organic compounds
2-Methyl-1,2-benzisothiazol-3(2H)-one 1,1-dioxide
aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, bDepartment of Chemistry, University of Science and Technology, Bannu, Pakistan, cInstitute of Chemistry, University of the Punjab, Lahore, Pakistan, and dDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: parvez@ucalgary.ca
All atoms of the title molecule, C8H7NO3S, except the two oxide O atoms and two H atoms of the methyl group, lie on a crystallographic mirror plane. The is stabilized by weak inter- and intramolecular C—H⋯O hydrogen bonds.
Related literature
For related literature, see: Hu et al. (2004); Kap-Sun & Nicholas (1998); Liang et al. (2006); Masashi et al. (1999); Nagasawa et al. (1995); Siddiqui et al. (2006, 2007a,b,c); Siddiqui, Ahmad, Khan & Siddiqui (2007); Siddiqui, Ahmad, Khan, Siddiqui & Ahmad (2007); Siddiqui, Ahmad, Khan, Siddiqui & Parvez (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Hooft, 1998); cell DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SAPI91 (Fan, 1991); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808004637/lh2597sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808004637/lh2597Isup2.hkl
Saccharin (2.0 g, 11.0 mmol.) was added to a solution of sodium hydroxide (0.875 g, 22.0 mmol.) in distilled water (25 ml) under constant stirring to give a transparent solution. A solution of dimethylsulfate (2.08 ml, 22.0 mmol.) in methanol (10.0 ml) was then added dropwise over 2 minutes. Precipitates started appearing within 5 minutes and stirring was continued for 20 min. at room temperature. The precipitates were filtered, washed with cold water and dried (343 K) to get 1.75 g of (I) (8.9 mmol. 81%). Recrystallization Solvent: CHCl3. The solution was subjected to slow evaporation at 313 K to obtain colourless crystals.
H-atoms bonded were included in the refinements at geometrically idealized positions with aromatic and methyl C—H distances 0.95 and 0.96 Å, respectively, and Uiso = 1.2 times Ueq of the atoms to which they were bonded. The final difference map was free of any chemically significant features.
Data collection: COLLECT (Hooft, 1998); cell
DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SAPI91 (Fan, 1991); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. ORTEPII (Johnson, 1976) drawing of (I) with displacement ellipsoids plotted at 50% probability level. Symmetry code: (iii) x, -y + 1/2, z. |
C8H7NO3S | F(000) = 204 |
Mr = 197.21 | Dx = 1.528 Mg m−3 |
Monoclinic, P21/m | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yb | Cell parameters from 1724 reflections |
a = 7.463 (7) Å | θ = 3.2–27.4° |
b = 6.761 (6) Å | µ = 0.35 mm−1 |
c = 8.748 (8) Å | T = 173 K |
β = 103.78 (3)° | Prism, colorless |
V = 428.7 (7) Å3 | 0.12 × 0.08 × 0.07 mm |
Z = 2 |
Nonius KappaCCD diffractometer | 1045 independent reflections |
Radiation source: fine-focus sealed tube | 889 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
ω and ϕ scans | θmax = 27.4°, θmin = 3.2° |
Absorption correction: multi-scan (SORTAV; Blessing, 1997) | h = −9→9 |
Tmin = 0.960, Tmax = 0.976 | k = −8→8 |
1724 measured reflections | l = −11→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0455P)2 + 0.2966P] where P = (Fo2 + 2Fc2)/3 |
1045 reflections | (Δ/σ)max < 0.001 |
76 parameters | Δρmax = 0.41 e Å−3 |
0 restraints | Δρmin = −0.42 e Å−3 |
C8H7NO3S | V = 428.7 (7) Å3 |
Mr = 197.21 | Z = 2 |
Monoclinic, P21/m | Mo Kα radiation |
a = 7.463 (7) Å | µ = 0.35 mm−1 |
b = 6.761 (6) Å | T = 173 K |
c = 8.748 (8) Å | 0.12 × 0.08 × 0.07 mm |
β = 103.78 (3)° |
Nonius KappaCCD diffractometer | 1045 independent reflections |
Absorption correction: multi-scan (SORTAV; Blessing, 1997) | 889 reflections with I > 2σ(I) |
Tmin = 0.960, Tmax = 0.976 | Rint = 0.023 |
1724 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.41 e Å−3 |
1045 reflections | Δρmin = −0.42 e Å−3 |
76 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.68037 (10) | 0.2500 | 0.26611 (7) | 0.0314 (2) | |
O1 | 0.2425 (3) | 0.2500 | 0.4038 (3) | 0.0416 (5) | |
O2 | 0.7324 (2) | 0.0698 (2) | 0.20266 (16) | 0.0445 (4) | |
N1 | 0.4534 (3) | 0.2500 | 0.2520 (3) | 0.0314 (5) | |
C1 | 0.7314 (4) | 0.2500 | 0.4722 (3) | 0.0254 (5) | |
C2 | 0.9043 (4) | 0.2500 | 0.5750 (3) | 0.0337 (6) | |
H2 | 1.0141 | 0.2500 | 0.5381 | 0.040* | |
C3 | 0.9090 (4) | 0.2500 | 0.7337 (3) | 0.0403 (7) | |
H3 | 1.0249 | 0.2500 | 0.8079 | 0.048* | |
C4 | 0.7486 (4) | 0.2500 | 0.7873 (3) | 0.0379 (7) | |
H4 | 0.7566 | 0.2500 | 0.8974 | 0.045* | |
C5 | 0.5767 (4) | 0.2500 | 0.6832 (3) | 0.0308 (6) | |
H5 | 0.4670 | 0.2500 | 0.7203 | 0.037* | |
C6 | 0.5690 (3) | 0.2500 | 0.5235 (3) | 0.0251 (5) | |
C7 | 0.4012 (4) | 0.2500 | 0.3931 (3) | 0.0289 (6) | |
C8 | 0.3218 (5) | 0.2500 | 0.0986 (3) | 0.0455 (8) | |
H8A | 0.1982 | 0.2500 | 0.1130 | 0.055* | |
H8B | 0.3405 | 0.1341 | 0.0410 | 0.055* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0415 (4) | 0.0319 (4) | 0.0237 (3) | 0.000 | 0.0133 (3) | 0.000 |
O1 | 0.0284 (10) | 0.0449 (13) | 0.0521 (13) | 0.000 | 0.0107 (9) | 0.000 |
O2 | 0.0587 (10) | 0.0435 (9) | 0.0369 (8) | 0.0058 (7) | 0.0223 (7) | −0.0101 (7) |
N1 | 0.0355 (12) | 0.0301 (12) | 0.0266 (11) | 0.000 | 0.0031 (9) | 0.000 |
C1 | 0.0319 (13) | 0.0222 (12) | 0.0237 (12) | 0.000 | 0.0099 (10) | 0.000 |
C2 | 0.0276 (13) | 0.0367 (16) | 0.0371 (14) | 0.000 | 0.0085 (11) | 0.000 |
C3 | 0.0402 (16) | 0.0417 (17) | 0.0340 (15) | 0.000 | −0.0010 (12) | 0.000 |
C4 | 0.0553 (18) | 0.0343 (16) | 0.0238 (13) | 0.000 | 0.0087 (12) | 0.000 |
C5 | 0.0392 (15) | 0.0257 (13) | 0.0324 (14) | 0.000 | 0.0181 (12) | 0.000 |
C6 | 0.0280 (12) | 0.0189 (12) | 0.0297 (13) | 0.000 | 0.0093 (10) | 0.000 |
C7 | 0.0330 (14) | 0.0221 (13) | 0.0320 (13) | 0.000 | 0.0086 (11) | 0.000 |
C8 | 0.0551 (19) | 0.0452 (19) | 0.0284 (15) | 0.000 | −0.0053 (13) | 0.000 |
S1—O2i | 1.430 (2) | C2—H2 | 0.9500 |
S1—O2 | 1.430 (2) | C3—C4 | 1.386 (4) |
S1—N1 | 1.668 (3) | C3—H3 | 0.9500 |
S1—C1 | 1.752 (3) | C4—C5 | 1.385 (4) |
O1—C7 | 1.211 (3) | C4—H4 | 0.9500 |
N1—C7 | 1.380 (4) | C5—C6 | 1.384 (4) |
N1—C8 | 1.462 (4) | C5—H5 | 0.9500 |
C1—C2 | 1.386 (4) | C6—C7 | 1.479 (4) |
C1—C6 | 1.389 (4) | C8—H8A | 0.9600 |
C2—C3 | 1.380 (4) | C8—H8B | 0.9600 |
O2i—S1—O2 | 116.79 (14) | C4—C3—H3 | 119.2 |
O2i—S1—N1 | 109.63 (8) | C5—C4—C3 | 121.1 (3) |
O2—S1—N1 | 109.63 (8) | C5—C4—H4 | 119.5 |
O2i—S1—C1 | 112.76 (8) | C3—C4—H4 | 119.5 |
O2—S1—C1 | 112.76 (8) | C6—C5—C4 | 118.2 (2) |
N1—S1—C1 | 92.54 (12) | C6—C5—H5 | 120.9 |
C7—N1—C8 | 123.3 (2) | C4—C5—H5 | 120.9 |
C7—N1—S1 | 115.6 (2) | C5—C6—C1 | 119.7 (2) |
C8—N1—S1 | 121.1 (2) | C5—C6—C7 | 127.0 (2) |
C2—C1—C6 | 122.7 (2) | C1—C6—C7 | 113.2 (2) |
C2—C1—S1 | 127.5 (2) | O1—C7—N1 | 124.0 (3) |
C6—C1—S1 | 109.9 (2) | O1—C7—C6 | 127.2 (3) |
C3—C2—C1 | 116.7 (3) | N1—C7—C6 | 108.8 (2) |
C3—C2—H2 | 121.6 | N1—C8—H8A | 109.6 |
C1—C2—H2 | 121.6 | N1—C8—H8B | 109.4 |
C2—C3—C4 | 121.6 (3) | H8A—C8—H8B | 109.5 |
C2—C3—H3 | 119.2 | ||
O2i—S1—N1—C7 | −115.28 (8) | C3—C4—C5—C6 | 0.000 (1) |
O2—S1—N1—C7 | 115.28 (8) | C4—C5—C6—C1 | 0.0 |
C1—S1—N1—C7 | 0.0 | C4—C5—C6—C7 | 180.0 |
O2i—S1—N1—C8 | 64.72 (8) | C2—C1—C6—C5 | 0.0 |
O2—S1—N1—C8 | −64.72 (8) | S1—C1—C6—C5 | 180.0 |
C1—S1—N1—C8 | 180.0 | C2—C1—C6—C7 | 180.0 |
O2i—S1—C1—C2 | −67.46 (9) | S1—C1—C6—C7 | 0.0 |
O2—S1—C1—C2 | 67.46 (9) | C8—N1—C7—O1 | 0.0 |
N1—S1—C1—C2 | 180.0 | S1—N1—C7—O1 | 180.0 |
O2i—S1—C1—C6 | 112.54 (9) | C8—N1—C7—C6 | 180.0 |
O2—S1—C1—C6 | −112.54 (9) | S1—N1—C7—C6 | 0.0 |
N1—S1—C1—C6 | 0.0 | C5—C6—C7—O1 | 0.0 |
C6—C1—C2—C3 | 0.0 | C1—C6—C7—O1 | 180.0 |
S1—C1—C2—C3 | 180.0 | C5—C6—C7—N1 | 180.0 |
C1—C2—C3—C4 | 0.000 (1) | C1—C6—C7—N1 | 0.0 |
C2—C3—C4—C5 | 0.000 (1) |
Symmetry code: (i) x, −y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8A···O1 | 0.96 | 2.49 | 2.869 (4) | 104 |
C2—H2···O1ii | 0.95 | 2.29 | 3.227 (4) | 169 |
C8—H8B···O2iii | 0.96 | 2.49 | 3.358 (3) | 151 |
Symmetry codes: (ii) x+1, y, z; (iii) −x+1, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | C8H7NO3S |
Mr | 197.21 |
Crystal system, space group | Monoclinic, P21/m |
Temperature (K) | 173 |
a, b, c (Å) | 7.463 (7), 6.761 (6), 8.748 (8) |
β (°) | 103.78 (3) |
V (Å3) | 428.7 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.35 |
Crystal size (mm) | 0.12 × 0.08 × 0.07 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SORTAV; Blessing, 1997) |
Tmin, Tmax | 0.960, 0.976 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1724, 1045, 889 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.648 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.106, 1.03 |
No. of reflections | 1045 |
No. of parameters | 76 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.41, −0.42 |
Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SAPI91 (Fan, 1991), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8A···O1 | 0.96 | 2.49 | 2.869 (4) | 104 |
C2—H2···O1i | 0.95 | 2.29 | 3.227 (4) | 169 |
C8—H8B···O2ii | 0.96 | 2.49 | 3.358 (3) | 151 |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y, −z. |
References
Blessing, R. H. (1997). J. Appl. Cryst. 30, 421–426. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fan, H.-F. (1991). SAPI91. Rigaku Corporation, Tokyo, Japan. Google Scholar
Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Hu, Y., Chen, Z. C., Le, Z. G. & Zheng, Q. G. (2004). J. Chem. Res. 4, 276–278. CrossRef Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Kap-Sun, Y. & Nicholas, A. M. (1998). Tetrahedron Lett. 39, 5309–5312. Google Scholar
Liang, X., Hong, S., Ying, L., Suhong, Z. & Mark, L. T. (2006). Tetrahedron, 62, 7902–7910. Google Scholar
Masashi, K., Hideo, T., Kentaro, Y. & Masataka, Y. (1999). Tetrahedron, 55, 14885–14900. Google Scholar
Nagasawa, H. T., Kawle, S. P., Elberling, J. A., DeMaster, E. G. & Fukuto, J. M. (1995). J. Med. Chem. 38, 1865–1871. CrossRef CAS PubMed Web of Science Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siddiqui, W. A., Ahmad, S., Khan, I. U. & Siddiqui, H. L. (2007). Synth. Commun. 37, 767–773. Web of Science CrossRef CAS Google Scholar
Siddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Ahmad, V. U. (2007). J. Chem. Soc. Pak. 29, 44–47. CAS Google Scholar
Siddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Parvez, M. (2007). Acta Cryst. E63, o4116. Web of Science CSD CrossRef IUCr Journals Google Scholar
Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007a). Acta Cryst. E63, o4001. Web of Science CSD CrossRef IUCr Journals Google Scholar
Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007b). Acta Cryst. E63, o4117. Web of Science CSD CrossRef IUCr Journals Google Scholar
Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007c). Acta Cryst. E63, o4585. Web of Science CSD CrossRef IUCr Journals Google Scholar
Siddiqui, W. A., Ahmad, S., Ullah, I. & Malik, A. (2006). J. Chem. Soc. Pak. 28, 583–589. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Benzisothiazolone-1,1-dioxide is part of a class of heterocycles which has been investigated in pharmaceutical research (Kap-Sun & Nicholas, 1998). 1,2-benzisothiazole-3-one 1,1-dioxide (saccharin) has been widely incorporated into a variety of biologically active compounds. It has been identified as an important molecular component in various classes of 5-HTla antagonists, analgesics and human mast cell tryptase inhibitors (Liang et al., 2006). In particular, N-substituted derivatives, e.g with N-hydroxy and N-alkyl substituents, have shown important biological activites (Nagasawa et al., 1995). Among N-alkyl derivatives, various synthetic routes have been reported for the synthesis of the title compound involving ionic liquids and free radical mechanisms (Hu et al., 2004; Masashi et al., 1999). In continuation of our research on the synthesis of 1,2-benzothiazine 1,1-dioxide derivatives, we have in addtion, embarked on the synthesis of benzisothiazole derivatives (Siddiqui et al., 2006; Siddiqui et al., 2007a,b,c; Siddiqui, Ahmad, Khan & Siddiqui, 2007; Siddiqui, Ahmad, Khan, Siddiqui & Ahmad, 2007; Siddiqui, Ahmad, Khan, Siddiqui & Parvez, 2007). Herein, we report the synthesis and crystal structure of the title compound, (I).
With the exception atoms O2 and H8B, all atoms of the molecule of (I) (Fig. 1) lie on a crystallographic mirror plane. The benzisothiazole moiety is exactly planar. The molecular dimensions are in accord with the corresponding dimensions reported in similar structures (Siddiqui et al., 2007a-c; Siddiqui, Ahmad, Khan, Siddiqui & Parvez, 2007). The structure is stabilized by one intramolecular and two intermolecular interactions of the type C—H···O (details are in Table).