metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m527-m528

(Heptanedioato-κ2O,O′)bis­­(1,10-phenanthroline-κ2N,N′)zinc(II) hexa­hydrate

aState Key Laboratory, Base of Novel Functional Materials and Preparation Science, Institute of Solid Materials Chemistry, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People's Republic of China
*Correspondence e-mail: leikeweipublic@hotmail.com

(Received 28 December 2007; accepted 4 March 2008; online 7 March 2008)

In the crystal structure of the title compound, [Zn(C7H10O4)(C12H8N2)2]·6H2O, the ZnII atom is coordinated by two carboxyl­ate O atoms of a mono-bidentate chelating pimelate anion (pimelic acid is hepta­nedioic acid) and four N atoms of two phenanthroline ligands, forming a considerably distorted octa­hedral ZnN4O2 coordination geometry. The complexes are assembled into a three-dimensional network via C—H⋯O, C—H⋯π and ππ inter­actions. The mean inter­planar distance between adjacent phenanthroline ligands is 3.399 (2) Å.

Related literature

For related literature, see: Ge & Zheng (2005[Ge, C.-X. & Zheng, Y.-Q. (2005). J. Coord. Chem. 58, 1199-1208.]); Wei et al. (2002[Wei, D.-Y., Zheng, Y.-Q. & Lin, J.-L. (2002). Z. Anorg. Allg. Chem. 628, 2005-2012.]); Zheng (2004[Zheng, Y.-Q. (2004). Z. Kristallogr. NCS, 219, 427-428.]); Zheng, Kong & Chen (2003[Zheng, Y.-Q., Kong, Z.-P. & Chen, K. (2003). Z. Kristallogr. New Cryst. Struct. 218, 225-226.]); Zheng, Lin & Kong (2003[Zheng, Y.-Q., Lin, J.-L. & Kong, Z.-P. (2003). Z. Anorg. Allg. Chem. 629, 357-361.]); Zheng et al. (2001[Zheng, Y.-Q., Lin, J.-L. & Sun, J. (2001). Z. Anorg. Allg. Chem. 627, 1997-2001.], 2002[Zheng, Y.-Q., Liu, W.-H. & Lin, J.-L. (2002). Z. Anorg. Allg. Chem. 628, 1401-1405.]); Zheng & Ying (2004[Zheng, Y.-Q. & Ying, E.-B. (2004). Z. Kristallogr. New Cryst. Struct 219, 423-424.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C7H10O4)(C12H8N2)2]·6H2O

  • Mr = 692.02

  • Monoclinic, P 21 /n

  • a = 9.2050 (18) Å

  • b = 21.241 (4) Å

  • c = 16.598 (3) Å

  • β = 96.48 (3)°

  • V = 3224.6 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.82 mm−1

  • T = 296 (2) K

  • 0.43 × 0.26 × 0.22 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.697, Tmax = 0.834

  • 9226 measured reflections

  • 7393 independent reflections

  • 3956 reflections with I > 2σ(I)

  • Rint = 0.043

  • 3 standard reflections every 97 reflections intensity decay: no

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.117

  • S = 1.01

  • 7393 reflections

  • 453 parameters

  • 18 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn—N4 2.128 (3)
Zn—N3 2.129 (3)
Zn—N2 2.148 (3)
Zn—N1 2.167 (3)
Zn—O1 2.178 (3)
Zn—O2 2.224 (3)
N4—Zn—N3 78.26 (11)
N4—Zn—N2 99.28 (11)
N3—Zn—N2 168.21 (11)
N4—Zn—N1 109.01 (11)
N3—Zn—N1 92.26 (11)
N2—Zn—N1 77.55 (11)
N4—Zn—O1 102.80 (10)
N3—Zn—O1 104.68 (10)
N2—Zn—O1 87.11 (10)
N1—Zn—O1 146.42 (10)
N4—Zn—O2 156.42 (10)
N3—Zn—O2 90.89 (10)
N2—Zn—O2 95.35 (10)
N1—Zn—O2 92.10 (10)
O1—Zn—O2 59.45 (9)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O8i 0.84 (2) 1.95 (2) 2.776 (5) 165 (5)
O5—H5B⋯O10 0.84 (4) 1.90 (4) 2.733 (6) 170 (4)
O6—H6A⋯O4ii 0.85 (4) 2.02 (2) 2.861 (5) 176 (3)
O6—H6B⋯O7 0.83 (3) 2.16 (3) 2.985 (5) 170 (3)
O7—H7A⋯O5 0.85 (3) 1.89 (3) 2.734 (5) 176 (5)
O7—H7B⋯O2iii 0.86 (2) 1.97 (2) 2.828 (4) 174 (5)
O8—H8A⋯O9 0.85 (3) 1.96 (3) 2.804 (4) 172 (4)
O8—H8B⋯O4ii 0.85 (3) 1.99 (3) 2.832 (4) 173 (3)
O9—H9A⋯O7 0.84 (4) 1.95 (2) 2.789 (4) 175 (4)
O9—H9B⋯O3iv 0.85 (3) 1.89 (3) 2.736 (4) 173 (4)
O10—H10A⋯O3iv 0.86 (2) 1.88 (4) 2.732 (4) 171 (4)
O10—H10B⋯O1 0.85 (3) 2.11 (3) 2.957 (4) 176 (4)
C2—H2⋯O9v 0.93 2.53 3.429 (5) 162
C5—H5⋯O2vi 0.93 2.55 3.381 (4) 149
C17—H17⋯O1vii 0.93 2.59 3.263 (4) 129
C18—H18⋯O6iv 0.93 2.50 3.344 (5) 151
C26—H26BCg1i 0.97 2.99 3.791 (4) 140
C27—H27ACg2i 0.97 2.82 3.375 (4) 117
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) -x+1, -y, -z+2; (vii) -x+1, -y, -z+1. Cg1 and Cg2 are the centroids of the C16–C19/C23/C24 and C23/C19–C22/N4 rings, respectively.

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Previous investigation on self-assembly of metal ions, hetroaromatic N-donor ligands and pimelate anions exhibits various coordinating modes of pimelate anions. For example, pimelate anion bridges two metal ions in bis-monodentate fashion (Zheng, Lin et al., 2003; Ge & Zheng, 2005; Zheng & Ying, 2004), in chelting/monodentate fashion (Zheng, 2004) and in bis-chelaing fashion (Zheng, Kong et al., 2003). When bridging three metal ions, pimelate anion can offer one carboxylate monoatomically to bridge two metal ions and the other end monodentately to coordinate one metal ion (Zheng et al., 2001; Ge & Zheng, 2005). Furthermore, pimelate anion can bischelate two Cd atoms with one oxygen bonded to additional Cd atom to bridge three metal atoms to form polymeric chains (Zheng et al., 2002). To the best of our knowledge, the title Zn compound represents a new example with pimelate anion coordinating one metal atom in a chelating fashion.

The title compound consists of [Zn(phen)2(C7H10O4)] complex and hydrogen bonded H2O molecules. As demonstrated in Fig.1, the Zn atom in the complex cation is coordinated by two carboxylato oxygen atoms of one mono-chelating pimelate (C7H10O4)2- anion and four nitrogen atoms of two phenanthroline (phen) ligands to define a considerably distorted octahedral ZnN4O2 chromophore. Two phen ligands chelating the central Zn atom form V-shaped cleft and the mono-chelating pimelato ligand is twisted at the carbon atom next to the chelating carboxylato end to adopt a gauche conformation around the C26—C27 bond. The present complex looks very like the monovalent [Zn(phen)2(C8H13O4)]+ complex cation found in the earlier-reported [Zn(phen)2(C8H13O4)](NO3).H2O, where the Zn atoms are coordinated by two phen ligands and one hydrogen suberate (C8H13O4)- anion (Wei et al., 2002).

Along [001] direction, the complex are arranged with the clefts orientating alternatively up- and downwards and the symmetry-related phen ligands orientate anti-parallelly to each other and the mean interplanar distance of 3.399 (2) Å suggests that the N-donor ligands are engaged in intercationic π-π stacking interactions. In this sense, the complex cations are, via π-π stacking interactions, assembled into one-dimensional chains extending parallel to [001] and careful inspection indicates that the resulting chains are stabilized by intercationic C5—H5···O2 hydrogen bonds. In the (011) plane, the chains are so arranged that the twisted pimelato ligands are located in the clefts of the adjacent chains and the alkyl C—H bonds are directed to the phen plane (C1 to C12) to form C—H···π interactions. According to the above description, supramolecular assembly of the complex cations into two-dimensional layers (Fig. 2) is achieved due to intercationic π-π, C—H···O and C—H···π interactions. The lattice H2O molecules are sandwiched between the cationic layers and form hydrogen bonded anionic chains propagating along [100]. The water molecules except the O5 one are hydrogen-bonded to the carboxylate O atoms.

Related literature top

For related literature, see: Ge & Zheng (2005); Wei et al. (2002); Zheng (2004); Zheng, Kong & Chen (2003); Zheng, Lin & Kong (2003); Zheng et al. (2001, 2002); Zheng & Ying (2004).

Experimental top

NaOH (2.0 ml, 1 M) was dropwise added to a stirred solution of Zn(NO3)2.6H2O (0.295 g, 0.99 mmol) in H2O (5.0 ml) to produce white precipitate, which was separated by centrifugation and washed with deionized water for several times. The fresh precipitate was moved to a solution of phenanthroline monohydrate (0.200 g, 1.0 mmol) and pimelic acid (0.162 g, 1.0 mmol) in CH3OH/H2O (1:1 v/v; 20 ml), and then NaOH (0.5 ml, 1 M) was dropwise added. The resulting suspension was filtered out and the colorless filtrate (pH = 8.57) was allowed to stand at room temperature and slow evaporation for several weeks afforded a mixture of prismatic colorless crystals of [Zn(C12H8N2)2(C7H10O4)].6H2O and plate-like colorless crystals. The former crystals are stable, and the latter are found to easily deteriorate upon isolation from the mother liquor.

Refinement top

H atoms of water molecules were located in a difference Fourier map, and were refined with distance restraints of O—H = 0.85 (2) and H···H = 1.38 (2) Å, and with Uiso(H) = 1.2Ueq(O). Other H atoms were placed in geometrically idealized positions (C—H = 0.93–0.97 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the ZnII complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. A view of a single layer of (I). H atoms and water molecules have been omitted.
(Heptanedioato-κ2O,O')bis(1,10-phenanthroline-κ2N,N')zinc(II) hexahydrate top
Crystal data top
[Zn(C7H10O4)(C12H8N2)2]·6H2OF(000) = 1448
Mr = 692.02Dx = 1.425 Mg m3
Monoclinic, P21/nMelting point: 163 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 9.2050 (18) ÅCell parameters from 25 reflections
b = 21.241 (4) Åθ = 5–12.5°
c = 16.598 (3) ŵ = 0.82 mm1
β = 96.48 (3)°T = 296 K
V = 3224.6 (11) Å3Block, colourless
Z = 40.43 × 0.26 × 0.22 mm
Data collection top
Bruker P4
diffractometer
3956 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.043
Graphite monochromatorθmax = 27.5°, θmin = 1.6°
θ/2θ scansh = 111
Absorption correction: ψ scan
(North et al., 1968)
k = 127
Tmin = 0.697, Tmax = 0.834l = 2121
9226 measured reflections3 standard reflections every 97 reflections
7393 independent reflections intensity decay: no
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0346P)2 + 1.0334P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
7393 reflectionsΔρmax = 0.34 e Å3
453 parametersΔρmin = 0.29 e Å3
18 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00132 (18)
Crystal data top
[Zn(C7H10O4)(C12H8N2)2]·6H2OV = 3224.6 (11) Å3
Mr = 692.02Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.2050 (18) ŵ = 0.82 mm1
b = 21.241 (4) ÅT = 296 K
c = 16.598 (3) Å0.43 × 0.26 × 0.22 mm
β = 96.48 (3)°
Data collection top
Bruker P4
diffractometer
3956 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.043
Tmin = 0.697, Tmax = 0.8343 standard reflections every 97 reflections
9226 measured reflections intensity decay: no
7393 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05918 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.34 e Å3
7393 reflectionsΔρmin = 0.29 e Å3
453 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.45796 (4)0.04742 (2)0.72867 (2)0.03662 (14)
N10.6065 (3)0.00835 (14)0.82659 (17)0.0385 (7)
N20.4468 (3)0.11526 (14)0.82373 (17)0.0396 (7)
C10.6859 (4)0.04345 (19)0.8282 (2)0.0484 (9)
H10.68650.06620.78040.058*
C20.7686 (5)0.0660 (2)0.8973 (3)0.0619 (12)
H20.82430.10240.89520.074*
C30.7668 (5)0.0338 (2)0.9682 (3)0.0629 (12)
H30.82020.04861.01530.075*
C40.6848 (4)0.02125 (19)0.9703 (2)0.0486 (10)
C50.6771 (5)0.0579 (2)1.0425 (2)0.0644 (13)
H50.72800.04481.09110.077*
C60.5972 (5)0.1109 (2)1.0404 (2)0.0654 (13)
H60.59500.13391.08780.079*
C70.5155 (4)0.13299 (19)0.9674 (2)0.0478 (10)
C80.4325 (5)0.1880 (2)0.9616 (3)0.0614 (12)
H80.42820.21311.00720.074*
C90.3580 (5)0.20512 (19)0.8897 (3)0.0575 (11)
H90.30100.24140.88590.069*
C100.3680 (4)0.16756 (19)0.8216 (2)0.0513 (10)
H100.31710.17980.77250.062*
C110.5207 (4)0.09748 (17)0.8962 (2)0.0405 (9)
C120.6062 (4)0.04080 (17)0.8974 (2)0.0394 (9)
N30.5138 (3)0.02261 (14)0.64572 (17)0.0359 (7)
N40.5801 (3)0.10061 (13)0.65101 (16)0.0339 (7)
C130.4767 (4)0.08320 (19)0.6419 (2)0.0479 (10)
H130.40830.09770.67470.058*
C140.5360 (4)0.12543 (18)0.5911 (2)0.0474 (10)
H140.50510.16710.58910.057*
C150.6391 (4)0.10603 (18)0.5445 (2)0.0455 (10)
H150.68150.13450.51150.055*
C160.6810 (4)0.04252 (17)0.54645 (18)0.0357 (8)
C170.7875 (4)0.01760 (19)0.4982 (2)0.0458 (10)
H170.83500.04440.46540.055*
C180.8192 (4)0.0444 (2)0.4999 (2)0.0451 (9)
H180.88730.05990.46760.054*
C190.7503 (4)0.08676 (17)0.5505 (2)0.0366 (8)
C200.7791 (4)0.15174 (18)0.5536 (2)0.0471 (10)
H200.84720.16910.52270.057*
C210.7055 (5)0.18921 (19)0.6029 (2)0.0542 (11)
H210.72000.23260.60360.065*
C220.6091 (4)0.16208 (17)0.6518 (2)0.0444 (9)
H220.56320.18790.68650.053*
C230.6491 (3)0.06355 (16)0.60015 (19)0.0320 (8)
C240.6144 (3)0.00242 (16)0.59791 (18)0.0293 (8)
O10.2329 (3)0.07270 (12)0.68624 (14)0.0445 (6)
O20.2732 (3)0.01112 (12)0.76159 (15)0.0468 (7)
C250.1853 (4)0.02656 (18)0.7233 (2)0.0386 (9)
C260.0227 (4)0.01661 (18)0.7220 (2)0.0451 (10)
H26A0.00560.01700.75940.054*
H26B0.01720.00340.66800.054*
C270.0573 (4)0.07532 (18)0.7449 (2)0.0463 (10)
H27A0.16160.06720.73620.056*
H27B0.03650.10910.70860.056*
C280.0188 (4)0.09761 (17)0.8318 (2)0.0427 (9)
H28A0.03870.06410.86870.051*
H28B0.08490.10700.84080.051*
C290.1048 (4)0.15551 (18)0.8501 (2)0.0474 (10)
H29A0.07950.18930.81490.057*
H29B0.20790.14660.83650.057*
C300.0816 (4)0.17858 (18)0.9365 (2)0.0497 (10)
H30A0.01870.19290.94760.060*
H30B0.09340.14310.97200.060*
C310.1816 (4)0.23129 (17)0.9587 (2)0.0424 (9)
O30.1667 (3)0.24772 (12)1.03240 (15)0.0561 (7)
O40.2700 (3)0.25491 (12)0.90506 (16)0.0518 (7)
O50.0621 (4)0.29022 (19)0.7220 (3)0.0979 (13)
H5A0.029 (2)0.294 (2)0.722 (3)0.117*
H5B0.082 (5)0.2586 (18)0.695 (3)0.117*
O60.5105 (4)0.35021 (17)0.9056 (2)0.0760 (10)
H6A0.577 (4)0.3225 (18)0.908 (2)0.091*
H6B0.463 (4)0.351 (2)0.8597 (16)0.091*
O70.3106 (3)0.36089 (15)0.7516 (2)0.0664 (9)
H7A0.234 (3)0.3389 (15)0.740 (3)0.080*
H7B0.286 (4)0.3996 (9)0.744 (3)0.080*
O80.7737 (3)0.30601 (17)0.75204 (18)0.0672 (9)
H8A0.694 (3)0.312 (2)0.7220 (19)0.081*
H8B0.754 (4)0.289 (2)0.7958 (15)0.081*
O90.5085 (3)0.31376 (16)0.65131 (18)0.0663 (9)
H9A0.453 (4)0.3297 (19)0.683 (2)0.080*
H9B0.456 (4)0.2967 (19)0.6116 (18)0.080*
O100.1348 (4)0.19689 (15)0.6205 (2)0.0749 (10)
H10A0.196 (4)0.2109 (18)0.589 (2)0.090*
H10B0.166 (5)0.1614 (13)0.638 (3)0.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.0340 (2)0.0411 (3)0.0360 (2)0.0035 (2)0.00918 (16)0.0029 (2)
N10.0361 (17)0.0382 (18)0.0412 (18)0.0007 (15)0.0050 (14)0.0012 (15)
N20.0360 (17)0.0397 (18)0.0446 (19)0.0014 (15)0.0117 (15)0.0034 (15)
C10.050 (2)0.044 (2)0.050 (2)0.005 (2)0.0023 (19)0.003 (2)
C20.055 (3)0.059 (3)0.070 (3)0.017 (2)0.001 (2)0.016 (2)
C30.062 (3)0.069 (3)0.055 (3)0.002 (3)0.008 (2)0.016 (2)
C40.049 (2)0.052 (3)0.043 (2)0.011 (2)0.0036 (19)0.006 (2)
C50.071 (3)0.080 (4)0.041 (2)0.012 (3)0.001 (2)0.003 (2)
C60.081 (3)0.076 (3)0.040 (3)0.023 (3)0.010 (2)0.019 (2)
C70.053 (2)0.048 (3)0.044 (2)0.014 (2)0.012 (2)0.0103 (19)
C80.072 (3)0.050 (3)0.066 (3)0.006 (2)0.020 (3)0.029 (2)
C90.056 (3)0.041 (2)0.078 (3)0.006 (2)0.018 (2)0.015 (2)
C100.047 (2)0.048 (3)0.060 (3)0.002 (2)0.010 (2)0.006 (2)
C110.038 (2)0.043 (2)0.041 (2)0.0112 (19)0.0085 (18)0.0016 (18)
C120.041 (2)0.040 (2)0.038 (2)0.0066 (19)0.0083 (17)0.0002 (18)
N30.0355 (17)0.0338 (17)0.0385 (17)0.0038 (14)0.0044 (14)0.0020 (13)
N40.0336 (16)0.0360 (18)0.0329 (16)0.0057 (14)0.0078 (13)0.0007 (14)
C130.043 (2)0.049 (3)0.053 (3)0.002 (2)0.010 (2)0.004 (2)
C140.050 (2)0.037 (2)0.054 (2)0.003 (2)0.000 (2)0.005 (2)
C150.051 (2)0.045 (2)0.039 (2)0.010 (2)0.0009 (19)0.0086 (18)
C160.0365 (19)0.044 (2)0.0256 (17)0.0073 (19)0.0020 (15)0.0029 (17)
C170.054 (2)0.053 (3)0.033 (2)0.011 (2)0.0116 (18)0.0075 (18)
C180.047 (2)0.058 (3)0.0324 (19)0.006 (2)0.0126 (17)0.003 (2)
C190.035 (2)0.045 (2)0.0300 (19)0.0011 (18)0.0048 (16)0.0051 (17)
C200.051 (2)0.047 (2)0.045 (2)0.000 (2)0.0145 (19)0.005 (2)
C210.066 (3)0.036 (2)0.063 (3)0.006 (2)0.020 (2)0.002 (2)
C220.050 (2)0.037 (2)0.047 (2)0.0023 (19)0.0128 (19)0.0064 (18)
C230.0281 (18)0.040 (2)0.0274 (18)0.0062 (16)0.0009 (15)0.0012 (15)
C240.0280 (18)0.036 (2)0.0229 (17)0.0040 (16)0.0006 (14)0.0008 (15)
O10.0456 (15)0.0491 (16)0.0402 (14)0.0004 (13)0.0104 (12)0.0003 (13)
O20.0367 (14)0.0506 (17)0.0530 (16)0.0073 (13)0.0044 (12)0.0009 (13)
C250.038 (2)0.047 (2)0.033 (2)0.0004 (19)0.0100 (17)0.0141 (18)
C260.033 (2)0.053 (2)0.050 (2)0.0004 (19)0.0042 (17)0.013 (2)
C270.037 (2)0.055 (2)0.046 (2)0.0071 (19)0.0028 (18)0.0063 (19)
C280.034 (2)0.051 (2)0.043 (2)0.0076 (19)0.0055 (17)0.0003 (19)
C290.045 (2)0.045 (2)0.053 (2)0.0041 (19)0.0102 (19)0.003 (2)
C300.049 (2)0.051 (3)0.049 (2)0.009 (2)0.0070 (19)0.004 (2)
C310.046 (2)0.032 (2)0.052 (3)0.0022 (19)0.018 (2)0.0001 (19)
O30.075 (2)0.0500 (17)0.0447 (17)0.0128 (16)0.0137 (15)0.0042 (14)
O40.0510 (17)0.0512 (17)0.0543 (17)0.0130 (14)0.0110 (14)0.0012 (14)
O50.076 (2)0.083 (3)0.145 (4)0.020 (2)0.054 (3)0.036 (2)
O60.073 (2)0.078 (2)0.077 (2)0.0225 (19)0.0106 (18)0.023 (2)
O70.0578 (19)0.060 (2)0.083 (2)0.0079 (16)0.0120 (18)0.0120 (19)
O80.055 (2)0.095 (3)0.0522 (18)0.0039 (19)0.0068 (15)0.0066 (18)
O90.0517 (19)0.083 (2)0.064 (2)0.0020 (17)0.0033 (15)0.0208 (17)
O100.087 (2)0.059 (2)0.085 (2)0.0016 (19)0.042 (2)0.0066 (18)
Geometric parameters (Å, º) top
Zn—N42.128 (3)C17—H170.9300
Zn—N32.129 (3)C18—C191.427 (5)
Zn—N22.148 (3)C18—H180.9300
Zn—N12.167 (3)C19—C231.401 (5)
Zn—O12.178 (3)C19—C201.405 (5)
Zn—O22.224 (3)C20—C211.374 (5)
Zn—C252.540 (4)C20—H200.9300
N1—C11.320 (4)C21—C221.393 (5)
N1—C121.363 (4)C21—H210.9300
N2—C101.325 (5)C22—H220.9300
N2—C111.367 (4)C23—C241.437 (5)
C1—C21.388 (5)O1—C251.262 (4)
C1—H10.9300O2—C251.259 (4)
C2—C31.363 (6)C25—C261.509 (5)
C2—H20.9300C26—C271.519 (5)
C3—C41.395 (6)C26—H26A0.9700
C3—H30.9300C26—H26B0.9700
C4—C121.400 (5)C27—C281.521 (5)
C4—C51.438 (6)C27—H27A0.9700
C5—C61.341 (6)C27—H27B0.9700
C5—H50.9300C28—C291.512 (5)
C6—C71.431 (6)C28—H28A0.9700
C6—H60.9300C28—H28B0.9700
C7—C81.393 (6)C29—C301.507 (5)
C7—C111.408 (5)C29—H29A0.9700
C8—C91.357 (6)C29—H29B0.9700
C8—H80.9300C30—C311.521 (5)
C9—C101.395 (5)C30—H30A0.9700
C9—H90.9300C30—H30B0.9700
C10—H100.9300C31—O41.242 (4)
C11—C121.437 (5)C31—O31.264 (4)
N3—C131.331 (4)O5—H5A0.84 (2)
N3—C241.355 (4)O5—H5B0.84 (4)
N4—C221.333 (4)O6—H6A0.85 (4)
N4—C231.363 (4)O6—H6B0.83 (3)
C13—C141.385 (5)O7—H7A0.85 (3)
C13—H130.9300O7—H7B0.86 (2)
C14—C151.355 (5)O8—H8A0.85 (3)
C14—H140.9300O8—H8B0.85 (3)
C15—C161.403 (5)O9—H9A0.84 (4)
C15—H150.9300O9—H9B0.85 (3)
C16—C241.396 (4)O10—H10A0.86 (4)
C16—C171.436 (5)O10—H10B0.85 (3)
C17—C181.349 (5)
N4—Zn—N378.26 (11)C14—C15—H15120.4
N4—Zn—N299.28 (11)C16—C15—H15120.4
N3—Zn—N2168.21 (11)C24—C16—C15117.5 (3)
N4—Zn—N1109.01 (11)C24—C16—C17119.4 (3)
N3—Zn—N192.26 (11)C15—C16—C17123.0 (3)
N2—Zn—N177.55 (11)C18—C17—C16120.5 (3)
N4—Zn—O1102.80 (10)C18—C17—H17119.8
N3—Zn—O1104.68 (10)C16—C17—H17119.8
N2—Zn—O187.11 (10)C17—C18—C19121.3 (3)
N1—Zn—O1146.42 (10)C17—C18—H18119.4
N4—Zn—O2156.42 (10)C19—C18—H18119.4
N3—Zn—O290.89 (10)C23—C19—C20117.3 (3)
N2—Zn—O295.35 (10)C23—C19—C18119.6 (3)
N1—Zn—O292.10 (10)C20—C19—C18123.1 (3)
O1—Zn—O259.45 (9)C21—C20—C19119.2 (4)
N4—Zn—C25131.21 (12)C21—C20—H20120.4
N3—Zn—C2599.51 (11)C19—C20—H20120.4
N2—Zn—C2590.80 (11)C20—C21—C22119.8 (4)
N1—Zn—C25119.78 (12)C20—C21—H21120.1
O1—Zn—C2529.77 (10)C22—C21—H21120.1
O2—Zn—C2529.69 (10)N4—C22—C21122.6 (3)
C1—N1—C12117.3 (3)N4—C22—H22118.7
C1—N1—Zn129.5 (3)C21—C22—H22118.7
C12—N1—Zn113.0 (2)N4—C23—C19123.3 (3)
C10—N2—C11118.2 (3)N4—C23—C24117.5 (3)
C10—N2—Zn127.9 (3)C19—C23—C24119.2 (3)
C11—N2—Zn113.6 (2)N3—C24—C16122.8 (3)
N1—C1—C2123.8 (4)N3—C24—C23117.3 (3)
N1—C1—H1118.1C16—C24—C23119.9 (3)
C2—C1—H1118.1C25—O1—Zn91.2 (2)
C3—C2—C1118.8 (4)C25—O2—Zn89.2 (2)
C3—C2—H2120.6O2—C25—O1120.1 (3)
C1—C2—H2120.6O2—C25—C26119.9 (3)
C2—C3—C4120.1 (4)O1—C25—C26120.0 (4)
C2—C3—H3120.0O2—C25—Zn61.09 (19)
C4—C3—H3120.0O1—C25—Zn59.01 (18)
C3—C4—C12117.1 (4)C26—C25—Zn177.7 (3)
C3—C4—C5123.5 (4)C25—C26—C27112.9 (3)
C12—C4—C5119.3 (4)C25—C26—H26A109.0
C6—C5—C4120.7 (4)C27—C26—H26A109.0
C6—C5—H5119.6C25—C26—H26B109.0
C4—C5—H5119.6C27—C26—H26B109.0
C5—C6—C7122.1 (4)H26A—C26—H26B107.8
C5—C6—H6118.9C26—C27—C28115.2 (3)
C7—C6—H6118.9C26—C27—H27A108.5
C8—C7—C11117.5 (4)C28—C27—H27A108.5
C8—C7—C6124.5 (4)C26—C27—H27B108.5
C11—C7—C6118.0 (4)C28—C27—H27B108.5
C9—C8—C7120.3 (4)H27A—C27—H27B107.5
C9—C8—H8119.8C29—C28—C27111.8 (3)
C7—C8—H8119.8C29—C28—H28A109.2
C8—C9—C10119.1 (4)C27—C28—H28A109.2
C8—C9—H9120.5C29—C28—H28B109.2
C10—C9—H9120.5C27—C28—H28B109.2
N2—C10—C9123.0 (4)H28A—C28—H28B107.9
N2—C10—H10118.5C30—C29—C28115.8 (3)
C9—C10—H10118.5C30—C29—H29A108.3
N2—C11—C7122.0 (4)C28—C29—H29A108.3
N2—C11—C12117.5 (3)C30—C29—H29B108.3
C7—C11—C12120.5 (3)C28—C29—H29B108.3
N1—C12—C4122.9 (4)H29A—C29—H29B107.4
N1—C12—C11117.7 (3)C29—C30—C31116.5 (3)
C4—C12—C11119.3 (3)C29—C30—H30A108.2
C13—N3—C24117.8 (3)C31—C30—H30A108.2
C13—N3—Zn128.8 (3)C29—C30—H30B108.2
C24—N3—Zn112.9 (2)C31—C30—H30B108.2
C22—N4—C23117.7 (3)H30A—C30—H30B107.3
C22—N4—Zn129.3 (2)O4—C31—O3124.9 (3)
C23—N4—Zn112.6 (2)O4—C31—C30119.2 (3)
N3—C13—C14122.6 (4)O3—C31—C30115.8 (4)
N3—C13—H13118.7H5A—O5—H5B111 (3)
C14—C13—H13118.7H6A—O6—H6B111 (3)
C15—C14—C13120.0 (4)H7A—O7—H7B107 (3)
C15—C14—H14120.0H8A—O8—H8B108 (3)
C13—C14—H14120.0H9A—O9—H9B108 (3)
C14—C15—C16119.2 (3)H10A—O10—H10B107 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O8i0.84 (2)1.95 (2)2.776 (5)165 (5)
O5—H5B···O100.84 (4)1.90 (4)2.733 (6)170 (4)
O6—H6A···O4ii0.85 (4)2.02 (2)2.861 (5)176 (3)
O6—H6B···O70.83 (3)2.16 (3)2.985 (5)170 (3)
O7—H7A···O50.85 (3)1.89 (3)2.734 (5)176 (5)
O7—H7B···O2iii0.86 (2)1.97 (2)2.828 (4)174 (5)
O8—H8A···O90.85 (3)1.96 (3)2.804 (4)172 (4)
O8—H8B···O4ii0.85 (3)1.99 (3)2.832 (4)173 (3)
O9—H9A···O70.84 (4)1.95 (2)2.789 (4)175 (4)
O9—H9B···O3iv0.85 (3)1.89 (3)2.736 (4)173 (4)
O10—H10A···O3iv0.86 (2)1.88 (4)2.732 (4)171 (4)
O10—H10B···O10.85 (3)2.11 (3)2.957 (4)176 (4)
C2—H2···O9v0.932.533.429 (5)162
C5—H5···O2vi0.932.553.381 (4)149
C17—H17···O1vii0.932.593.263 (4)129
C18—H18···O6iv0.932.503.344 (5)151
C26—H26B···Cg1i0.972.993.791 (4)140
C27—H27A···Cg2i0.972.823.375 (4)117
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1/2, y+1/2, z+3/2; (iv) x+1/2, y+1/2, z1/2; (v) x+3/2, y1/2, z+3/2; (vi) x+1, y, z+2; (vii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C7H10O4)(C12H8N2)2]·6H2O
Mr692.02
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)9.2050 (18), 21.241 (4), 16.598 (3)
β (°) 96.48 (3)
V3)3224.6 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.82
Crystal size (mm)0.43 × 0.26 × 0.22
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.697, 0.834
No. of measured, independent and
observed [I > 2σ(I)] reflections
9226, 7393, 3956
Rint0.043
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.117, 1.01
No. of reflections7393
No. of parameters453
No. of restraints18
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.29

Computer programs: XSCANS (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Zn—N42.128 (3)Zn—N12.167 (3)
Zn—N32.129 (3)Zn—O12.178 (3)
Zn—N22.148 (3)Zn—O22.224 (3)
N4—Zn—N378.26 (11)N2—Zn—O187.11 (10)
N4—Zn—N299.28 (11)N1—Zn—O1146.42 (10)
N3—Zn—N2168.21 (11)N4—Zn—O2156.42 (10)
N4—Zn—N1109.01 (11)N3—Zn—O290.89 (10)
N3—Zn—N192.26 (11)N2—Zn—O295.35 (10)
N2—Zn—N177.55 (11)N1—Zn—O292.10 (10)
N4—Zn—O1102.80 (10)O1—Zn—O259.45 (9)
N3—Zn—O1104.68 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O8i0.84 (2)1.95 (2)2.776 (5)165 (5)
O5—H5B···O100.84 (4)1.90 (4)2.733 (6)170 (4)
O6—H6A···O4ii0.85 (4)2.02 (2)2.861 (5)176 (3)
O6—H6B···O70.83 (3)2.16 (3)2.985 (5)170 (3)
O7—H7A···O50.85 (3)1.89 (3)2.734 (5)176 (5)
O7—H7B···O2iii0.86 (2)1.97 (2)2.828 (4)174 (5)
O8—H8A···O90.85 (3)1.96 (3)2.804 (4)172 (4)
O8—H8B···O4ii0.85 (3)1.99 (3)2.832 (4)173 (3)
O9—H9A···O70.84 (4)1.95 (2)2.789 (4)175 (4)
O9—H9B···O3iv0.85 (3)1.89 (3)2.736 (4)173 (4)
O10—H10A···O3iv0.86 (2)1.88 (4)2.732 (4)171 (4)
O10—H10B···O10.85 (3)2.11 (3)2.957 (4)176 (4)
C2—H2···O9v0.932.533.429 (5)162
C5—H5···O2vi0.932.553.381 (4)149
C17—H17···O1vii0.932.593.263 (4)129
C18—H18···O6iv0.932.503.344 (5)151
C26—H26B···Cg1i0.972.993.791 (4)140
C27—H27A···Cg2i0.972.823.375 (4)117
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1/2, y+1/2, z+3/2; (iv) x+1/2, y+1/2, z1/2; (v) x+3/2, y1/2, z+3/2; (vi) x+1, y, z+2; (vii) x+1, y, z+1.
 

Acknowledgements

This project was supported by the Zhejiang Provincial Fund for Analysis and Measurements (grant No. 04058), the Scientific Research Fund of Ningbo University (grant No. XK200457), the Expert Project of Key Basic Research of the Ministry of Science and Technology of China (grant No. 2003CCA00800), the Zhejiang Provincial Natural Science Foundation (grant No. Z203067) and the Ningbo Municipal Natural Science Foundation (grant No. 2003 A62026).

References

First citationGe, C.-X. & Zheng, Y.-Q. (2005). J. Coord. Chem. 58, 1199–1208.  Web of Science CSD CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWei, D.-Y., Zheng, Y.-Q. & Lin, J.-L. (2002). Z. Anorg. Allg. Chem. 628, 2005–2012.  CrossRef CAS Google Scholar
First citationZheng, Y.-Q. (2004). Z. Kristallogr. NCS, 219, 427–428.  CAS Google Scholar
First citationZheng, Y.-Q., Kong, Z.-P. & Chen, K. (2003). Z. Kristallogr. New Cryst. Struct. 218, 225–226.  CAS Google Scholar
First citationZheng, Y.-Q., Lin, J.-L. & Kong, Z.-P. (2003). Z. Anorg. Allg. Chem. 629, 357–361.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, Y.-Q., Lin, J.-L. & Sun, J. (2001). Z. Anorg. Allg. Chem. 627, 1997–2001.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, Y.-Q., Liu, W.-H. & Lin, J.-L. (2002). Z. Anorg. Allg. Chem. 628, 1401–1405.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, Y.-Q. & Ying, E.-B. (2004). Z. Kristallogr. New Cryst. Struct 219, 423–424.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m527-m528
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds