1—C13167.0 (3)
C18—C19—C20—Fe159.6 (2)C20—C19—Fe1—C2137.44 (19)
C18—C17—C21—C200.0 (4)C18—C19—Fe1—C2180.8 (2)
Fe1—C17—C21—C2059.2 (2)C20—C19—Fe1—C1780.5 (2)
C18—C17—C21—Fe159.2 (2)C18—C19—Fe1—C1737.78 (19)
C19—C20—C21—C170.2 (3)C20—C19—Fe1—C14171.0 (3)
Fe1—C20—C21—C1759.6 (2)C18—C19—Fe1—C1452.7 (4)
C19—C20—C21—Fe159.9 (2)C14—C13—Fe1—C1681.2 (2)
C3—C2—N1—O1161.2 (3)C12—C13—Fe1—C1638.25 (15)
C1—C2—N1—O117.8 (4)C14—C13—Fe1—C1846.1 (4)
C3—C2—N1—O218.3 (4)C12—C13—Fe1—C18165.5 (3)
C1—C2—N1—O2162.7 (3)C14—C13—Fe1—C1537.22 (19)
O3—C10—N2—N3176.0 (2)C12—C13—Fe1—C1582.21 (17)
C11—C10—N2—N35.6 (4)C14—C13—Fe1—C12119.4 (2)
O3—C10—N2—C712.4 (4)C14—C13—Fe1—C20165.90 (19)
C11—C10—N2—C7169.3 (2)C12—C13—Fe1—C2074.68 (19)
C1—C7—N2—C1076.4 (3)C14—C13—Fe1—C19158.4 (3)
C8—C7—N2—C10162.6 (2)C12—C13—Fe1—C1939.0 (4)
C1—C7—N2—N3118.6 (2)C14—C13—Fe1—C21123.6 (2)
C8—C7—N2—N32.4 (3)C12—C13—Fe1—C21116.97 (16)
C12—C9—N3—N2176.7 (2)C14—C13—Fe1—C1781.8 (2)
C8—C9—N3—N22.5 (3)C12—C13—Fe1—C17158.78 (15)
C10—N2—N3—C9165.0 (2)C12—C13—Fe1—C14119.4 (2)
C7—N2—N3—C90.1 (3)C17—C21—Fe1—C16157.6 (3)
C15—C16—Fe1—C1879.9 (2)C20—C21—Fe1—C1637.9 (4)
C12—C16—Fe1—C18161.37 (17)C17—C21—Fe1—C1837.7 (2)
C12—C16—Fe1—C15118.8 (3)C20—C21—Fe1—C1882.0 (2)
C15—C16—Fe1—C12118.8 (3)C17—C21—Fe1—C1540.6 (5)
C15—C16—Fe1—C20161.29 (19)C20—C21—Fe1—C15160.3 (4)
C12—C16—Fe1—C2080.0 (2)C17—C21—Fe1—C12164.09 (19)
C15—C16—Fe1—C19120.9 (2)C20—C21—Fe1—C1276.2 (2)
C12—C16—Fe1—C19120.30 (18)C17—C21—Fe1—C20119.7 (3)
C15—C16—Fe1—C1380.5 (2)C17—C21—Fe1—C1982.4 (2)
C12—C16—Fe1—C1338.25 (16)C20—C21—Fe1—C1937.29 (18)
C15—C16—Fe1—C21171.5 (3)C17—C21—Fe1—C13120.1 (2)
C12—C16—Fe1—C2152.7 (4)C20—C21—Fe1—C13120.17 (19)
C15—C16—Fe1—C1754.1 (5)C20—C21—Fe1—C17119.7 (3)
C12—C16—Fe1—C17172.8 (3)C17—C21—Fe1—C1477.9 (2)
C15—C16—Fe1—C1436.94 (19)C20—C21—Fe1—C14162.37 (18)
C12—C16—Fe1—C1481.82 (18)C21—C17—Fe1—C16153.8 (3)
C17—C18—Fe1—C16166.73 (17)C18—C17—Fe1—C1634.7 (5)
C19—C18—Fe1—C1674.9 (2)C21—C17—Fe1—C18119.2 (3)
C17—C18—Fe1—C15124.18 (19)C21—C17—Fe1—C15165.6 (2)
C19—C18—Fe1—C15117.4 (2)C18—C17—Fe1—C1575.2 (2)
C17—C18—Fe1—C12158.3 (3)C21—C17—Fe1—C1239.1 (4)
C19—C18—Fe1—C1239.9 (4)C18—C17—Fe1—C12158.3 (3)
C17—C18—Fe1—C2080.74 (19)C21—C17—Fe1—C2037.31 (18)
C19—C18—Fe1—C2037.64 (18)C18—C17—Fe1—C2081.9 (2)
C17—C18—Fe1—C19118.4 (3)C21—C17—Fe1—C1980.6 (2)
C17—C18—Fe1—C1348.4 (4)C18—C17—Fe1—C1938.56 (18)
C19—C18—Fe1—C13166.8 (3)C21—C17—Fe1—C1379.6 (2)
C17—C18—Fe1—C2137.20 (18)C18—C17—Fe1—C13161.24 (18)
C19—C18—Fe1—C2181.2 (2)C18—C17—Fe1—C21119.2 (3)
C19—C18—Fe1—C17118.4 (3)C21—C17—Fe1—C14122.9 (2)
C17—C18—Fe1—C1482.5 (2)C18—C17—Fe1—C14118.0 (2)
C19—C18—Fe1—C14159.15 (19)C15—C14—Fe1—C1637.39 (18)
C14—C15—Fe1—C16120.1 (3)C13—C14—Fe1—C1682.35 (19)
C14—C15—Fe1—C18120.8 (2)C15—C14—Fe1—C1878.2 (2)
C16—C15—Fe1—C18119.1 (2)C13—C14—Fe1—C18162.08 (19)
C14—C15—Fe1—C1281.82 (19)C13—C14—Fe1—C15119.7 (3)
C16—C15—Fe1—C1238.28 (18)C15—C14—Fe1—C1281.75 (19)
C14—C15—Fe1—C20163.6 (3)C13—C14—Fe1—C1237.98 (17)
C16—C15—Fe1—C2043.5 (4)C15—C14—Fe1—C20159.1 (4)
C14—C15—Fe1—C19163.88 (18)C13—C14—Fe1—C2039.3 (5)
C16—C15—Fe1—C1976.0 (2)C15—C14—Fe1—C1939.4 (4)
C14—C15—Fe1—C1337.39 (18)C13—C14—Fe1—C19159.1 (3)
C16—C15—Fe1—C1382.7 (2)C15—C14—Fe1—C13119.7 (3)
C14—C15—Fe1—C2149.0 (5)C15—C14—Fe1—C21163.10 (19)
C16—C15—Fe1—C21169.1 (4)C13—C14—Fe1—C2177.2 (2)
C14—C15—Fe1—C1779.7 (2)C15—C14—Fe1—C17121.3 (2)
C16—C15—Fe1—C17160.19 (19)C13—C14—Fe1—C17118.96 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···N30.962.292.788 (4)112
C8—H8A···O3i0.972.573.476 (3)154
C8—H8B···O2ii0.972.633.551 (4)158
C21—H21···O2ii0.932.463.136 (4)130
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y, z+3/2.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C16H14N3O3)]
Mr417.24
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)8.6691 (6), 13.4779 (7), 31.4930 (15)
V3)3679.7 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.50 × 0.31 × 0.06
Data collection
DiffractometerStoe IPDSII
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.636, 0.862
No. of measured, independent and
observed [I > 2σ(I)] reflections
17799, 3613, 2409
Rint0.061
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.086, 0.94
No. of reflections3613
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.29

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Selected bond lengths (Å) top
C12—Fe12.035 (3)C17—Fe12.047 (3)
C13—Fe12.044 (3)C18—Fe12.033 (3)
C14—Fe12.051 (3)C19—Fe12.036 (3)
C15—Fe12.034 (3)C20—Fe12.035 (3)
C16—Fe12.016 (3)C21—Fe12.045 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···N30.962.292.788 (4)111.8
C8—H8A···O3i0.972.573.476 (3)154
C8—H8B···O2ii0.972.633.551 (4)158
C21—H21···O2ii0.932.463.136 (4)130
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y, z+3/2.
 

Acknowledgements

The authors acknowledge the Research Board of Akdeniz University (grant No. BAP-2007.01.0105.001) for financial support and the Faculty of Arts and Sciences, Ondokuz Mayıs University, for the Stoe IPDSII diffractometer purchased under grant F.279 of the University Research Fund.

References

First citationAmr, A. E. E., Abdel-Latif, N. A. & Abdalla, M. M. (2006). Bioorg. Med. Chem. 14, 373–384.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBiot, C., Dessolin, J., Richard, I. & Dive, D. (2004). J. Organomet. Chem. 689, 4678–4682.  Web of Science CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFang, J., Jin, Z., Li, Z. & Liu, W. (2003). J. Organomet. Chem. 674, 1–9.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFouda, M. F. R., Abd-Elzaher, M. M., Abdelsamaia, R. A. & Labib, A. A. (2007). Appl. Organomet. Chem. 21, 613–625.  Web of Science CrossRef CAS Google Scholar
First citationGuirado, A., Martiz, B. & Andreu, R. (2004). Tetrahedron Lett. 45, 8523–8526.  Web of Science CrossRef CAS Google Scholar
First citationJaouen, G., Top, S., Vessireres, A., Leclercq, G., Vaissermann, J. & McGlinchey, M. J. (2004). Curr. Med. Chem. 11, 2505–2517.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKarthikeyan, M. S., Holla, B. S. & Kumari, N. S. (2007). Eur. J. Med. Chem. 42, 30–36.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKüçükgüzel, G. Ş., Rollas, S., Erdeniz, H., Kiraz, M., Ekinci, A. C. & Vidin, A. (2000). Eur. J. Med. Chem. 35, 761–771.  PubMed Google Scholar
First citationKudar, V., Mady-Zsoldos, V., Simon, K., Csampai, A. & Sohar, P. (2005). J. Organomet. Chem. 690, 4018–4026.  Web of Science CSD CrossRef CAS Google Scholar
First citationÖzdemir, Z., Kandilci, H. B., Gümüşel, B., Çalış, Ü. & Bilgin, A. A. (2007). Eur. J. Med. Chem. 42, 373–379.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Y.-C., Sui, C.-X. & Zhu, B.-B. (2006). Acta Cryst. E62, m1954–m1955.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShi, Y.-C., Zhu, B.-B. & Sui, C.-X. (2006a). Acta Cryst. C62, m577–m580.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShi, Y.-C., Zhu, B.-B. & Sui, C.-X. (2006b). Acta Cryst. E62, m1651–m1653.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationZora, M., Açıkgöz, C., Tumay, T. A., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. C62, m327–m330.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZora, M., Pınar, A. N., Odabaşoğlu, M., Büyükgüngör, O. & Turgut Cin, G. (2008). J. Organomet. Chem. 693, 145–154.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m514-m515
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds