metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{μ-6,6′-Dimeth­­oxy-2,2′-[propane-1,3-diylbis(nitrilo­methyl­­idyne)]diphenolato}di­methanoltrinitratonickel(II)praseodymium(III) methanol disolvate

aThe College of Chemical Engineering & Materials, Eastern Liaoning University, 325 Wenhua Road, Yuanbao District, Dandong City, Liaoning Province 118003, People's Republic of China
*Correspondence e-mail: berylliu8090@sina.com

(Received 19 December 2007; accepted 26 February 2008; online 29 March 2008)

In the title dinuclear complex, [NiPr(C19H20N2O4)(NO3)3(CH3OH)2]·2CH3OH, the NiII ion is coordinated by two O atoms and two N atoms of a Schiff base ligand and by two methanol ligands, forming a slightly distorted octa­hedral geometry. The PrIII ion is coordinated by six O atoms from three chelating nitrate ligands and four O atoms from a Schiff base ligand, forming a distorted bicapped square-anti­prismatic environment. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds connect complex mol­ecules and methanol solvent mol­ecules to form (10[\overline{2}]) sheets.

Related literature

For related crystal structures, see: Elmali & Elerman (2003[Elmali, A. & Elerman, Y. (2003). Z. Naturforsch. Teil B, 58, 639-643.], 2004[Elmali, A. & Elerman, Y. (2004). Z. Naturforsch. Teil B, 59, 535-540.]).

[Scheme 1]

Experimental

Crystal data
  • [NiPr(C19H20N2O4)(NO3)3(CH4O)2]·2CH4O

  • Mr = 854.17

  • Monoclinic, P 21 /c

  • a = 13.101 (3) Å

  • b = 11.128 (2) Å

  • c = 22.213 (4) Å

  • β = 90.73 (3)°

  • V = 3238.1 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.15 mm−1

  • T = 293 (2) K

  • 0.33 × 0.31 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.536, Tmax = 0.674

  • 30138 measured reflections

  • 7364 independent reflections

  • 6223 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.067

  • S = 1.03

  • 7364 reflections

  • 430 parameters

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O14—H14O⋯O16 0.85 1.81 2.661 (4) 180
O15—H15O⋯O6i 0.85 2.28 3.128 (5) 180
O16—H16O⋯O17ii 0.85 1.87 2.720 (6) 179
O17—H17O⋯O13 0.85 2.05 2.905 (5) 180
Symmetry codes: (i) -x, -y+2, -z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The molecular structure is shown in Fig. 1. The hexadentate Schiff base ligand links NiII and PrIII ions to form a dinuclear complex via two bridging phenolate O atoms, similar to reported copper-lanthanum complexes of the same ligand (Elmali & Elerman (2003,2004). The PrIII ion is ten-coordinated by four O atoms from the Schiff base ligand and six O atoms from three chelating nitrate ligands. The NiII ion is coordinated by two N atoms and two O atoms from the Schiff base ligand and two methanol oxygen atoms. In the crystal structure, intermolecular O—H···O hydrogen bonds connect complex molecules and methanol solvent molecules to form (1 0 - 2) sheets.

Related literature top

For related crystal structures, see: Elmali & Elerman (2003,2004).

Experimental top

The title complex was obtained by the treatment of Ni(II)acetate tetrahydrate (0.0622 g,0.25 mmol) with the Schiff base (0.0855 g,0.25 mmol) in methanol (25 ml) at room temperature. Then the mixture was refluxed for 3 h after the addition of praseodymium (III) nitrate hexahydrate (0.1042 g, 0.25 mmol). The reaction mixture was cooled and filtered; diethyl ether was allowed to diffuse slowly into the solution of the filtrate. Single crystals were obtained after several days. Analysis calculated for C23H34NiN5O17Pr: C, 32.38; H, 4.12; N, 8.18; found: C, 32.42; H, 4.02; N, 8.22

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic C), C—H = 0.97 Å (methylene C), C—H = 0.98 Å (methine C), and with Uiso(H) = 1.2Ueq(C) or C—H = 0.96 Å (methyl C) and with Uiso(H) = 1.5Ueq(C). H atoms bonded to O atoms were placed in calculated positions which gave the theoretically best locations to be involved in hydrogen bonding and treated as riding on their parent atoms, with O—H = 0.85 Å, and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 40% probability displacement ellipsoids. The solvent methanol molecules have been omitted for clarity.
{µ-6,6'-Dimethoxy-2,2'-[propane-1,3-diylbis(nitrilomethylidyne)]diphenolato} dimethanoltrinitratonickel(II)praseodymium(III) methanol disolvate top
Crystal data top
[NiPr(C19H20N2O4)(NO3)3(CH4O)2]·2CH4OF(000) = 1728
Mr = 854.17Dx = 1.752 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 24596 reflections
a = 13.101 (3) Åθ = 3.0–27.5°
b = 11.128 (2) ŵ = 2.15 mm1
c = 22.213 (4) ÅT = 293 K
β = 90.73 (3)°Block, green
V = 3238.1 (11) Å30.33 × 0.31 × 0.20 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
7364 independent reflections
Radiation source: fine-focus sealed tube6223 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1716
Tmin = 0.536, Tmax = 0.674k = 1412
30138 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0247P)2 + 3.534P]
where P = (Fo2 + 2Fc2)/3
7364 reflections(Δ/σ)max = 0.004
430 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[NiPr(C19H20N2O4)(NO3)3(CH4O)2]·2CH4OV = 3238.1 (11) Å3
Mr = 854.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.101 (3) ŵ = 2.15 mm1
b = 11.128 (2) ÅT = 293 K
c = 22.213 (4) Å0.33 × 0.31 × 0.20 mm
β = 90.73 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
7364 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
6223 reflections with I > 2σ(I)
Tmin = 0.536, Tmax = 0.674Rint = 0.036
30138 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 1.03Δρmax = 0.68 e Å3
7364 reflectionsΔρmin = 0.34 e Å3
430 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pr10.216569 (12)0.702799 (13)0.077562 (7)0.03122 (5)
Ni20.17232 (3)0.98440 (3)0.146000 (15)0.03016 (8)
O10.28024 (14)0.90073 (17)0.09639 (9)0.0331 (4)
O20.40132 (16)0.7479 (2)0.04462 (10)0.0443 (5)
O30.10030 (14)0.82365 (17)0.13252 (9)0.0327 (4)
O40.03400 (16)0.61709 (18)0.09151 (10)0.0412 (5)
O50.0847 (2)0.7706 (3)0.00279 (12)0.0713 (8)
O60.1076 (3)0.8251 (4)0.09346 (14)0.1064 (13)
O70.2344 (2)0.7767 (3)0.03470 (14)0.0868 (10)
O80.2129 (3)0.5235 (3)0.00588 (16)0.0864 (11)
O90.2963 (3)0.3558 (3)0.01513 (19)0.0981 (12)
O100.3143 (3)0.4978 (3)0.07861 (15)0.0910 (11)
O110.1916 (2)0.5814 (3)0.17783 (13)0.0689 (8)
O120.3064 (3)0.5697 (4)0.24869 (14)0.1008 (12)
O130.3325 (2)0.6765 (2)0.16994 (11)0.0538 (6)
O140.23893 (18)0.9184 (2)0.22722 (9)0.0477 (5)
H14O0.28090.95800.24890.072*
O150.10034 (18)1.0504 (2)0.06495 (9)0.0491 (6)
H15O0.04381.08410.07270.074*
N10.2617 (2)1.1332 (2)0.15446 (11)0.0388 (6)
N20.0495 (2)1.0458 (2)0.19041 (10)0.0366 (5)
N30.1414 (3)0.7903 (3)0.04484 (14)0.0579 (8)
N40.2736 (2)0.4548 (3)0.03316 (16)0.0560 (8)
N50.2774 (3)0.6073 (3)0.20013 (14)0.0566 (8)
C10.3769 (2)0.9339 (3)0.09110 (12)0.0333 (6)
C20.4459 (2)0.8550 (3)0.06371 (13)0.0374 (6)
C30.5472 (3)0.8817 (3)0.05670 (16)0.0499 (8)
H3A0.59040.82740.03800.060*
C40.5842 (3)0.9906 (4)0.07772 (18)0.0567 (9)
H4A0.65301.00940.07370.068*
C50.5199 (3)1.0699 (3)0.10423 (17)0.0540 (9)
H5A0.54551.14280.11810.065*
C60.4161 (2)1.0446 (3)0.11116 (13)0.0395 (7)
C70.3546 (3)1.1377 (3)0.13829 (14)0.0413 (7)
H7A0.38731.21080.14480.050*
C80.2245 (3)1.2444 (3)0.18456 (18)0.0564 (9)
H8A0.25031.31370.16310.068*
H8B0.25251.24710.22520.068*
C90.1106 (3)1.2537 (3)0.18762 (17)0.0558 (9)
H9A0.08271.25040.14700.067*
H9B0.09321.33150.20430.067*
C100.0603 (3)1.1579 (3)0.22453 (16)0.0527 (9)
H10A0.10081.14320.26060.063*
H10B0.00661.18550.23670.063*
C110.0395 (2)1.0003 (3)0.18771 (13)0.0403 (7)
H11A0.09111.04280.20670.048*
C120.0691 (2)0.8885 (3)0.15801 (12)0.0355 (6)
C130.1738 (2)0.8634 (3)0.15589 (15)0.0444 (7)
H13A0.21940.91900.17140.053*
C140.2104 (2)0.7590 (3)0.13152 (16)0.0501 (8)
H14A0.28040.74480.12950.060*
C150.1421 (2)0.6738 (3)0.10978 (14)0.0420 (7)
H15A0.16610.60140.09410.050*
C160.0397 (2)0.6973 (3)0.11158 (12)0.0341 (6)
C170.0003 (2)0.8059 (3)0.13400 (12)0.0312 (6)
C180.0043 (3)0.4945 (3)0.0871 (2)0.0624 (11)
H18A0.03030.47120.12310.094*
H18B0.06390.44530.08220.094*
H18C0.04060.48420.05300.094*
C190.4576 (3)0.6741 (3)0.0038 (2)0.0649 (11)
H19A0.48590.72340.02730.097*
H19B0.41280.61530.01400.097*
H19C0.51170.63400.02530.097*
C200.1849 (4)0.8569 (4)0.27271 (18)0.0739 (13)
H20A0.23190.81120.29700.111*
H20B0.13580.80380.25440.111*
H20C0.15030.91410.29760.111*
C210.1500 (3)1.0961 (4)0.01370 (16)0.0643 (11)
H21A0.11091.07640.02180.096*
H21B0.21681.06110.01100.096*
H21C0.15611.18180.01710.096*
O160.3699 (3)1.0418 (3)0.29578 (16)0.1010 (12)
H16O0.40771.09790.28280.151*
C220.4115 (5)0.9988 (7)0.3500 (3)0.127 (2)
H22A0.47570.96050.34240.191*
H22B0.36550.94170.36740.191*
H22C0.42171.06460.37730.191*
O170.5098 (3)0.7213 (4)0.2466 (2)0.1223 (15)
H17O0.45790.70780.22420.183*
C230.5316 (4)0.8313 (5)0.2238 (2)0.0912 (15)
H23A0.47570.88490.23110.137*
H23B0.54220.82480.18130.137*
H23C0.59230.86200.24300.137*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pr10.02647 (8)0.02928 (8)0.03787 (9)0.00184 (6)0.00064 (6)0.00402 (6)
Ni20.02980 (19)0.02824 (17)0.03245 (18)0.00080 (14)0.00038 (14)0.00305 (14)
O10.0260 (10)0.0323 (10)0.0412 (10)0.0017 (8)0.0033 (8)0.0039 (8)
O20.0329 (12)0.0451 (12)0.0550 (13)0.0028 (10)0.0102 (10)0.0096 (10)
O30.0254 (10)0.0331 (10)0.0395 (10)0.0007 (8)0.0023 (8)0.0058 (8)
O40.0332 (11)0.0323 (11)0.0581 (13)0.0039 (9)0.0015 (10)0.0054 (9)
O50.0480 (16)0.110 (2)0.0565 (16)0.0155 (16)0.0019 (13)0.0115 (16)
O60.097 (3)0.156 (4)0.066 (2)0.010 (3)0.0267 (18)0.047 (2)
O70.0560 (19)0.133 (3)0.0713 (19)0.0041 (19)0.0019 (15)0.0353 (19)
O80.074 (2)0.073 (2)0.112 (2)0.0265 (17)0.0351 (19)0.0507 (18)
O90.069 (2)0.0542 (18)0.171 (3)0.0109 (15)0.006 (2)0.053 (2)
O100.130 (3)0.0625 (19)0.080 (2)0.0355 (19)0.025 (2)0.0164 (16)
O110.0482 (16)0.079 (2)0.0792 (19)0.0052 (14)0.0038 (14)0.0269 (15)
O120.090 (3)0.141 (3)0.071 (2)0.005 (2)0.0150 (18)0.055 (2)
O130.0548 (15)0.0523 (14)0.0540 (14)0.0093 (12)0.0132 (11)0.0091 (11)
O140.0496 (14)0.0531 (14)0.0403 (12)0.0043 (11)0.0052 (10)0.0072 (10)
O150.0446 (14)0.0628 (15)0.0399 (12)0.0076 (11)0.0007 (10)0.0083 (10)
N10.0467 (16)0.0302 (13)0.0394 (13)0.0045 (11)0.0014 (11)0.0027 (10)
N20.0371 (14)0.0386 (13)0.0342 (12)0.0052 (11)0.0007 (10)0.0062 (10)
N30.054 (2)0.0603 (19)0.0587 (19)0.0014 (16)0.0162 (16)0.0103 (15)
N40.0458 (18)0.0390 (16)0.084 (2)0.0042 (13)0.0132 (16)0.0199 (15)
N50.056 (2)0.0598 (19)0.0539 (18)0.0065 (16)0.0000 (15)0.0146 (15)
C10.0291 (15)0.0411 (16)0.0297 (13)0.0023 (12)0.0037 (11)0.0061 (11)
C20.0286 (15)0.0449 (17)0.0387 (15)0.0006 (13)0.0007 (12)0.0042 (13)
C30.0310 (17)0.061 (2)0.058 (2)0.0007 (15)0.0055 (15)0.0071 (17)
C40.0290 (17)0.069 (2)0.072 (2)0.0102 (17)0.0045 (16)0.0066 (19)
C50.043 (2)0.055 (2)0.064 (2)0.0178 (17)0.0035 (17)0.0033 (17)
C60.0351 (17)0.0419 (17)0.0413 (16)0.0074 (13)0.0027 (13)0.0049 (13)
C70.0466 (19)0.0345 (16)0.0427 (16)0.0128 (14)0.0052 (14)0.0014 (12)
C80.064 (3)0.0385 (18)0.066 (2)0.0066 (17)0.0016 (19)0.0156 (16)
C90.070 (3)0.0344 (17)0.062 (2)0.0127 (17)0.0095 (19)0.0133 (16)
C100.052 (2)0.050 (2)0.056 (2)0.0082 (16)0.0050 (17)0.0218 (16)
C110.0379 (17)0.0450 (17)0.0380 (15)0.0119 (14)0.0065 (13)0.0019 (13)
C120.0302 (15)0.0437 (16)0.0326 (14)0.0052 (13)0.0039 (11)0.0037 (12)
C130.0290 (16)0.0530 (19)0.0513 (18)0.0068 (14)0.0065 (13)0.0035 (15)
C140.0255 (16)0.068 (2)0.057 (2)0.0038 (15)0.0005 (14)0.0039 (17)
C150.0322 (16)0.0441 (17)0.0496 (18)0.0067 (13)0.0009 (13)0.0017 (14)
C160.0305 (15)0.0382 (15)0.0336 (14)0.0008 (12)0.0004 (11)0.0042 (12)
C170.0263 (13)0.0379 (15)0.0295 (13)0.0010 (12)0.0008 (10)0.0045 (11)
C180.052 (2)0.0362 (18)0.100 (3)0.0080 (16)0.009 (2)0.0035 (18)
C190.059 (2)0.052 (2)0.084 (3)0.0058 (18)0.032 (2)0.0128 (19)
C200.090 (3)0.077 (3)0.055 (2)0.014 (3)0.002 (2)0.019 (2)
C210.069 (3)0.073 (3)0.051 (2)0.004 (2)0.0041 (18)0.0223 (19)
O160.107 (3)0.101 (3)0.093 (2)0.009 (2)0.046 (2)0.006 (2)
C220.128 (6)0.160 (7)0.092 (4)0.022 (5)0.049 (4)0.010 (4)
O170.085 (3)0.119 (3)0.161 (4)0.011 (2)0.052 (3)0.011 (3)
C230.085 (4)0.096 (4)0.093 (4)0.014 (3)0.011 (3)0.017 (3)
Geometric parameters (Å, º) top
Pr1—O32.3804 (19)C4—H4A0.9300
Pr1—O12.3903 (19)C5—C61.399 (4)
Pr1—O82.552 (3)C5—H5A0.9300
Pr1—O132.554 (2)C6—C71.448 (4)
Pr1—O52.580 (3)C7—H7A0.9300
Pr1—O22.587 (2)C8—C91.498 (5)
Pr1—O42.597 (2)C8—H8A0.9700
Pr1—O102.616 (3)C8—H8B0.9700
Pr1—O112.629 (3)C9—C101.502 (5)
Pr1—O72.639 (3)C9—H9A0.9700
Pr1—Ni23.5340 (6)C9—H9B0.9700
Ni2—N22.018 (2)C10—H10A0.9700
Ni2—O12.0298 (19)C10—H10B0.9700
Ni2—N12.035 (2)C11—C121.459 (4)
Ni2—O32.0427 (19)C11—H11A0.9300
Ni2—O142.125 (2)C12—C131.400 (4)
Ni2—O152.151 (2)C12—C171.403 (4)
O1—C11.325 (3)C13—C141.366 (5)
O2—C21.391 (4)C13—H13A0.9300
O2—C191.434 (4)C14—C151.394 (5)
O3—C171.325 (3)C14—H14A0.9300
O4—C161.393 (3)C15—C161.367 (4)
O4—C181.422 (4)C15—H15A0.9300
O5—N31.221 (4)C16—C171.406 (4)
O6—N31.225 (4)C18—H18A0.9600
O7—N31.245 (4)C18—H18B0.9600
O8—N41.254 (4)C18—H18C0.9600
O9—N41.210 (4)C19—H19A0.9600
O10—N41.232 (4)C19—H19B0.9600
O11—N51.256 (4)C19—H19C0.9600
O12—N51.213 (4)C20—H20A0.9600
O13—N51.256 (4)C20—H20B0.9600
O14—C201.417 (4)C20—H20C0.9600
O14—H14O0.8501C21—H21A0.9600
O15—C211.413 (4)C21—H21B0.9600
O15—H15O0.8500C21—H21C0.9600
N1—C71.274 (4)O16—C221.399 (6)
N1—C81.492 (4)O16—H16O0.8499
N2—C111.271 (4)C22—H22A0.9600
N2—C101.466 (4)C22—H22B0.9600
C1—C21.405 (4)C22—H22C0.9600
C1—C61.406 (4)O17—C231.356 (6)
C2—C31.370 (4)O17—H17O0.8500
C3—C41.384 (5)C23—H23A0.9600
C3—H3A0.9300C23—H23B0.9600
C4—C51.360 (5)C23—H23C0.9600
O3—Pr1—O167.28 (6)O5—N3—O7116.3 (3)
O3—Pr1—O8138.96 (9)O6—N3—O7122.7 (4)
O1—Pr1—O8146.42 (10)O9—N4—O10121.2 (4)
O3—Pr1—O1391.75 (8)O9—N4—O8123.5 (4)
O1—Pr1—O1376.24 (7)O10—N4—O8115.1 (3)
O8—Pr1—O13114.71 (10)O12—N5—O11122.7 (3)
O3—Pr1—O576.27 (8)O12—N5—O13120.7 (4)
O1—Pr1—O594.63 (9)O11—N5—O13116.6 (3)
O8—Pr1—O577.86 (11)O1—C1—C2119.1 (3)
O13—Pr1—O5167.18 (9)O1—C1—C6124.2 (3)
O3—Pr1—O2129.99 (7)C2—C1—C6116.8 (3)
O1—Pr1—O262.94 (7)C3—C2—O2123.7 (3)
O8—Pr1—O289.17 (10)C3—C2—C1122.9 (3)
O13—Pr1—O272.56 (8)O2—C2—C1113.4 (2)
O5—Pr1—O2111.60 (8)C2—C3—C4119.2 (3)
O3—Pr1—O463.26 (7)C2—C3—H3A120.4
O1—Pr1—O4129.60 (6)C4—C3—H3A120.4
O8—Pr1—O477.13 (10)C5—C4—C3119.8 (3)
O13—Pr1—O4113.66 (8)C5—C4—H4A120.1
O5—Pr1—O465.20 (9)C3—C4—H4A120.1
O2—Pr1—O4166.28 (7)C4—C5—C6121.8 (3)
O3—Pr1—O10143.55 (9)C4—C5—H5A119.1
O1—Pr1—O10129.23 (10)C6—C5—H5A119.1
O8—Pr1—O1047.88 (10)C5—C6—C1119.5 (3)
O13—Pr1—O1066.87 (9)C5—C6—C7116.7 (3)
O5—Pr1—O10125.74 (10)C1—C6—C7123.8 (3)
O2—Pr1—O1073.27 (11)N1—C7—C6128.9 (3)
O4—Pr1—O1097.47 (10)N1—C7—H7A115.6
O3—Pr1—O1176.63 (8)C6—C7—H7A115.6
O1—Pr1—O11111.86 (8)N1—C8—C9114.2 (3)
O8—Pr1—O1197.19 (11)N1—C8—H8A108.7
O13—Pr1—O1148.68 (8)C9—C8—H8A108.7
O5—Pr1—O11130.31 (9)N1—C8—H8B108.7
O2—Pr1—O11117.78 (8)C9—C8—H8B108.7
O4—Pr1—O1165.52 (8)H8A—C8—H8B107.6
O10—Pr1—O1167.06 (11)C8—C9—C10114.8 (3)
O3—Pr1—O7111.93 (9)C8—C9—H9A108.6
O1—Pr1—O780.99 (10)C10—C9—H9A108.6
O8—Pr1—O769.83 (13)C8—C9—H9B108.6
O13—Pr1—O7137.39 (9)C10—C9—H9B108.6
O5—Pr1—O747.29 (9)H9A—C9—H9B107.5
O2—Pr1—O765.04 (9)N2—C10—C9111.2 (3)
O4—Pr1—O7108.65 (9)N2—C10—H10A109.4
O10—Pr1—O7103.36 (11)C9—C10—H10A109.4
O11—Pr1—O7166.94 (11)N2—C10—H10B109.4
O3—Pr1—Ni233.79 (5)C9—C10—H10B109.4
O1—Pr1—Ni233.53 (5)H10A—C10—H10B108.0
O8—Pr1—Ni2163.62 (8)N2—C11—C12126.8 (3)
O13—Pr1—Ni281.66 (6)N2—C11—H11A116.6
O5—Pr1—Ni285.78 (7)C12—C11—H11A116.6
O2—Pr1—Ni296.25 (5)C13—C12—C17119.7 (3)
O4—Pr1—Ni296.77 (5)C13—C12—C11116.1 (3)
O10—Pr1—Ni2148.47 (7)C17—C12—C11124.1 (3)
O11—Pr1—Ni293.93 (7)C14—C13—C12121.5 (3)
O7—Pr1—Ni298.46 (9)C14—C13—H13A119.3
N2—Ni2—O1170.50 (9)C12—C13—H13A119.3
N2—Ni2—N198.11 (10)C13—C14—C15119.4 (3)
O1—Ni2—N191.11 (9)C13—C14—H14A120.3
N2—Ni2—O389.90 (9)C15—C14—H14A120.3
O1—Ni2—O380.93 (8)C16—C15—C14119.6 (3)
N1—Ni2—O3171.92 (9)C16—C15—H15A120.2
N2—Ni2—O1491.34 (10)C14—C15—H15A120.2
O1—Ni2—O1491.21 (9)C15—C16—O4123.5 (3)
N1—Ni2—O1488.46 (10)C15—C16—C17122.5 (3)
O3—Ni2—O1490.33 (9)O4—C16—C17114.0 (2)
N2—Ni2—O1587.12 (10)O3—C17—C12123.9 (3)
O1—Ni2—O1590.18 (9)O3—C17—C16119.0 (2)
N1—Ni2—O1592.60 (10)C12—C17—C16117.2 (3)
O3—Ni2—O1588.82 (9)O4—C18—H18A109.5
O14—Ni2—O15178.24 (9)O4—C18—H18B109.5
N2—Ni2—Pr1130.30 (7)H18A—C18—H18B109.5
O1—Ni2—Pr140.58 (5)O4—C18—H18C109.5
N1—Ni2—Pr1131.58 (8)H18A—C18—H18C109.5
O3—Ni2—Pr140.40 (5)H18B—C18—H18C109.5
O14—Ni2—Pr189.48 (7)O2—C19—H19A109.5
O15—Ni2—Pr190.87 (7)O2—C19—H19B109.5
C1—O1—Ni2126.40 (18)H19A—C19—H19B109.5
C1—O1—Pr1124.92 (17)O2—C19—H19C109.5
Ni2—O1—Pr1105.89 (8)H19A—C19—H19C109.5
C2—O2—C19117.8 (3)H19B—C19—H19C109.5
C2—O2—Pr1118.10 (16)O14—C20—H20A109.5
C19—O2—Pr1123.9 (2)O14—C20—H20B109.5
C17—O3—Ni2125.58 (17)H20A—C20—H20B109.5
C17—O3—Pr1124.57 (17)O14—C20—H20C109.5
Ni2—O3—Pr1105.82 (8)H20A—C20—H20C109.5
C16—O4—C18116.6 (2)H20B—C20—H20C109.5
C16—O4—Pr1116.51 (16)O15—C21—H21A109.5
C18—O4—Pr1126.5 (2)O15—C21—H21B109.5
N3—O5—Pr1100.0 (2)H21A—C21—H21B109.5
N3—O7—Pr196.4 (2)O15—C21—H21C109.5
N4—O8—Pr199.7 (2)H21A—C21—H21C109.5
N4—O10—Pr197.2 (2)H21B—C21—H21C109.5
N5—O11—Pr195.5 (2)C22—O16—H16O108.8
N5—O13—Pr199.1 (2)O16—C22—H22A109.5
C20—O14—Ni2124.7 (2)O16—C22—H22B109.5
C20—O14—H14O99.9H22A—C22—H22B109.5
Ni2—O14—H14O123.9O16—C22—H22C109.5
C21—O15—Ni2126.6 (2)H22A—C22—H22C109.5
C21—O15—H15O114.5H22B—C22—H22C109.5
Ni2—O15—H15O110.8C23—O17—H17O96.4
C7—N1—C8114.4 (3)O17—C23—H23A109.5
C7—N1—Ni2123.8 (2)O17—C23—H23B109.5
C8—N1—Ni2121.7 (2)H23A—C23—H23B109.5
C11—N2—C10116.5 (3)O17—C23—H23C109.5
C11—N2—Ni2125.3 (2)H23A—C23—H23C109.5
C10—N2—Ni2117.9 (2)H23B—C23—H23C109.5
O5—N3—O6121.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O14—H14O···O160.851.812.661 (4)180
O15—H15O···O6i0.852.283.128 (5)180
O16—H16O···O17ii0.851.872.720 (6)179
O17—H17O···O130.852.052.905 (5)180
Symmetry codes: (i) x, y+2, z; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[NiPr(C19H20N2O4)(NO3)3(CH4O)2]·2CH4O
Mr854.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.101 (3), 11.128 (2), 22.213 (4)
β (°) 90.73 (3)
V3)3238.1 (11)
Z4
Radiation typeMo Kα
µ (mm1)2.15
Crystal size (mm)0.33 × 0.31 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.536, 0.674
No. of measured, independent and
observed [I > 2σ(I)] reflections
30138, 7364, 6223
Rint0.036
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.067, 1.03
No. of reflections7364
No. of parameters430
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.34

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O14—H14O···O160.851.812.661 (4)179.5
O15—H15O···O6i0.852.283.128 (5)179.9
O16—H16O···O17ii0.851.872.720 (6)179.4
O17—H17O···O130.852.052.905 (5)179.6
Symmetry codes: (i) x, y+2, z; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge financial support from the Education Department of Liaoning Province (2006 B 112) and Liaoning University.

References

First citationElmali, A. & Elerman, Y. (2003). Z. Naturforsch. Teil B, 58, 639–643.  CAS Google Scholar
First citationElmali, A. & Elerman, Y. (2004). Z. Naturforsch. Teil B, 59, 535-540.  CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds