organic compounds
(1R,2R)-N,N′-Dimethylcyclohexane-1,2-diamine
aInstitut für Anorganische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
*Correspondence e-mail: mail@carsten-strohmann.de
The molecule of the title compound, C8H18N2, possesses C2 symmetry. Owing to its stereochemistry, it is used in the synthesis of chiral ligands and metal complexes for The cyclohexane ring shows a chair conformation with the amino groups in equatorial positions. Contrary to the literature, the title compound is not a liquid, but a crystalline solid at room temperature (293 K). The is assigned from the synthesis.
Related literature
The synthesis of the title compound is described by Kizirian et al. (2005). For related literature, see: Larrox and Jacobsen (1994); Cole et al. (2005); Seebach et al. (1977); Strohmann & Gessner (2007); Strohmann et al. (2003, 2004); Strohmann, Däschlein & Auer (2006); Strohmann, Dilsky & Strohfeldt (2006); Strohmmann & Gessner (2007a,b).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2001); cell SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1999); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808006119/im2055sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808006119/im2055Isup2.hkl
Treatment of the
(R,R)-1,2-diammoniumcyclohexane mono-(+)-tartrate with two equivalents of ethylchloroformate in the presence of a stochiometric amount of NaOH resulted in the formation of diethyl-(1R,2R)-cyclohexane-1,2-diyldicarbamat. Subsequent reduction with an excess of LiAlH4 gave colourless crystals of the title compound during bulb-to-bulb destillation. Contrary to a formerly published synthesis, (1R,2R)-N,N'-diemthylcyclohexane-1,2-diamine is not liquid but a highly hygroscopic crystalline solid.1H-NMR (500.1 MHz, CDCl3): 0.86–0.94 (m, 2H; CH2CHN), 1.13–1.19 (m, 2H; CH2CH2CHN), 1.61–1.67 (m, 2H; CH2CH2CHN), 1.68–1.75 (br, 2H, NH), 1.93–2.00 (m, 2H; CH2CHN), 2.02–2.06 (m, 2H; CHNCHN), 2.33 (s, 6H; NCH3).
13C-NMR (100.6 MHz, CDCl3): 25.0 (CH2CH2CHN), 30.8 (CH2CHN), 33.7 (CH3), 63.2 (CHN).
Refinement was accomplished by full-matrix least-squares methods (based on Fo2, SHELXL97); anisotropic thermal parameters for all non-H atoms in the final cycles; the H atoms were refined on a riding model in their ideal geometric positions, except for H(1 N) and H(2 N), which were refined independently.
Data collection: SMART (Bruker, 2001); cell
SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS90 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C8H18N2 | F(000) = 320 |
Mr = 142.24 | Dx = 1.038 Mg m−3 |
Orthorhombic, P212121 | Melting point: 313 K |
Hall symbol: P 2ac 2ab | Mo Kα radiation, λ = 0.71073 Å |
a = 7.552 (4) Å | θ = 2.8–25.0° |
b = 8.521 (5) Å | µ = 0.06 mm−1 |
c = 14.142 (8) Å | T = 173 K |
V = 910.0 (8) Å3 | Needle, colourless |
Z = 4 | 0.40 × 0.10 × 0.10 mm |
Bruker APEXCCD diffractometer | 953 independent reflections |
Radiation source: fine-focus sealed tube | 784 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.050 |
ω scans | θmax = 25.0°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | h = −8→8 |
Tmin = 0.912, Tmax = 0.982 | k = −10→9 |
4816 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.051 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.111 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0405P)2 + 0.258P] where P = (Fo2 + 2Fc2)/3 |
953 reflections | (Δ/σ)max < 0.001 |
101 parameters | Δρmax = 0.12 e Å−3 |
0 restraints | Δρmin = −0.12 e Å−3 |
C8H18N2 | V = 910.0 (8) Å3 |
Mr = 142.24 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 7.552 (4) Å | µ = 0.06 mm−1 |
b = 8.521 (5) Å | T = 173 K |
c = 14.142 (8) Å | 0.40 × 0.10 × 0.10 mm |
Bruker APEXCCD diffractometer | 953 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | 784 reflections with I > 2σ(I) |
Tmin = 0.912, Tmax = 0.982 | Rint = 0.050 |
4816 measured reflections |
R[F2 > 2σ(F2)] = 0.051 | 0 restraints |
wR(F2) = 0.111 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | Δρmax = 0.12 e Å−3 |
953 reflections | Δρmin = −0.12 e Å−3 |
101 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.8581 (4) | 0.3857 (3) | 0.28989 (19) | 0.0346 (7) | |
H1 | 0.8702 | 0.5000 | 0.3046 | 0.042* | |
C2 | 0.6814 (4) | 0.3316 (4) | 0.3294 (2) | 0.0477 (9) | |
H2A | 0.6785 | 0.3525 | 0.3982 | 0.057* | |
H2B | 0.6703 | 0.2168 | 0.3202 | 0.057* | |
C3 | 0.5242 (4) | 0.4129 (5) | 0.2827 (3) | 0.0608 (11) | |
H3A | 0.4128 | 0.3663 | 0.3067 | 0.073* | |
H3B | 0.5247 | 0.5256 | 0.2999 | 0.073* | |
C4 | 0.5304 (4) | 0.3970 (4) | 0.1764 (3) | 0.0528 (10) | |
H4A | 0.5131 | 0.2857 | 0.1586 | 0.063* | |
H4B | 0.4333 | 0.4590 | 0.1479 | 0.063* | |
C5 | 0.7059 (4) | 0.4540 (4) | 0.1385 (2) | 0.0458 (9) | |
H5A | 0.7174 | 0.5679 | 0.1509 | 0.055* | |
H5B | 0.7091 | 0.4381 | 0.0691 | 0.055* | |
C6 | 0.8605 (4) | 0.3685 (3) | 0.18321 (18) | 0.0331 (7) | |
H6 | 0.8514 | 0.2545 | 0.1671 | 0.040* | |
C7 | 1.0546 (5) | 0.3573 (4) | 0.4252 (2) | 0.0581 (10) | |
H7A | 1.0807 | 0.4699 | 0.4250 | 0.087* | |
H7B | 1.1583 | 0.2994 | 0.4480 | 0.087* | |
H7C | 0.9537 | 0.3367 | 0.4670 | 0.087* | |
C8 | 1.0664 (5) | 0.3767 (5) | 0.0508 (2) | 0.0644 (11) | |
H8A | 1.0492 | 0.2629 | 0.0465 | 0.097* | |
H8B | 1.1894 | 0.4025 | 0.0350 | 0.097* | |
H8C | 0.9866 | 0.4296 | 0.0065 | 0.097* | |
N1 | 1.0117 (3) | 0.3064 (4) | 0.32977 (18) | 0.0389 (7) | |
H1N | 0.985 (4) | 0.203 (4) | 0.329 (2) | 0.056 (10)* | |
N2 | 1.0282 (4) | 0.4287 (3) | 0.14644 (19) | 0.0413 (7) | |
H2N | 1.109 (4) | 0.391 (4) | 0.193 (2) | 0.045 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0385 (17) | 0.0216 (15) | 0.0438 (17) | 0.0043 (16) | 0.0006 (14) | 0.0013 (13) |
C2 | 0.044 (2) | 0.0420 (19) | 0.057 (2) | 0.0050 (17) | 0.0110 (17) | 0.0051 (17) |
C3 | 0.039 (2) | 0.053 (2) | 0.090 (3) | 0.0029 (19) | 0.010 (2) | 0.007 (2) |
C4 | 0.0335 (19) | 0.0403 (19) | 0.085 (3) | −0.0023 (17) | −0.0126 (19) | 0.0081 (19) |
C5 | 0.046 (2) | 0.0355 (19) | 0.056 (2) | −0.0032 (17) | −0.0131 (16) | 0.0054 (16) |
C6 | 0.0341 (16) | 0.0251 (16) | 0.0400 (17) | −0.0025 (15) | −0.0054 (14) | −0.0008 (13) |
C7 | 0.068 (2) | 0.055 (2) | 0.052 (2) | 0.010 (2) | −0.0109 (18) | −0.0046 (18) |
C8 | 0.057 (2) | 0.085 (3) | 0.052 (2) | −0.008 (2) | 0.0120 (18) | 0.005 (2) |
N1 | 0.0389 (15) | 0.0388 (16) | 0.0390 (15) | 0.0029 (14) | −0.0033 (13) | 0.0002 (13) |
N2 | 0.0370 (16) | 0.0514 (18) | 0.0355 (15) | −0.0048 (14) | 0.0004 (13) | 0.0048 (13) |
C1—N1 | 1.455 (4) | C5—H5A | 0.9900 |
C1—C6 | 1.516 (4) | C5—H5B | 0.9900 |
C1—C2 | 1.519 (4) | C6—N2 | 1.462 (4) |
C1—H1 | 1.0000 | C6—H6 | 1.0000 |
C2—C3 | 1.525 (4) | C7—N1 | 1.454 (4) |
C2—H2A | 0.9900 | C7—H7A | 0.9800 |
C2—H2B | 0.9900 | C7—H7B | 0.9800 |
C3—C4 | 1.511 (5) | C7—H7C | 0.9800 |
C3—H3A | 0.9900 | C8—N2 | 1.452 (4) |
C3—H3B | 0.9900 | C8—H8A | 0.9800 |
C4—C5 | 1.510 (4) | C8—H8B | 0.9800 |
C4—H4A | 0.9900 | C8—H8C | 0.9800 |
C4—H4B | 0.9900 | N1—H1N | 0.91 (4) |
C5—C6 | 1.515 (4) | N2—H2N | 0.96 (3) |
N1—C1—C6 | 109.4 (2) | C4—C5—H5B | 109.2 |
N1—C1—C2 | 114.6 (2) | C6—C5—H5B | 109.2 |
C6—C1—C2 | 110.3 (3) | H5A—C5—H5B | 107.9 |
N1—C1—H1 | 107.4 | N2—C6—C5 | 110.5 (2) |
C6—C1—H1 | 107.4 | N2—C6—C1 | 109.3 (2) |
C2—C1—H1 | 107.4 | C5—C6—C1 | 111.1 (3) |
C1—C2—C3 | 112.8 (3) | N2—C6—H6 | 108.6 |
C1—C2—H2A | 109.0 | C5—C6—H6 | 108.6 |
C3—C2—H2A | 109.0 | C1—C6—H6 | 108.6 |
C1—C2—H2B | 109.0 | N1—C7—H7A | 109.5 |
C3—C2—H2B | 109.0 | N1—C7—H7B | 109.5 |
H2A—C2—H2B | 107.8 | H7A—C7—H7B | 109.5 |
C4—C3—C2 | 111.4 (3) | N1—C7—H7C | 109.5 |
C4—C3—H3A | 109.3 | H7A—C7—H7C | 109.5 |
C2—C3—H3A | 109.3 | H7B—C7—H7C | 109.5 |
C4—C3—H3B | 109.3 | N2—C8—H8A | 109.5 |
C2—C3—H3B | 109.3 | N2—C8—H8B | 109.5 |
H3A—C3—H3B | 108.0 | H8A—C8—H8B | 109.5 |
C5—C4—C3 | 110.6 (3) | N2—C8—H8C | 109.5 |
C5—C4—H4A | 109.5 | H8A—C8—H8C | 109.5 |
C3—C4—H4A | 109.5 | H8B—C8—H8C | 109.5 |
C5—C4—H4B | 109.5 | C7—N1—C1 | 113.5 (2) |
C3—C4—H4B | 109.5 | C7—N1—H1N | 111 (2) |
H4A—C4—H4B | 108.1 | C1—N1—H1N | 106 (2) |
C4—C5—C6 | 111.9 (3) | C8—N2—C6 | 113.4 (3) |
C4—C5—H5A | 109.2 | C8—N2—H2N | 114.6 (19) |
C6—C5—H5A | 109.2 | C6—N2—H2N | 100.9 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···N2i | 0.91 (4) | 2.36 (4) | 3.250 (4) | 166 (3) |
Symmetry code: (i) −x+2, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C8H18N2 |
Mr | 142.24 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 173 |
a, b, c (Å) | 7.552 (4), 8.521 (5), 14.142 (8) |
V (Å3) | 910.0 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.06 |
Crystal size (mm) | 0.40 × 0.10 × 0.10 |
Data collection | |
Diffractometer | Bruker APEXCCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 1999) |
Tmin, Tmax | 0.912, 0.982 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4816, 953, 784 |
Rint | 0.050 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.051, 0.111, 1.08 |
No. of reflections | 953 |
No. of parameters | 101 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.12, −0.12 |
Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 1999), SHELXS90 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···N2i | 0.91 (4) | 2.36 (4) | 3.250 (4) | 166 (3) |
Symmetry code: (i) −x+2, y−1/2, −z+1/2. |
Acknowledgements
We are grateful to the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie (FCI). VHG thanks the FCI, and CD the Studienstiftung des deutschen Volkes for a doctoral scholarship.
References
Bruker (1999). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cole, A. P., Mahadevan, V., Mirica, L. M., Ottenwaelder, X. & Stack, T. D. P. (2005). Inorg. Chem. 44, 7345–7364. Web of Science CSD CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Kizirian, J.-C., Cabello, N., Pinchard, L., Caille, J.-C. & Alexakis, A. (2005). Tetrahedron, 61, 8939–8946. Web of Science CrossRef CAS Google Scholar
Larrox, J. F. & Jacobsen, E. N. (1994). J. Org. Chem. 59, 1939–1942. Google Scholar
Seebach, D., Kalinowski, H.-O., Bastani, B., Crass, G., Daum, H., Dörr, H., DuPreez, N. P., Ehrig, V., Langer, W., Nüssler, C., Oei, H.-A. & Schmidt, M. (1977). Helv. Chim. Acta, 60, 301–325. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Strohmann, C., Däschlein, C. & Auer, D. (2006). J. Am. Chem. Soc. 128, 704–705. Web of Science CSD CrossRef PubMed CAS Google Scholar
Strohmann, C., Dilsky, S. & Strohfeldt, K. (2006). Organometallics, 25, 41–44. Web of Science CSD CrossRef CAS Google Scholar
Strohmann, C. & Gessner, V. H. (2007). Angew. Chem. Int. Ed. 46, 4566–4569. Web of Science CSD CrossRef CAS Google Scholar
Strohmann, C., Strohfeldt, K. & Schildbach, D. (2003). J. Am. Chem. Soc. 125, 13672–13673. Web of Science CSD CrossRef PubMed CAS Google Scholar
Strohmann, C., Strohfeldt, K., Schildbach, D., McGrath, M. J. & O'Brien, P. (2004). Organometallics, 23, 5389–5391. Web of Science CSD CrossRef CAS Google Scholar
Strohmmann, C. & Gessner, V. H. (2007a). Angew. Chem. Int. Ed. 46, 4566–4569. Web of Science CSD CrossRef Google Scholar
Strohmmann, C. & Gessner, V. H. (2007b). J. Am. Chem. Soc. 129, 8952–8953. Web of Science CSD CrossRef PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Due to their strong coordination ability diamine bases have become powerful agents in various fields of chemistry e.g. for the deaggregation of organolithium compounds or the coordination of transition metals. Especially chiral amines have attracted special attention in asymmetric synthesis. Thereby, (1R,2R)-N,N'-dimethylcyclohexane-1,2-diamine is an important chiral amine, which serves as a starting material for the synthesis of numerous diamine bases with a cyclohexane framework. The amine crystallizes at room temperature as colourless needles in the orthorhombic crystal system, space group P212121. The asymmetric unit contains one molecule of the C2 symmetric amine (see figure 1).
In the unit cell molecules are interconnected via hydrogen bonding to give infinite layers (see figure 2). H atoms (H1N) are arranged in direction to the nitrogen atom (N2) of an adjacent molecule (N1—HN1—N2' angle: 166 (3)°). However, the long N1—N2' distance of 3.250 (4) Å and the short N1—HN1 distance of 0.91 (4) Å indicate weak N–H···N hydrogen bonds.