organic compounds
Redetermination of orotic acid monohydrate
aChemistry Department, `Sapienza' University of Rome, P. le A. Moro 5, I-00185 Rome, Italy
*Correspondence e-mail: g.portalone@caspur.it
The 13 (systematic name: 2,6-dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylic acid monohydrate), C5H4N2O4·H2O, was reported for the first time by Takusagawa & Shimada [Bull. Chem. Soc. Jpn (1973), 46, 2011–2019]. The present redetermination provides more precise values of the molecular geometry. The comprises a planar diketo tautomer and a solvent water molecule. In the molecules are connected by O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds involving NH groups, two carbonyl O atoms and the solvent water molecule.
of the title compound, which is also known as vitamin BRelated literature
For the previous ). For a general approach to the use of multiple hydrogen-bonding DNA/RNA nucleobases as potential supramolecular reagents, see: Portalone et al. (1999); Brunetti et al. (2000, 2002); Portalone & Colapietro (2007 and references therein). For the computation of ring patterns formed by hydrogen bonds in crystal structures, see: Etter et al. (1990); Bernstein et al. (1995); Motherwell et al. (1999).
see: Takusagawa & Shimada (1973Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S160053680800562X/kp2160sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680800562X/kp2160Isup2.hkl
The title compound (0.1 mmol, Sigma Aldrich of 98% purity) was dissolved in water (9 ml) and heated under reflux for 2 h. After cooling the solution to ambient temperature, crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation.
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell
CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: WinGX (Farrugia, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacements ellipsoids are at the 50% probability level. Hydrogen bonding is indicated by dashed lines. | |
Fig. 2. Crystal packing diagram of (I). All atoms are shown as small spheres of arbitrary radii. Hydrogen bonding is indicated by dashed lines. |
C5H4N2O4·H2O | Z = 2 |
Mr = 174.12 | F(000) = 180 |
Triclinic, P1 | Dx = 1.690 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.89854 (14) Å | Cell parameters from 64781 reflections |
b = 6.92921 (15) Å | θ = 3.2–32.0° |
c = 9.59160 (18) Å | µ = 0.15 mm−1 |
α = 74.6778 (12)° | T = 298 K |
β = 72.3232 (16)° | Plate, colourless |
γ = 68.447 (2)° | 0.20 × 0.15 × 0.15 mm |
V = 342.21 (1) Å3 |
Oxford Diffraction Xcalibur S CCD diffractometer | 2340 independent reflections |
Radiation source: Enhance (Mo) X-ray source | 2048 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.017 |
Detector resolution: 16.0696 pixels mm-1 | θmax = 32.0°, θmin = 3.2° |
ω and ϕ scans | h = −8→8 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) | k = −10→10 |
Tmin = 0.977, Tmax = 0.985 | l = −14→14 |
64781 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.133 | All H-atom parameters refined |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0846P)2 + 0.0376P] where P = (Fo2 + 2Fc2)/3 |
2340 reflections | (Δ/σ)max < 0.001 |
133 parameters | Δρmax = 0.19 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
C5H4N2O4·H2O | γ = 68.447 (2)° |
Mr = 174.12 | V = 342.21 (1) Å3 |
Triclinic, P1 | Z = 2 |
a = 5.89854 (14) Å | Mo Kα radiation |
b = 6.92921 (15) Å | µ = 0.15 mm−1 |
c = 9.59160 (18) Å | T = 298 K |
α = 74.6778 (12)° | 0.20 × 0.15 × 0.15 mm |
β = 72.3232 (16)° |
Oxford Diffraction Xcalibur S CCD diffractometer | 2340 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) | 2048 reflections with I > 2σ(I) |
Tmin = 0.977, Tmax = 0.985 | Rint = 0.017 |
64781 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.133 | All H-atom parameters refined |
S = 1.08 | Δρmax = 0.19 e Å−3 |
2340 reflections | Δρmin = −0.22 e Å−3 |
133 parameters |
Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | −0.14403 (15) | 0.19593 (14) | 0.87497 (9) | 0.0437 (2) | |
O2 | 0.33017 (14) | 0.40869 (13) | 0.43298 (8) | 0.0402 (2) | |
O3 | 0.67729 (18) | −0.25757 (17) | 0.92057 (11) | 0.0575 (3) | |
O4 | 0.94015 (16) | −0.17721 (14) | 0.70790 (10) | 0.0430 (2) | |
H4 | 1.045 (5) | −0.276 (4) | 0.759 (3) | 0.072 (6)* | |
N1 | 0.27952 (15) | 0.03091 (13) | 0.83018 (9) | 0.03108 (19) | |
H1 | 0.248 (4) | −0.038 (3) | 0.918 (2) | 0.052 (4)* | |
C2 | 0.06502 (18) | 0.17428 (15) | 0.79307 (10) | 0.0302 (2) | |
N3 | 0.09988 (15) | 0.29328 (13) | 0.65310 (8) | 0.03059 (19) | |
H3 | −0.050 (4) | 0.391 (3) | 0.630 (2) | 0.054 (5)* | |
C4 | 0.32531 (17) | 0.28849 (14) | 0.55477 (10) | 0.0284 (2) | |
C5 | 0.54286 (17) | 0.13666 (14) | 0.60218 (10) | 0.0295 (2) | |
H5 | 0.689 (3) | 0.127 (3) | 0.540 (2) | 0.042 (4)* | |
C6 | 0.51057 (17) | 0.01317 (13) | 0.73716 (9) | 0.02706 (19) | |
C7 | 0.72006 (19) | −0.15575 (15) | 0.79814 (11) | 0.0325 (2) | |
O5 | 1.28887 (17) | −0.45822 (16) | 0.81521 (11) | 0.0523 (3) | |
H51 | 1.421 (5) | −0.460 (4) | 0.757 (3) | 0.080 (7)* | |
H52 | 1.313 (5) | −0.528 (4) | 0.896 (3) | 0.082 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0285 (4) | 0.0499 (5) | 0.0329 (4) | −0.0054 (3) | −0.0022 (3) | 0.0094 (3) |
O2 | 0.0291 (4) | 0.0447 (4) | 0.0298 (4) | −0.0065 (3) | −0.0079 (3) | 0.0154 (3) |
O3 | 0.0390 (5) | 0.0612 (6) | 0.0449 (5) | −0.0062 (4) | −0.0138 (4) | 0.0266 (4) |
O4 | 0.0302 (4) | 0.0449 (4) | 0.0385 (4) | −0.0003 (3) | −0.0112 (3) | 0.0054 (3) |
N1 | 0.0289 (4) | 0.0311 (4) | 0.0247 (3) | −0.0063 (3) | −0.0080 (3) | 0.0067 (3) |
C2 | 0.0277 (4) | 0.0308 (4) | 0.0252 (4) | −0.0071 (3) | −0.0065 (3) | 0.0037 (3) |
N3 | 0.0245 (4) | 0.0319 (4) | 0.0258 (3) | −0.0047 (3) | −0.0077 (3) | 0.0070 (3) |
C4 | 0.0260 (4) | 0.0289 (4) | 0.0244 (4) | −0.0064 (3) | −0.0078 (3) | 0.0041 (3) |
C5 | 0.0243 (4) | 0.0308 (4) | 0.0258 (4) | −0.0045 (3) | −0.0072 (3) | 0.0029 (3) |
C6 | 0.0268 (4) | 0.0251 (4) | 0.0257 (4) | −0.0045 (3) | −0.0106 (3) | 0.0014 (3) |
C7 | 0.0306 (4) | 0.0297 (4) | 0.0322 (4) | −0.0049 (3) | −0.0137 (3) | 0.0038 (3) |
O5 | 0.0287 (4) | 0.0598 (6) | 0.0426 (5) | 0.0010 (4) | −0.0082 (3) | 0.0118 (4) |
O1—C2 | 1.2241 (12) | N3—C4 | 1.3716 (12) |
O2—C4 | 1.2418 (10) | N3—H3 | 0.94 (2) |
O3—C7 | 1.2056 (13) | C4—C5 | 1.4387 (12) |
O4—C7 | 1.3040 (13) | C5—C6 | 1.3525 (12) |
O4—H4 | 0.89 (3) | C5—H5 | 0.879 (19) |
N1—C6 | 1.3656 (12) | C6—C7 | 1.5012 (12) |
N1—C2 | 1.3702 (12) | O5—H51 | 0.81 (3) |
N1—H1 | 0.85 (2) | O5—H52 | 0.82 (3) |
C2—N3 | 1.3772 (11) | ||
C7—O4—H4 | 104.3 (16) | N3—C4—C5 | 115.74 (8) |
C6—N1—C2 | 122.36 (8) | C6—C5—C4 | 118.56 (8) |
C6—N1—H1 | 126.4 (14) | C6—C5—H5 | 124.1 (11) |
C2—N1—H1 | 111.2 (14) | C4—C5—H5 | 117.3 (11) |
O1—C2—N1 | 123.81 (8) | C5—C6—N1 | 122.13 (8) |
O1—C2—N3 | 121.35 (8) | C5—C6—C7 | 124.03 (9) |
N1—C2—N3 | 114.83 (8) | N1—C6—C7 | 113.84 (8) |
C4—N3—C2 | 126.29 (7) | O3—C7—O4 | 125.70 (9) |
C4—N3—H3 | 120.3 (12) | O3—C7—C6 | 120.28 (10) |
C2—N3—H3 | 113.3 (12) | O4—C7—C6 | 114.02 (8) |
O2—C4—N3 | 119.61 (8) | H51—O5—H52 | 110 (2) |
O2—C4—C5 | 124.64 (9) | ||
C6—N1—C2—O1 | −178.86 (10) | C4—C5—C6—N1 | −1.20 (15) |
C6—N1—C2—N3 | 2.20 (15) | C4—C5—C6—C7 | 178.02 (9) |
O1—C2—N3—C4 | 177.12 (10) | C2—N1—C6—C5 | 0.18 (16) |
N1—C2—N3—C4 | −3.91 (15) | C2—N1—C6—C7 | −179.11 (9) |
C2—N3—C4—O2 | −178.17 (10) | C5—C6—C7—O3 | 178.85 (12) |
C2—N3—C4—C5 | 2.97 (15) | N1—C6—C7—O3 | −1.87 (15) |
O2—C4—C5—C6 | −179.05 (10) | C5—C6—C7—O4 | −1.13 (15) |
N3—C4—C5—C6 | −0.26 (14) | N1—C6—C7—O4 | 178.15 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···O5 | 0.89 (3) | 1.65 (3) | 2.5231 (11) | 166 (2) |
N1—H1···O1i | 0.85 (2) | 2.03 (2) | 2.8824 (11) | 175.2 (19) |
N3—H3···O2ii | 0.94 (2) | 1.87 (2) | 2.8112 (11) | 174.6 (18) |
O5—H51···O2iii | 0.81 (3) | 2.00 (3) | 2.7786 (12) | 161 (3) |
O5—H52···O3iv | 0.82 (3) | 1.98 (3) | 2.7787 (12) | 164 (2) |
C5—H5···O4iii | 0.879 (19) | 2.740 (19) | 3.5922 (13) | 163.7 (15) |
Symmetry codes: (i) −x, −y, −z+2; (ii) −x, −y+1, −z+1; (iii) −x+2, −y, −z+1; (iv) −x+2, −y−1, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C5H4N2O4·H2O |
Mr | 174.12 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 5.89854 (14), 6.92921 (15), 9.59160 (18) |
α, β, γ (°) | 74.6778 (12), 72.3232 (16), 68.447 (2) |
V (Å3) | 342.21 (1) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.15 |
Crystal size (mm) | 0.20 × 0.15 × 0.15 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur S CCD diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2006) |
Tmin, Tmax | 0.977, 0.985 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 64781, 2340, 2048 |
Rint | 0.017 |
(sin θ/λ)max (Å−1) | 0.745 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.133, 1.08 |
No. of reflections | 2340 |
No. of parameters | 133 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.19, −0.22 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···O5 | 0.89 (3) | 1.65 (3) | 2.5231 (11) | 166 (2) |
N1—H1···O1i | 0.85 (2) | 2.03 (2) | 2.8824 (11) | 175.2 (19) |
N3—H3···O2ii | 0.94 (2) | 1.87 (2) | 2.8112 (11) | 174.6 (18) |
O5—H51···O2iii | 0.81 (3) | 2.00 (3) | 2.7786 (12) | 161 (3) |
O5—H52···O3iv | 0.82 (3) | 1.98 (3) | 2.7787 (12) | 164 (2) |
C5—H5···O4iii | 0.879 (19) | 2.740 (19) | 3.5922 (13) | 163.7 (15) |
Symmetry codes: (i) −x, −y, −z+2; (ii) −x, −y+1, −z+1; (iii) −x+2, −y, −z+1; (iv) −x+2, −y−1, −z+2. |
Acknowledgements
The author thanks MIUR (Rome) for financial support in 2006 of the project `X-ray diffractometry and spectrometry'.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Brunetti, B., Piacente, V. & Portalone, G. (2000). J. Chem. Eng. Data, 45, 242–246. Web of Science CrossRef CAS Google Scholar
Brunetti, B., Piacente, V. & Portalone, G. (2002). J. Chem. Eng. Data, 47, 17–19. Web of Science CrossRef CAS Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Motherwell, W. D. S., Shields, G. P. & Allen, F. H. (1999). Acta Cryst. B55, 1044–1056. Web of Science CrossRef CAS IUCr Journals Google Scholar
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Versions 1.171.32.3. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Google Scholar
Portalone, G., Bencivenni, L., Colapietro, M., Pieretti, A. & Ramondo, F. (1999). Acta Chem. Scand. 53, 57–68. Web of Science CrossRef CAS Google Scholar
Portalone, G. & Colapietro, M. (2007). Acta Cryst. C63, o650–o654. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Takusagawa, F. & Shimada, A. (1973). Bull. Chem. Soc. Jpn, 46, 2011–2019. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Orotic acid monohydrate, the only effective precursor in the biosynthesis of pyrimidine nucleobases, was determined some 35 years ago (Takusagawa & Shimada, 1973). In this study, 1488 unique reflections were collected at an ambient temperature by photographic techniques using Cu Kα radiation. 1344 of these, having values significantly above background, were estimated visually and no absorption correction was applied [µ(Cu Kα) = 15.4 cm-1]. The final refinement led to R = 0.058 with standard deviations of 0.005Å in C—C bond lengths, As a part of a more general study of multiple hydrogen-bonded DNA/RNA-nucleobases as potential supramolecular reagents (Brunetti et al., 2000, 2002; Portalone et al., 1999; Portalone & Colapietro, 2007), this paper reports a redetermination of the crystal structure of the title compound, (I), with greater precision and accuracy. The asymmetric unit of (I) (Fig. 1) comprises a planar diketo tautomer and a crystal water molecule. The analysis of the crystal packing of (I) shows five N—H···O and O—H···O intermolecular hydrogen bonds (Table 1) which link the molecules into planar layers (Fig. 2). Two kinds of inversion-related N—H···O hydrogen bonds with graph-set motifs R22(8) (Etter et al., 1990; Bernstein et al., 1995; Motherwell et al., 1999) (Table 1) are formed between NH groups and two carbonyl O atoms (O1i and O2ii) [symmetry code: (i) -x, -y, z + 2; (ii) -x, -y + 1, -z + 1] to give a zigzag chain. Each chain is joined by three O—H···O intermolecular hydrogen bonds to form rings of descriptor R44(12), R43(13) and R44(18) through a water molecule (O4—H4···O5, O5—H51···O2iii and O5—H52···O2iv; symmetry code: (iii) -x + 2, -y, -z + 1; (iv) -x + 2, -y - 1, -z + 2). The hydrogen-bonded two-dimensional array involves the C5—H5···O4iii intermolecular interaction.