metal-organic compounds
catena-Poly[[[bis(thiourea-κS)copper(I)]-μ-thiourea-κ2S:S] iodide acetonitrile hemisolvate]
aSchool of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China, bLiaocheng Vocational and Technical College, Liaocheng, Shandong 252000, People's Republic of China, and cDongchang College of Liaocheng University, Liaocheng, Shandong 252000, People's Republic of China
*Correspondence e-mail: lidacheng62@lcu.edu.cn
The title complex, {[Cu(CH4N2S)3]I·0.5CH3CN}n, was formed by the reaction of CuI and thiourea in acetonitrile. There are two independent CuI ions in the which are coordinated by two terminal and two bridging thiourea ligands to form a one-dimensional helical chain structure progagating in the a-axis direction. Each CuI ion is in a distorted tetrahedral coordination environment. The is stabilized by weak N—H⋯S and N—H⋯I hydrogen bonds.
Related literature
For related literature, see: Bombicz et al. (2004); Bott et al. (1998); Stocker et al. (1996).
Experimental
Crystal data
|
|
Data collection: SMART (Bruker, 1997); cell SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 2006); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808007265/lh2596sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808007265/lh2596Isup2.hkl
CuI (0.19 g 1 mmol) and thiourea (0.16 g 2 mmol) in 10 ml acetonitrile were refluxed for 24 h, forming a colorless solution. After filtration, the solution was allowed to evaporate slowly and crystals suitable for X-ray diffraction were obtained after several days.
All H atoms were placed geometrically and treated as riding on their parent atoms, with, N—H 0.86, C—H 0.96 Å, with Uiso(H) = 1.2Ueq(N), Uiso(H) = 1.5Ueq(C).
Data collection: SMART (Bruker, 1997); cell
SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenberg & Berndt, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The asymmetric unit with atom labels and 30% probability displacement ellipsoids. H atoms are not shown. | |
Fig. 2. Part of the one-dimensional helical chain structure of the title complex. |
[Cu(CH4N2S)3]I·0.5C2H3N | F(000) = 1704 |
Mr = 439.33 | Dx = 2.055 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 6067 reflections |
a = 13.392 (8) Å | θ = 2.4–24.6° |
b = 13.874 (9) Å | µ = 4.14 mm−1 |
c = 15.289 (9) Å | T = 298 K |
V = 2841 (3) Å3 | Block, colorless |
Z = 8 | 0.43 × 0.39 × 0.31 mm |
Bruker SMART CCD diffractometer | 4963 independent reflections |
Radiation source: fine-focus sealed tube | 4175 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.058 |
ϕ and ω scans | θmax = 25.0°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −15→15 |
Tmin = 0.269, Tmax = 0.360 | k = −14→16 |
14883 measured reflections | l = −18→18 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.077 | w = 1/[σ2(Fo2) + (0.0355P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max = 0.001 |
4963 reflections | Δρmax = 0.75 e Å−3 |
280 parameters | Δρmin = −0.56 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 2149 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.01 (2) |
[Cu(CH4N2S)3]I·0.5C2H3N | V = 2841 (3) Å3 |
Mr = 439.33 | Z = 8 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 13.392 (8) Å | µ = 4.14 mm−1 |
b = 13.874 (9) Å | T = 298 K |
c = 15.289 (9) Å | 0.43 × 0.39 × 0.31 mm |
Bruker SMART CCD diffractometer | 4963 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 4175 reflections with I > 2σ(I) |
Tmin = 0.269, Tmax = 0.360 | Rint = 0.058 |
14883 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.077 | Δρmax = 0.75 e Å−3 |
S = 1.00 | Δρmin = −0.56 e Å−3 |
4963 reflections | Absolute structure: Flack (1983), 2149 Friedel pairs |
280 parameters | Absolute structure parameter: −0.01 (2) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.43289 (6) | 0.62730 (6) | 0.51306 (5) | 0.0352 (2) | |
Cu2 | 0.21551 (6) | 0.78050 (6) | 0.36342 (6) | 0.0378 (2) | |
I1 | 0.73774 (3) | 0.35628 (3) | 0.66369 (3) | 0.03691 (12) | |
I2 | 0.56899 (4) | 0.12983 (4) | 0.53537 (3) | 0.04740 (14) | |
N1 | 0.5123 (4) | 0.8657 (5) | 0.4926 (4) | 0.0528 (18) | |
H1A | 0.5402 | 0.9200 | 0.5043 | 0.063* | |
H1B | 0.5389 | 0.8129 | 0.5106 | 0.063* | |
N2 | 0.3902 (5) | 0.9446 (5) | 0.4202 (5) | 0.064 (2) | |
H2A | 0.4189 | 0.9984 | 0.4325 | 0.077* | |
H2B | 0.3358 | 0.9442 | 0.3903 | 0.077* | |
N3 | 0.3841 (5) | 0.3114 (4) | 0.4764 (4) | 0.0459 (16) | |
H3A | 0.4073 | 0.2612 | 0.5024 | 0.055* | |
H3B | 0.3327 | 0.3064 | 0.4430 | 0.055* | |
N4 | 0.5048 (5) | 0.3993 (5) | 0.5388 (4) | 0.0566 (19) | |
H4A | 0.5263 | 0.3479 | 0.5640 | 0.068* | |
H4B | 0.5345 | 0.4534 | 0.5474 | 0.068* | |
N5 | 0.2276 (5) | 0.5314 (6) | 0.6094 (5) | 0.067 (2) | |
H5A | 0.1708 | 0.5049 | 0.6202 | 0.081* | |
H5B | 0.2535 | 0.5267 | 0.5581 | 0.081* | |
N6 | 0.2313 (5) | 0.5839 (5) | 0.7483 (4) | 0.0615 (19) | |
H6A | 0.1745 | 0.5566 | 0.7571 | 0.074* | |
H6B | 0.2602 | 0.6146 | 0.7901 | 0.074* | |
N7 | −0.0075 (5) | 0.5530 (5) | 0.2887 (5) | 0.057 (2) | |
H7A | −0.0649 | 0.5543 | 0.2634 | 0.068* | |
H7B | 0.0118 | 0.5018 | 0.3154 | 0.068* | |
N8 | 0.0191 (4) | 0.7058 (4) | 0.2453 (4) | 0.0462 (17) | |
H8A | −0.0385 | 0.7056 | 0.2204 | 0.055* | |
H8B | 0.0561 | 0.7564 | 0.2431 | 0.055* | |
N9 | 0.2578 (5) | 0.7295 (5) | 0.1506 (4) | 0.0568 (18) | |
H9A | 0.2765 | 0.7019 | 0.1030 | 0.068* | |
H9B | 0.2487 | 0.6959 | 0.1972 | 0.068* | |
N10 | 0.2579 (7) | 0.8700 (6) | 0.0790 (4) | 0.089 (3) | |
H10A | 0.2767 | 0.8410 | 0.0321 | 0.107* | |
H10B | 0.2486 | 0.9314 | 0.0786 | 0.107* | |
N11 | 0.1163 (4) | 0.9243 (5) | 0.6331 (4) | 0.0478 (16) | |
H11A | 0.1405 | 0.9268 | 0.6851 | 0.057* | |
H11B | 0.0637 | 0.9570 | 0.6201 | 0.057* | |
N12 | 0.2399 (5) | 0.8212 (5) | 0.5951 (4) | 0.065 (2) | |
H12A | 0.2631 | 0.8245 | 0.6474 | 0.078* | |
H12B | 0.2691 | 0.7856 | 0.5568 | 0.078* | |
N13 | 0.4435 (6) | 0.5766 (7) | 0.2168 (5) | 0.080 (3) | |
S1 | 0.37489 (12) | 0.75471 (12) | 0.42179 (11) | 0.0289 (4) | |
S2 | 0.38359 (13) | 0.49427 (13) | 0.43325 (11) | 0.0347 (4) | |
S3 | 0.38436 (12) | 0.63528 (15) | 0.65547 (11) | 0.0409 (4) | |
S4 | 0.16498 (11) | 0.62484 (13) | 0.33684 (12) | 0.0377 (4) | |
S5 | 0.20735 (14) | 0.88344 (13) | 0.24281 (11) | 0.0407 (4) | |
S6 | 0.11161 (11) | 0.86565 (13) | 0.46883 (10) | 0.0300 (3) | |
C1 | 0.4293 (5) | 0.8635 (5) | 0.4470 (4) | 0.0371 (16) | |
C2 | 0.4269 (5) | 0.3951 (5) | 0.4876 (4) | 0.0351 (16) | |
C3 | 0.2741 (5) | 0.5786 (5) | 0.6706 (5) | 0.0375 (16) | |
C4 | 0.0505 (4) | 0.6292 (5) | 0.2864 (4) | 0.0339 (15) | |
C5 | 0.2434 (5) | 0.8202 (6) | 0.1521 (4) | 0.0462 (19) | |
C6 | 0.1593 (4) | 0.8707 (5) | 0.5735 (4) | 0.0306 (14) | |
C7 | 0.4660 (6) | 0.6535 (9) | 0.2169 (5) | 0.060 (3) | |
C8 | 0.4976 (7) | 0.7529 (7) | 0.2179 (7) | 0.075 (3) | |
H8C | 0.4444 | 0.7925 | 0.2398 | 0.112* | |
H8D | 0.5143 | 0.7728 | 0.1595 | 0.112* | |
H8E | 0.5551 | 0.7595 | 0.2549 | 0.112* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0331 (4) | 0.0335 (5) | 0.0391 (5) | −0.0031 (4) | 0.0053 (4) | −0.0024 (4) |
Cu2 | 0.0300 (4) | 0.0451 (5) | 0.0383 (5) | −0.0036 (4) | −0.0070 (4) | −0.0002 (4) |
I1 | 0.0318 (2) | 0.0460 (3) | 0.0330 (2) | −0.0026 (2) | 0.00101 (19) | −0.0021 (2) |
I2 | 0.0590 (3) | 0.0338 (3) | 0.0494 (3) | 0.0017 (3) | 0.0004 (2) | 0.0003 (3) |
N1 | 0.041 (3) | 0.030 (3) | 0.087 (5) | −0.005 (3) | −0.032 (3) | −0.001 (4) |
N2 | 0.049 (4) | 0.033 (4) | 0.110 (6) | −0.015 (3) | −0.035 (4) | 0.013 (4) |
N3 | 0.052 (4) | 0.039 (4) | 0.047 (4) | −0.001 (3) | −0.006 (3) | 0.003 (3) |
N4 | 0.060 (5) | 0.043 (4) | 0.067 (5) | −0.004 (3) | −0.033 (4) | 0.013 (4) |
N5 | 0.042 (4) | 0.082 (5) | 0.078 (5) | −0.022 (4) | 0.012 (4) | −0.004 (4) |
N6 | 0.067 (5) | 0.062 (4) | 0.055 (4) | −0.004 (4) | 0.032 (4) | 0.006 (3) |
N7 | 0.047 (4) | 0.037 (4) | 0.087 (5) | −0.008 (3) | −0.012 (4) | 0.008 (4) |
N8 | 0.024 (3) | 0.042 (4) | 0.072 (5) | 0.000 (3) | −0.012 (3) | 0.004 (4) |
N9 | 0.058 (4) | 0.072 (5) | 0.041 (4) | 0.015 (4) | 0.011 (3) | −0.018 (3) |
N10 | 0.146 (8) | 0.089 (6) | 0.032 (4) | −0.057 (7) | 0.019 (5) | −0.008 (4) |
N11 | 0.042 (3) | 0.069 (5) | 0.032 (3) | 0.018 (3) | −0.006 (3) | −0.016 (3) |
N12 | 0.049 (4) | 0.117 (6) | 0.028 (3) | 0.039 (4) | −0.005 (3) | −0.004 (3) |
N13 | 0.066 (5) | 0.106 (7) | 0.066 (5) | −0.018 (5) | −0.025 (4) | 0.011 (5) |
S1 | 0.0239 (8) | 0.0303 (9) | 0.0326 (9) | 0.0005 (7) | −0.0038 (7) | 0.0001 (7) |
S2 | 0.0379 (9) | 0.0327 (10) | 0.0336 (10) | −0.0020 (8) | −0.0104 (8) | 0.0010 (8) |
S3 | 0.0372 (8) | 0.0529 (11) | 0.0327 (9) | −0.0054 (9) | 0.0030 (8) | −0.0016 (9) |
S4 | 0.0291 (8) | 0.0365 (10) | 0.0474 (10) | 0.0026 (7) | −0.0061 (8) | 0.0006 (9) |
S5 | 0.0527 (11) | 0.0376 (10) | 0.0319 (9) | 0.0019 (8) | −0.0045 (8) | 0.0017 (8) |
S6 | 0.0214 (7) | 0.0422 (10) | 0.0265 (8) | 0.0012 (8) | 0.0006 (6) | −0.0039 (9) |
C1 | 0.035 (3) | 0.035 (4) | 0.042 (4) | 0.003 (4) | −0.004 (3) | 0.001 (3) |
C2 | 0.032 (4) | 0.042 (4) | 0.031 (4) | −0.009 (3) | −0.003 (3) | −0.004 (3) |
C3 | 0.038 (4) | 0.032 (4) | 0.042 (4) | 0.007 (3) | 0.010 (4) | 0.008 (3) |
C4 | 0.030 (3) | 0.034 (4) | 0.038 (4) | 0.001 (3) | 0.003 (3) | −0.004 (3) |
C5 | 0.037 (4) | 0.068 (6) | 0.034 (4) | −0.011 (4) | −0.003 (4) | −0.003 (4) |
C6 | 0.025 (3) | 0.042 (4) | 0.025 (3) | −0.003 (3) | −0.001 (3) | 0.003 (3) |
C7 | 0.040 (5) | 0.100 (9) | 0.041 (5) | −0.003 (5) | 0.000 (4) | 0.012 (5) |
C8 | 0.059 (6) | 0.096 (8) | 0.069 (7) | −0.013 (5) | 0.028 (5) | 0.000 (6) |
Cu1—S3 | 2.275 (2) | N7—H7B | 0.8600 |
Cu1—S2 | 2.309 (2) | N8—C4 | 1.303 (9) |
Cu1—S1 | 2.382 (2) | N8—H8A | 0.8600 |
Cu1—S6i | 2.411 (2) | N8—H8B | 0.8600 |
Cu2—S4 | 2.299 (2) | N9—C5 | 1.273 (10) |
Cu2—S5 | 2.335 (2) | N9—H9A | 0.8600 |
Cu2—S1 | 2.341 (2) | N9—H9B | 0.8600 |
Cu2—S6 | 2.435 (2) | N10—C5 | 1.328 (10) |
N1—C1 | 1.313 (8) | N10—H10A | 0.8600 |
N1—H1A | 0.8600 | N10—H10B | 0.8600 |
N1—H1B | 0.8600 | N11—C6 | 1.309 (8) |
N2—C1 | 1.307 (9) | N11—H11A | 0.8600 |
N2—H2A | 0.8600 | N11—H11B | 0.8600 |
N2—H2B | 0.8600 | N12—C6 | 1.321 (9) |
N3—C2 | 1.307 (8) | N12—H12A | 0.8600 |
N3—H3A | 0.8600 | N12—H12B | 0.8600 |
N3—H3B | 0.8600 | N13—C7 | 1.109 (12) |
N4—C2 | 1.306 (8) | S1—C1 | 1.719 (7) |
N4—H4A | 0.8600 | S2—C2 | 1.708 (7) |
N4—H4B | 0.8600 | S3—C3 | 1.689 (7) |
N5—C3 | 1.301 (10) | S4—C4 | 1.718 (6) |
N5—H5A | 0.8600 | S5—C5 | 1.711 (8) |
N5—H5B | 0.8600 | S6—C6 | 1.725 (6) |
N6—C3 | 1.321 (9) | S6—Cu1ii | 2.411 (2) |
N6—H6A | 0.8600 | C7—C8 | 1.442 (14) |
N6—H6B | 0.8600 | C8—H8C | 0.9600 |
N7—C4 | 1.313 (8) | C8—H8D | 0.9600 |
N7—H7A | 0.8600 | C8—H8E | 0.9600 |
S3—Cu1—S2 | 117.58 (8) | C6—N11—H11A | 120.0 |
S3—Cu1—S1 | 115.55 (8) | C6—N11—H11B | 120.0 |
S2—Cu1—S1 | 100.97 (8) | H11A—N11—H11B | 120.0 |
S3—Cu1—S6i | 99.89 (6) | C6—N12—H12A | 120.0 |
S2—Cu1—S6i | 112.14 (7) | C6—N12—H12B | 120.0 |
S1—Cu1—S6i | 111.15 (7) | H12A—N12—H12B | 120.0 |
S4—Cu2—S5 | 114.90 (8) | C1—S1—Cu2 | 109.7 (2) |
S4—Cu2—S1 | 101.08 (7) | C1—S1—Cu1 | 112.4 (2) |
S5—Cu2—S1 | 115.93 (7) | Cu2—S1—Cu1 | 129.34 (8) |
S4—Cu2—S6 | 113.86 (7) | C2—S2—Cu1 | 106.8 (2) |
S5—Cu2—S6 | 101.49 (8) | C3—S3—Cu1 | 111.0 (3) |
S1—Cu2—S6 | 110.05 (7) | C4—S4—Cu2 | 108.0 (3) |
C1—N1—H1A | 120.0 | C5—S5—Cu2 | 108.3 (3) |
C1—N1—H1B | 120.0 | C6—S6—Cu1ii | 105.0 (2) |
H1A—N1—H1B | 120.0 | C6—S6—Cu2 | 115.0 (2) |
C1—N2—H2A | 120.0 | Cu1ii—S6—Cu2 | 131.52 (7) |
C1—N2—H2B | 120.0 | N2—C1—N1 | 119.0 (7) |
H2A—N2—H2B | 120.0 | N2—C1—S1 | 121.1 (5) |
C2—N3—H3A | 120.0 | N1—C1—S1 | 119.9 (6) |
C2—N3—H3B | 120.0 | N4—C2—N3 | 117.9 (6) |
H3A—N3—H3B | 120.0 | N4—C2—S2 | 121.8 (5) |
C2—N4—H4A | 120.0 | N3—C2—S2 | 120.2 (5) |
C2—N4—H4B | 120.0 | N5—C3—N6 | 117.9 (7) |
H4A—N4—H4B | 120.0 | N5—C3—S3 | 123.7 (6) |
C3—N5—H5A | 120.0 | N6—C3—S3 | 118.5 (6) |
C3—N5—H5B | 120.0 | N8—C4—N7 | 118.6 (6) |
H5A—N5—H5B | 120.0 | N8—C4—S4 | 122.2 (5) |
C3—N6—H6A | 120.0 | N7—C4—S4 | 119.2 (6) |
C3—N6—H6B | 120.0 | N9—C5—N10 | 118.6 (8) |
H6A—N6—H6B | 120.0 | N9—C5—S5 | 124.3 (6) |
C4—N7—H7A | 120.0 | N10—C5—S5 | 117.1 (7) |
C4—N7—H7B | 120.0 | N11—C6—N12 | 118.8 (6) |
H7A—N7—H7B | 120.0 | N11—C6—S6 | 120.3 (5) |
C4—N8—H8A | 120.0 | N12—C6—S6 | 120.8 (5) |
C4—N8—H8B | 120.0 | N13—C7—C8 | 178.6 (11) |
H8A—N8—H8B | 120.0 | C7—C8—H8C | 109.5 |
C5—N9—H9A | 120.0 | C7—C8—H8D | 109.5 |
C5—N9—H9B | 120.0 | H8C—C8—H8D | 109.5 |
H9A—N9—H9B | 120.0 | C7—C8—H8E | 109.5 |
C5—N10—H10A | 120.0 | H8C—C8—H8E | 109.5 |
C5—N10—H10B | 120.0 | H8D—C8—H8E | 109.5 |
H10A—N10—H10B | 120.0 |
Symmetry codes: (i) x+1/2, −y+3/2, −z+1; (ii) x−1/2, −y+3/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···I2iii | 0.86 | 2.97 | 3.799 (7) | 161 |
N1—H1B···S6i | 0.86 | 2.68 | 3.524 (7) | 167 |
N2—H2A···I2iii | 0.86 | 3.14 | 3.929 (6) | 154 |
N2—H2B···S5 | 0.86 | 2.96 | 3.752 (7) | 154 |
N2—H2B···I1ii | 0.86 | 3.17 | 3.667 (7) | 119 |
N3—H3A···I2 | 0.86 | 2.87 | 3.645 (6) | 150 |
N3—H3B···I1iv | 0.86 | 3.06 | 3.720 (6) | 135 |
N4—H4A···I2 | 0.86 | 3.11 | 3.837 (7) | 144 |
N4—H4A···I1 | 0.86 | 3.22 | 3.706 (6) | 119 |
N4—H4B···S6i | 0.86 | 2.73 | 3.563 (7) | 165 |
N5—H5A···N13v | 0.86 | 2.41 | 3.192 (10) | 152 |
N5—H5A···I2iv | 0.86 | 3.32 | 3.796 (8) | 118 |
N7—H7A···I1vi | 0.86 | 3.04 | 3.839 (7) | 156 |
N7—H7B···I2iv | 0.86 | 3.02 | 3.837 (7) | 159 |
N8—H8A···I1vi | 0.86 | 2.93 | 3.759 (6) | 161 |
N8—H8B···S5 | 0.86 | 2.69 | 3.526 (6) | 166 |
N9—H9A···I2vii | 0.86 | 3.12 | 3.922 (6) | 155 |
N9—H9B···S4 | 0.86 | 2.61 | 3.429 (7) | 161 |
N10—H10A···I1vii | 0.86 | 3.01 | 3.716 (7) | 141 |
N11—H11A···I1viii | 0.86 | 2.99 | 3.791 (6) | 155 |
N11—H11B···S2ii | 0.86 | 2.63 | 3.466 (6) | 163 |
N12—H12A···I1viii | 0.86 | 2.92 | 3.732 (6) | 158 |
N12—H12B···S1 | 0.86 | 2.54 | 3.338 (6) | 155 |
N6—H6A···S2v | 0.86 | 2.89 | 3.397 (6) | 119 |
N6—H6A···N13v | 0.86 | 2.51 | 3.266 (11) | 147 |
Symmetry codes: (i) x+1/2, −y+3/2, −z+1; (ii) x−1/2, −y+3/2, −z+1; (iii) x, y+1, z; (iv) x−1/2, −y+1/2, −z+1; (v) −x+1/2, −y+1, z+1/2; (vi) −x+1/2, −y+1, z−1/2; (vii) −x+1, y+1/2, −z+1/2; (viii) −x+1, y+1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu(CH4N2S)3]I·0.5C2H3N |
Mr | 439.33 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 298 |
a, b, c (Å) | 13.392 (8), 13.874 (9), 15.289 (9) |
V (Å3) | 2841 (3) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 4.14 |
Crystal size (mm) | 0.43 × 0.39 × 0.31 |
Data collection | |
Diffractometer | Bruker SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.269, 0.360 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14883, 4963, 4175 |
Rint | 0.058 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.077, 1.00 |
No. of reflections | 4963 |
No. of parameters | 280 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.75, −0.56 |
Absolute structure | Flack (1983), 2149 Friedel pairs |
Absolute structure parameter | −0.01 (2) |
Computer programs: SMART (Bruker, 1997), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenberg & Berndt, 2006), SHELXTL (Sheldrick, 2008).
Cu1—S3 | 2.275 (2) | Cu2—S4 | 2.299 (2) |
Cu1—S2 | 2.309 (2) | Cu2—S5 | 2.335 (2) |
Cu1—S1 | 2.382 (2) | Cu2—S1 | 2.341 (2) |
Cu1—S6i | 2.411 (2) | Cu2—S6 | 2.435 (2) |
Symmetry code: (i) x+1/2, −y+3/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···I2ii | 0.86 | 2.97 | 3.799 (7) | 161.3 |
N1—H1B···S6i | 0.86 | 2.68 | 3.524 (7) | 167.3 |
N2—H2A···I2ii | 0.86 | 3.14 | 3.929 (6) | 154.2 |
N2—H2B···S5 | 0.86 | 2.96 | 3.752 (7) | 154.0 |
N2—H2B···I1iii | 0.86 | 3.17 | 3.667 (7) | 118.9 |
N3—H3A···I2 | 0.86 | 2.87 | 3.645 (6) | 150.1 |
N3—H3B···I1iv | 0.86 | 3.06 | 3.720 (6) | 135.1 |
N4—H4A···I2 | 0.86 | 3.11 | 3.837 (7) | 143.6 |
N4—H4A···I1 | 0.86 | 3.22 | 3.706 (6) | 118.5 |
N4—H4B···S6i | 0.86 | 2.73 | 3.563 (7) | 164.9 |
N5—H5A···N13v | 0.86 | 2.41 | 3.192 (10) | 151.6 |
N5—H5A···I2iv | 0.86 | 3.32 | 3.796 (8) | 117.8 |
N7—H7A···I1vi | 0.86 | 3.04 | 3.839 (7) | 156.2 |
N7—H7B···I2iv | 0.86 | 3.02 | 3.837 (7) | 159.3 |
N8—H8A···I1vi | 0.86 | 2.93 | 3.759 (6) | 161.3 |
N8—H8B···S5 | 0.86 | 2.69 | 3.526 (6) | 166.0 |
N9—H9A···I2vii | 0.86 | 3.12 | 3.922 (6) | 155.4 |
N9—H9B···S4 | 0.86 | 2.61 | 3.429 (7) | 160.8 |
N10—H10A···I1vii | 0.86 | 3.01 | 3.716 (7) | 141.1 |
N11—H11A···I1viii | 0.86 | 2.99 | 3.791 (6) | 155.0 |
N11—H11B···S2iii | 0.86 | 2.63 | 3.466 (6) | 162.8 |
N12—H12A···I1viii | 0.86 | 2.92 | 3.732 (6) | 157.9 |
N12—H12B···S1 | 0.86 | 2.54 | 3.338 (6) | 154.7 |
N6—H6A···S2v | 0.86 | 2.89 | 3.397 (6) | 119.4 |
N6—H6A···N13v | 0.86 | 2.51 | 3.266 (11) | 147.4 |
Symmetry codes: (i) x+1/2, −y+3/2, −z+1; (ii) x, y+1, z; (iii) x−1/2, −y+3/2, −z+1; (iv) x−1/2, −y+1/2, −z+1; (v) −x+1/2, −y+1, z+1/2; (vi) −x+1/2, −y+1, z−1/2; (vii) −x+1, y+1/2, −z+1/2; (viii) −x+1, y+1/2, −z+3/2. |
Acknowledgements
We acknowledge the Natural Science Foundation of Liaocheng University (X051002) forsupport.
References
Bombicz, P., Mutikainen, I., Krunks, M., Leskela, T., Madarasz, J. & Niinisto, L. (2004). Inorg. Chim. Acta, 357, 513–525. Web of Science CSD CrossRef CAS Google Scholar
Bott, R. C., Bowmaker, G. A., Davis, C. A., Hope, G. A. & Jones, B. E. (1998). Inorg. Chem. 37, 651–657. Web of Science CSD CrossRef CAS Google Scholar
Brandenburg, K. & Berndt, M. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Stocker, F. B., Troester, M. A. & Britton, D. (1996). Inorg. Chem. 35, 3145–3153. CSD CrossRef PubMed CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Some copper(I) compounds containing thiourea ligands have been described previously (Bombicz et al., 2004; Bott et al., 1998; Stocker et al., 1996). In this paper, we report the synthesis and the structure of a complex formed by the reaction of thiourea with cuprous iodide. The asymmetric unit of the title compound is shown in Fig. 1. The CuI ions have distorted tetrahedral coordination geometries formed by two bridging thiourea ligands and two terminal thiourea ligands. A one-dimensional helical chain structure parallel to the a axis direction is formed (Fig. 2). An iodide counter ion and half an acetonitrile solvent molecule complete the formula unit although there are two formula units in the asymmetric unit of the crystal structure. The Cu—S distances are in the range of 2.275 (2)–2.435 (2) Å, and agree with those in related structures (Bombicz et al., 2004). In the title compound, the S=C distances are the same within experimental error.
In the crystal structure, there are two different types of hydrogen bonds. Intramolecular N—H···S interactions appear to influence the conformation of the helical chains while intermolecular N—H···S and N—H···I interactions stabilize the crystal structure.