metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m531-m532

(2,2′-Bi­pyridine-κ2N,N′){[(3-meth­­oxy-2-oxido­benzyl­­idene-κO2)hydrazono]methano­lato-κ2N2,O}di­methyl­tin(IV)

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, bDepartment of Physics, University of Sargodha, Sagrodha, Pakistan, cChemistry Division, Pakistan Institute of Nuclear Science and Technology, PO Nilore, Islamabad, Pakistan, and dDepartment of Chemistry, Government College University, Lahore, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 28 February 2008; accepted 5 March 2008; online 7 March 2008)

In the crystal structure of the title compound, [Sn(CH3)2(C9H8N2O3)(C10H8N2)], the Sn atom exhibits a penta­gonal bipyramidal coordination geometry defined by two C, three N and two O atoms. The bond distances for Sn—C, Sn—N and Sn—O are in the ranges 2.097 (3)–2.098 (3), 2.298 (2)–2.623 (2) and 2.157 (2)–2.266 (2) Å, respectively. The mol­ecular structure of the monomeric compound is stabilized by three intra­molecular C—H⋯O hydrogen bonds, all involving bipyridine C—H groups.

Related literature

For related literature, see: Chen et al. (2006[Chen, S.-W., Yin, H.-D. & Wang, D.-Q. (2006). Acta Cryst. E62, m1654-m1655.]); Diouf et al. (2004[Diouf, O., Gaye, M., Sall, A. S. & Slebodnick, C. (2004). Z. Kristallogr. 219, 435-436.]); Shuja et al. (2007a[Shuja, S., Ali, S., Khalid, N., Broker, G. A. & Tiekink, E. R. T. (2007a). Acta Cryst. E63, m1025-m1026.],b[Shuja, S., Ali, S., Meetsma, A., Broker, G. A. & Tiekink, E. R. T. (2007b). Acta Cryst. E63, m1130-m1132.], 2007c[Shuja, S., Ali, S., Khalid, N. & Parvez, M. (2007c). Acta Cryst. E63, o879-o880.]). For bond-length data, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(CH3)2(C9H8N2O3)(C10H8N2)]

  • Mr = 497.12

  • Monoclinic, P 21 /c

  • a = 12.3834 (3) Å

  • b = 9.9094 (2) Å

  • c = 17.1730 (4) Å

  • β = 103.302 (1)°

  • V = 2050.80 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.28 mm−1

  • T = 296 (2) K

  • 0.25 × 0.18 × 0.15 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.749, Tmax = 0.820

  • 24401 measured reflections

  • 5524 independent reflections

  • 4407 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.066

  • S = 1.04

  • 5524 reflections

  • 280 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.12 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Selected geometric parameters (Å, °)

Sn1—C9 2.097 (3)
Sn1—C10 2.098 (3)
Sn1—O1 2.1572 (14)
Sn1—O2 2.2658 (15)
Sn1—N1 2.2980 (18)
Sn1—N3 2.5825 (18)
Sn1—N4 2.6231 (19)
C9—Sn1—C10 169.76 (11)
C9—Sn1—O1 93.97 (9)
C10—Sn1—O1 90.20 (9)
C9—Sn1—O2 94.23 (9)
C10—Sn1—O2 87.60 (11)
O1—Sn1—O2 145.23 (6)
C9—Sn1—N1 94.39 (9)
C10—Sn1—N1 95.65 (10)
O1—Sn1—N1 77.12 (6)
O2—Sn1—N1 68.60 (6)
C9—Sn1—N3 80.37 (9)
C10—Sn1—N3 90.33 (9)
O1—Sn1—N3 138.83 (6)
O2—Sn1—N3 75.90 (6)
N1—Sn1—N3 143.65 (6)
O1—Sn1—N4 76.91 (6)
O2—Sn1—N4 136.43 (6)
N1—Sn1—N4 153.65 (6)
N3—Sn1—N4 62.68 (6)
N4—Sn1—C9 91.77 (9)
N4—Sn1—C10 80.06 (10)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O2 0.93 2.40 2.993 (3) 121
C21—H21⋯O1 0.93 2.36 2.968 (3) 123
C21—H21⋯O3 0.93 2.50 3.390 (3) 161

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Diorganotin(IV) complexes of Schiff base ligands derived from 3-methoxysalicylaldehyde and hydrazine derivatives are limited in number (Chen et al., 2006, Diouf et al., 2004). In continuation of our efforts to synthesize various Schiff base ligands of substituted salicylaldehydes with hydrazines or amino acids as well as the corresponding organotin derivatives (Shuja et al., 2007a, 2007b, 2007c), we herein report the structure of the title compound (I).

In the monomeric structure of the title compound (I), the coordination around Sn consists of two O-atoms and one N-atom of the Schiff base ligand [N-Formyl-N'-(3-methoxy-2-oxidobenzylidene)hydrazine], two N-atoms of 2,2'-bipyridine and two C-atoms of methyl groups. The shortest bond of Sn is realised with the methyl C-atoms showing nearly equal values (2.097 (3) and 2.098 (3) Å) corresponding very well with the bond lengths observed in [(3-Methoxy-2-oxidobenzaldehyde benzoylhydrazonato)dimethyltin(IV)] (Chen et al., 2006). The Sn1—O1 bond distance of 2.157 (1) Å is greater than the values reported for [diphenyl(methoxy-N-salicylideneacetylhydrazonato)tin(IV)] (2.068 (2) Å, Diouf et al., 2004 and 2.131 (3) Å, Chen et al., 2006). The same is true for the bonds Sn1—O2 (2.266 (2) Å) and Sn1—N1 (2.298 (2) Å) also being longer compared to those previously reported (Diouf et al., 2004, Chen et al., 2006). These observations are most probably due to the additional coordination of bipyridine to tin. A CCDC search (Allen, 2002) showed that the title compund is indeed the first structurally characterized tin organyl with a bipyridine ligand attached to tin. The bond distances of N-atoms of bipyridine measure to 2.583 (2) Å (Sn1—N3) and 2.623 (2) Å (Sn1—N4), respectively. The bond distances in the hydrazine ligand are comparable with those reported for {[N-Formyl-N'-(2-oxidobenzylidene)hydrazine-κ3O,N,O']diphenyl tin(IV)} (Shuja et al., 2007b). The bond angles around Sn1 are in the range between 68.60 (6)° and 169.8 (1)°. The dihedral angle between (O1/C1/C2/C3/C4 /C5/C6/C7) and (N1/N2/C8/O2) is 36.0 (1)° while the angle between the rings (N3/C12/C13/C14/C15/C16) and (N4/C17/C18/C19/C20/C21) is 17.0 (1)°. The molecular structure of the title compound as well as the observed conformation are stabilized by three intramolecular H-bonds of C—H···O type (Fig. 1) all involving bipyridine C–H functions (Table 2). The closest intermolecular contact of molecules is at a distance of 3.208 (3) Å between O1···C15i [symmetry code: i = x, -y + 1/2, z + 1/2]. A postive electron peak corresponding to 1.12 Å-3 remains at a distance of 0.93 Å near Sn1.

Related literature top

For related literature, see: Chen et al. (2006); Diouf et al. (2004); Shuja et al. (2007a,b, 2007c). For bond-length data, see: Allen (2002).

Experimental top

N-(2-hydroxy-3-methoxy-benzylidene)formylhydrazine (0.58 g, 3 mmol) and Et3N (0.86 ml, 6 mmol) were added to anhydrous toluene (100 ml) in a round bottom flask equipped with a reflux condenser. Dimethyltin(IV) dichloride (0.66 g, 3 mmol) dissolved in anhydrous toluene (20 ml) and 2,2'-bipyridine (0.47 g, 3 mmol) were then added. The reaction mixture was stirred at room temperature for 5 hr and allowed to stand overnight. The Et3NHCl salt formed during the reaction was filtered off and the resulting clear yellow solution was evaporated with a rotary evaporator under reduced pressure. Recrystallization from chloroform yielded crystals suitable for X-ray diffraction.

Refinement top

The coordinates of H-atoms of methyl carbons attached to tin were refined freely. The remaining H atoms were positioned geometrically, with C—H = 0.93 and 0.97 Å for aromatic and methyl H, and constrained to ride on their parent atoms. The Uiso(H) = xUeq(C), where x = 1.5 for methyl H, and x=1.2 for arromatic H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. ORTEP-3 for Windows (Farrugia, 1997) drawing of the title compound, C21H22N4O3Sn with the atom numbering scheme. The thermal ellipsoids are drawn at the 30% probability level. H-atoms are shown by small circles of arbitrary radii. The intramolecular H-bonding is shown by dashed lines.
[Figure 2] Fig. 2. The unit cell packing of (I) (Spek, 2003), showing that there is no intermolecular hydrogen bonding.
(I) top
Crystal data top
[Sn(CH3)2(C9H8N2O3)(C10H8N2)]F(000) = 1000
Mr = 497.12Dx = 1.610 Mg m3
Monoclinic, P21/cMo Kα radiation radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4407 reflections
a = 12.3834 (3) Åθ = 1.7–29.2°
b = 9.9094 (2) ŵ = 1.28 mm1
c = 17.1730 (4) ÅT = 296 K
β = 103.302 (1)°Prismatic, yellow
V = 2050.80 (8) Å30.25 × 0.18 × 0.15 mm
Z = 4
Data collection top
Bruker KappaAPEXII CCD
diffractometer
5524 independent reflections
Radiation source: fine-focus sealed tube4407 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 7.3 pixels mm-1θmax = 29.2°, θmin = 1.7°
ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1312
Tmin = 0.749, Tmax = 0.820l = 2323
24401 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0299P)2 + 0.9401P]
where P = (Fo2 + 2Fc2)/3
5524 reflections(Δ/σ)max = 0.003
280 parametersΔρmax = 1.12 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Sn(CH3)2(C9H8N2O3)(C10H8N2)]V = 2050.80 (8) Å3
Mr = 497.12Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.3834 (3) ŵ = 1.28 mm1
b = 9.9094 (2) ÅT = 296 K
c = 17.1730 (4) Å0.25 × 0.18 × 0.15 mm
β = 103.302 (1)°
Data collection top
Bruker KappaAPEXII CCD
diffractometer
5524 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4407 reflections with I > 2σ(I)
Tmin = 0.749, Tmax = 0.820Rint = 0.028
24401 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 1.12 e Å3
5524 reflectionsΔρmin = 0.41 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.268225 (12)0.389388 (13)1.008997 (8)0.03310 (5)
O10.22028 (13)0.22099 (15)1.07319 (9)0.0415 (4)
O20.31515 (18)0.61079 (15)1.01551 (11)0.0514 (4)
O30.11847 (15)0.01098 (16)1.07144 (11)0.0528 (4)
N10.23627 (17)0.48884 (18)1.12248 (11)0.0425 (4)
N20.2877 (2)0.6145 (2)1.14445 (14)0.0565 (6)
N30.31169 (16)0.43881 (18)0.87174 (11)0.0383 (4)
N40.29433 (16)0.18153 (18)0.92055 (11)0.0408 (4)
C10.13973 (19)0.2149 (2)1.11147 (13)0.0387 (5)
C20.0823 (2)0.0913 (2)1.11224 (14)0.0442 (5)
C30.0043 (2)0.0808 (3)1.15032 (17)0.0594 (7)
H30.04320.00011.14820.071*
C40.0336 (3)0.1904 (3)1.19174 (18)0.0671 (8)
H40.09210.18291.21710.081*
C50.0230 (2)0.3077 (3)1.19522 (16)0.0572 (7)
H50.00410.37951.22440.069*
C60.1101 (2)0.3234 (2)1.15545 (13)0.0425 (5)
C70.1685 (2)0.4502 (3)1.16414 (14)0.0467 (6)
H70.15590.50901.20330.056*
C80.3242 (2)0.6617 (3)1.08479 (16)0.0556 (7)
H80.36200.74341.09390.067*
C90.1069 (2)0.4231 (3)0.94090 (17)0.0460 (6)
H9A0.056 (3)0.407 (3)0.969 (2)0.069*
H9B0.093 (3)0.370 (3)0.896 (2)0.069*
H9C0.099 (2)0.506 (3)0.9240 (18)0.069*
C100.4361 (2)0.3463 (3)1.05755 (18)0.0523 (6)
H10A0.477 (3)0.366 (3)1.027 (2)0.078*
H10B0.444 (3)0.252 (3)1.0710 (18)0.078*
H10C0.463 (3)0.399 (3)1.104 (2)0.078*
C110.0699 (3)0.1410 (3)1.07460 (19)0.0639 (8)
H11A0.10230.20401.04410.096*
H11B0.00860.13581.05270.096*
H11C0.08350.17071.12920.096*
C120.2997 (2)0.5636 (2)0.84114 (15)0.0469 (6)
H120.28180.63250.87270.056*
C130.3121 (2)0.5960 (2)0.76579 (15)0.0510 (6)
H130.30210.68400.74680.061*
C140.3398 (2)0.4948 (3)0.71961 (15)0.0557 (7)
H140.34980.51340.66870.067*
C150.3526 (2)0.3653 (3)0.74940 (14)0.0504 (6)
H150.37170.29570.71880.060*
C160.33668 (17)0.3393 (2)0.82525 (12)0.0363 (4)
C170.34066 (18)0.2002 (2)0.85795 (13)0.0378 (5)
C180.3865 (2)0.0940 (3)0.82431 (16)0.0530 (6)
H180.41850.10880.78110.064*
C190.3843 (3)0.0340 (3)0.85548 (18)0.0630 (8)
H190.41560.10600.83380.076*
C200.3361 (3)0.0541 (3)0.91812 (17)0.0580 (7)
H200.33280.13990.93930.070*
C210.2919 (2)0.0563 (2)0.94976 (16)0.0506 (6)
H210.25930.04290.99280.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.03738 (9)0.02873 (8)0.03378 (8)0.00102 (6)0.00941 (6)0.00056 (5)
O10.0526 (9)0.0335 (8)0.0437 (9)0.0000 (7)0.0223 (7)0.0018 (6)
O20.0729 (12)0.0353 (8)0.0494 (10)0.0122 (8)0.0214 (9)0.0058 (7)
O30.0625 (11)0.0398 (9)0.0580 (11)0.0116 (8)0.0180 (9)0.0027 (8)
N10.0546 (12)0.0355 (9)0.0383 (10)0.0012 (8)0.0128 (9)0.0050 (8)
N20.0823 (17)0.0419 (11)0.0469 (12)0.0131 (10)0.0181 (12)0.0141 (9)
N30.0462 (11)0.0341 (9)0.0345 (9)0.0023 (8)0.0091 (8)0.0016 (7)
N40.0515 (11)0.0322 (9)0.0417 (10)0.0015 (8)0.0171 (9)0.0008 (8)
C10.0434 (12)0.0430 (12)0.0301 (10)0.0003 (9)0.0093 (9)0.0070 (9)
C20.0502 (14)0.0445 (13)0.0379 (12)0.0018 (10)0.0101 (11)0.0088 (9)
C30.0587 (17)0.0640 (17)0.0588 (17)0.0135 (13)0.0204 (14)0.0175 (13)
C40.0664 (19)0.076 (2)0.0713 (19)0.0012 (15)0.0403 (16)0.0179 (16)
C50.0649 (17)0.0664 (18)0.0490 (15)0.0104 (14)0.0311 (13)0.0086 (12)
C60.0502 (13)0.0465 (13)0.0336 (11)0.0046 (10)0.0154 (10)0.0057 (9)
C70.0622 (16)0.0455 (13)0.0354 (12)0.0060 (11)0.0176 (11)0.0026 (10)
C80.0755 (19)0.0366 (12)0.0558 (16)0.0149 (12)0.0172 (14)0.0122 (11)
C90.0414 (13)0.0469 (13)0.0488 (15)0.0023 (11)0.0085 (11)0.0030 (11)
C100.0409 (14)0.0609 (16)0.0540 (16)0.0022 (12)0.0089 (12)0.0071 (13)
C110.075 (2)0.0450 (14)0.0666 (18)0.0154 (13)0.0046 (15)0.0119 (13)
C120.0601 (16)0.0368 (11)0.0420 (13)0.0029 (11)0.0080 (11)0.0053 (10)
C130.0586 (16)0.0459 (13)0.0443 (13)0.0095 (11)0.0030 (12)0.0123 (10)
C140.0630 (17)0.0678 (17)0.0354 (13)0.0094 (13)0.0095 (12)0.0131 (12)
C150.0595 (16)0.0587 (15)0.0349 (12)0.0012 (12)0.0147 (11)0.0012 (10)
C160.0359 (11)0.0404 (11)0.0324 (10)0.0029 (9)0.0072 (9)0.0001 (9)
C170.0413 (12)0.0374 (11)0.0341 (11)0.0010 (9)0.0075 (9)0.0027 (8)
C180.0666 (18)0.0526 (15)0.0438 (14)0.0124 (12)0.0208 (13)0.0028 (11)
C190.086 (2)0.0432 (14)0.0623 (17)0.0189 (14)0.0222 (16)0.0097 (12)
C200.079 (2)0.0317 (12)0.0644 (17)0.0067 (12)0.0197 (15)0.0009 (12)
C210.0698 (17)0.0313 (11)0.0570 (15)0.0013 (11)0.0278 (13)0.0019 (10)
Geometric parameters (Å, º) top
Sn1—C92.097 (3)C7—H70.9300
Sn1—C102.098 (3)C8—H80.9300
Sn1—O12.1572 (14)C9—H9A0.90 (3)
Sn1—O22.2658 (15)C9—H9B0.92 (3)
Sn1—N12.2980 (18)C9—H9C0.87 (3)
Sn1—N32.5825 (18)C10—H10A0.84 (3)
Sn1—N42.6231 (19)C10—H10B0.96 (3)
O1—C11.316 (2)C10—H10C0.95 (3)
O2—C81.273 (3)C11—H11A0.9600
O3—C21.365 (3)C11—H11B0.9600
O3—C111.428 (3)C11—H11C0.9600
N1—C71.280 (3)C12—C131.376 (3)
N1—N21.410 (3)C12—H120.9300
N2—C81.298 (3)C13—C141.369 (4)
N3—C121.338 (3)C13—H130.9300
N3—C161.349 (3)C14—C151.378 (3)
N4—C211.341 (3)C14—H140.9300
N4—C171.343 (3)C15—C161.385 (3)
C1—C61.410 (3)C15—H150.9300
C1—C21.417 (3)C16—C171.486 (3)
C2—C31.383 (3)C17—C181.383 (3)
C3—C41.391 (4)C18—C191.379 (4)
C3—H30.9300C18—H180.9300
C4—C51.352 (4)C19—C201.360 (4)
C4—H40.9300C19—H190.9300
C5—C61.412 (3)C20—C211.389 (3)
C5—H50.9300C20—H200.9300
C6—C71.441 (4)C21—H210.9300
C9—Sn1—C10169.76 (11)N1—C7—H7117.2
C9—Sn1—O193.97 (9)C6—C7—H7117.2
C10—Sn1—O190.20 (9)O2—C8—N2128.5 (2)
C9—Sn1—O294.23 (9)O2—C8—H8115.7
C10—Sn1—O287.60 (11)N2—C8—H8115.7
O1—Sn1—O2145.23 (6)Sn1—C9—H9A111 (2)
C9—Sn1—N194.39 (9)Sn1—C9—H9B110 (2)
C10—Sn1—N195.65 (10)H9A—C9—H9B110 (3)
O1—Sn1—N177.12 (6)Sn1—C9—H9C110 (2)
O2—Sn1—N168.60 (6)H9A—C9—H9C109 (3)
C9—Sn1—N380.37 (9)H9B—C9—H9C106 (3)
C10—Sn1—N390.33 (9)Sn1—C10—H10A113 (2)
O1—Sn1—N3138.83 (6)Sn1—C10—H10B109.5 (19)
O2—Sn1—N375.90 (6)H10A—C10—H10B109 (3)
N1—Sn1—N3143.65 (6)Sn1—C10—H10C110 (2)
O1—Sn1—N476.91 (6)H10A—C10—H10C105 (3)
O2—Sn1—N4136.43 (6)H10B—C10—H10C110 (3)
N1—Sn1—N4153.65 (6)O3—C11—H11A109.5
N3—Sn1—N462.68 (6)O3—C11—H11B109.5
N4—Sn1—C991.77 (9)H11A—C11—H11B109.5
N4—Sn1—C1080.06 (10)O3—C11—H11C109.5
Sn1—N4—C17119.20 (14)H11A—C11—H11C109.5
Sn1—N4—C21119.56 (14)H11B—C11—H11C109.5
C17—N4—C21118.5 (2)N3—C12—C13124.0 (2)
C1—O1—Sn1128.33 (14)N3—C12—H12118.0
C8—O2—Sn1113.35 (15)C13—C12—H12118.0
C2—O3—C11117.4 (2)C14—C13—C12118.1 (2)
C7—N1—N2115.4 (2)C14—C13—H13120.9
C7—N1—Sn1127.50 (16)C12—C13—H13120.9
N2—N1—Sn1116.77 (14)C13—C14—C15119.3 (2)
C8—N2—N1109.0 (2)C13—C14—H14120.3
C12—N3—C16117.6 (2)C15—C14—H14120.3
C12—N3—Sn1120.40 (16)C14—C15—C16119.5 (2)
C16—N3—Sn1121.75 (14)C14—C15—H15120.2
C21—N4—C17118.52 (19)C16—C15—H15120.2
O1—C1—C6123.5 (2)N3—C16—C15121.5 (2)
O1—C1—C2119.0 (2)N3—C16—C17116.54 (19)
C6—C1—C2117.4 (2)C15—C16—C17121.9 (2)
O3—C2—C3124.7 (2)N4—C17—C18121.4 (2)
O3—C2—C1114.3 (2)N4—C17—C16116.58 (19)
C3—C2—C1121.0 (2)C18—C17—C16122.0 (2)
C2—C3—C4120.3 (3)C19—C18—C17119.4 (2)
C2—C3—H3119.9C19—C18—H18120.3
C4—C3—H3119.9C17—C18—H18120.3
C5—C4—C3120.1 (2)C20—C19—C18119.6 (2)
C5—C4—H4120.0C20—C19—H19120.2
C3—C4—H4120.0C18—C19—H19120.2
C4—C5—C6121.3 (3)C19—C20—C21118.6 (2)
C4—C5—H5119.4C19—C20—H20120.7
C6—C5—H5119.4C21—C20—H20120.7
C1—C6—C5119.8 (2)N4—C21—C20122.5 (2)
C1—C6—C7122.3 (2)N4—C21—H21118.7
C5—C6—C7117.8 (2)C20—C21—H21118.7
N1—C7—C6125.5 (2)
C9—Sn1—O1—C151.1 (2)O3—C2—C3—C4178.7 (3)
C10—Sn1—O1—C1138.3 (2)C1—C2—C3—C42.8 (4)
O2—Sn1—O1—C152.2 (2)C2—C3—C4—C50.3 (5)
N1—Sn1—O1—C142.51 (18)C3—C4—C5—C61.9 (5)
N3—Sn1—O1—C1131.00 (17)O1—C1—C6—C5179.6 (2)
C9—Sn1—O2—C8108.9 (2)C2—C1—C6—C52.6 (3)
C10—Sn1—O2—C881.2 (2)O1—C1—C6—C71.9 (4)
O1—Sn1—O2—C85.7 (3)C2—C1—C6—C7175.1 (2)
N1—Sn1—O2—C815.83 (19)C4—C5—C6—C10.4 (4)
N3—Sn1—O2—C8172.1 (2)C4—C5—C6—C7178.1 (3)
C9—Sn1—N1—C763.7 (2)N2—N1—C7—C6177.0 (2)
C10—Sn1—N1—C7118.3 (2)Sn1—N1—C7—C610.3 (4)
O1—Sn1—N1—C729.4 (2)C1—C6—C7—N114.3 (4)
O2—Sn1—N1—C7156.5 (2)C5—C6—C7—N1168.0 (2)
N3—Sn1—N1—C7143.42 (19)Sn1—O2—C8—N216.6 (4)
C9—Sn1—N1—N2108.85 (18)N1—N2—C8—O22.1 (4)
C10—Sn1—N1—N269.17 (19)C16—N3—C12—C130.5 (4)
O1—Sn1—N1—N2158.07 (18)Sn1—N3—C12—C13174.4 (2)
O2—Sn1—N1—N216.02 (17)N3—C12—C13—C140.8 (4)
N3—Sn1—N1—N229.1 (2)C12—C13—C14—C150.9 (4)
C7—N1—N2—C8159.7 (2)C13—C14—C15—C160.3 (4)
Sn1—N1—N2—C813.8 (3)C12—N3—C16—C151.8 (3)
C9—Sn1—N3—C1270.26 (19)Sn1—N3—C16—C15175.57 (18)
C10—Sn1—N3—C12114.1 (2)C12—N3—C16—C17175.2 (2)
O1—Sn1—N3—C12155.26 (17)Sn1—N3—C16—C171.5 (3)
O2—Sn1—N3—C1226.62 (18)C14—C15—C16—N31.7 (4)
N1—Sn1—N3—C1214.0 (2)C14—C15—C16—C17175.1 (2)
C9—Sn1—N3—C16103.34 (18)C21—N4—C17—C180.8 (4)
C10—Sn1—N3—C1672.34 (18)C21—N4—C17—C16177.2 (2)
O1—Sn1—N3—C1618.3 (2)N3—C16—C17—N415.3 (3)
O2—Sn1—N3—C16159.78 (18)C15—C16—C17—N4161.8 (2)
N1—Sn1—N3—C16172.37 (15)N3—C16—C17—C18166.7 (2)
Sn1—O1—C1—C636.9 (3)C15—C16—C17—C1816.3 (4)
Sn1—O1—C1—C2146.18 (17)N4—C17—C18—C190.2 (4)
C11—O3—C2—C35.9 (4)C16—C17—C18—C19177.7 (3)
C11—O3—C2—C1175.5 (2)C17—C18—C19—C200.8 (5)
O1—C1—C2—O30.1 (3)C18—C19—C20—C211.1 (5)
C6—C1—C2—O3177.2 (2)C17—N4—C21—C200.5 (4)
O1—C1—C2—C3178.7 (2)C19—C20—C21—N40.5 (5)
C6—C1—C2—C34.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O20.932.402.993 (3)121
C21—H21···O10.932.362.968 (3)123
C21—H21···O30.932.503.390 (3)161

Experimental details

Crystal data
Chemical formula[Sn(CH3)2(C9H8N2O3)(C10H8N2)]
Mr497.12
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.3834 (3), 9.9094 (2), 17.1730 (4)
β (°) 103.302 (1)
V3)2050.80 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.28
Crystal size (mm)0.25 × 0.18 × 0.15
Data collection
DiffractometerBruker KappaAPEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.749, 0.820
No. of measured, independent and
observed [I > 2σ(I)] reflections
24401, 5524, 4407
Rint0.028
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.066, 1.04
No. of reflections5524
No. of parameters280
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.12, 0.41

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Sn1—C92.097 (3)Sn1—N12.2980 (18)
Sn1—C102.098 (3)Sn1—N32.5825 (18)
Sn1—O12.1572 (14)Sn1—N42.6231 (19)
Sn1—O22.2658 (15)
C9—Sn1—C10169.76 (11)C10—Sn1—N390.33 (9)
C9—Sn1—O193.97 (9)O1—Sn1—N3138.83 (6)
C10—Sn1—O190.20 (9)O2—Sn1—N375.90 (6)
C9—Sn1—O294.23 (9)N1—Sn1—N3143.65 (6)
C10—Sn1—O287.60 (11)O1—Sn1—N476.91 (6)
O1—Sn1—O2145.23 (6)O2—Sn1—N4136.43 (6)
C9—Sn1—N194.39 (9)N1—Sn1—N4153.65 (6)
C10—Sn1—N195.65 (10)N3—Sn1—N462.68 (6)
O1—Sn1—N177.12 (6)N4—Sn1—C991.77 (9)
O2—Sn1—N168.60 (6)N4—Sn1—C1080.06 (10)
C9—Sn1—N380.37 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O20.932.402.993 (3)121
C21—H21···O10.932.362.968 (3)123
C21—H21···O30.932.503.390 (3)161
 

Acknowledgements

The authors acknowledge the Higher Education Com­mision, Islamabad, Pakistan, for funding the purchase of the diffractometer and for financial support to SS for PhD under the Indigenous Scholarship Scheme (PIN Code: 042–111889).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationChen, S.-W., Yin, H.-D. & Wang, D.-Q. (2006). Acta Cryst. E62, m1654–m1655.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDiouf, O., Gaye, M., Sall, A. S. & Slebodnick, C. (2004). Z. Kristallogr. 219, 435–436.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShuja, S., Ali, S., Khalid, N., Broker, G. A. & Tiekink, E. R. T. (2007a). Acta Cryst. E63, m1025–m1026.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShuja, S., Ali, S., Khalid, N. & Parvez, M. (2007c). Acta Cryst. E63, o879–o880.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShuja, S., Ali, S., Meetsma, A., Broker, G. A. & Tiekink, E. R. T. (2007b). Acta Cryst. E63, m1130–m1132.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m531-m532
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds