organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl-1,2-benziso­thia­zol-3(2H)-one 1,1-dioxide

aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, bDepartment of Chemistry, University of Science and Technology, Bannu, Pakistan, cInstitute of Chemistry, University of the Punjab, Lahore, Pakistan, and dDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: parvez@ucalgary.ca

(Received 12 February 2008; accepted 16 February 2008; online 20 March 2008)

All atoms of the title mol­ecule, C8H7NO3S, except the two oxide O atoms and two H atoms of the methyl group, lie on a crystallographic mirror plane. The crystal structure is stabilized by weak inter- and intra­molecular C—H⋯O hydrogen bonds.

Related literature

For related literature, see: Hu et al. (2004[Hu, Y., Chen, Z. C., Le, Z. G. & Zheng, Q. G. (2004). J. Chem. Res. 4, 276-278.]); Kap-Sun & Nicholas (1998[Kap-Sun, Y. & Nicholas, A. M. (1998). Tetrahedron Lett. 39, 5309-5312.]); Liang et al. (2006[Liang, X., Hong, S., Ying, L., Suhong, Z. & Mark, L. T. (2006). Tetrahedron, 62, 7902-7910.]); Masashi et al. (1999[Masashi, K., Hideo, T., Kentaro, Y. & Masataka, Y. (1999). Tetrahedron, 55, 14885-14900.]); Nagasawa et al. (1995[Nagasawa, H. T., Kawle, S. P., Elberling, J. A., DeMaster, E. G. & Fukuto, J. M. (1995). J. Med. Chem. 38, 1865-1871.]); Siddiqui et al. (2006[Siddiqui, W. A., Ahmad, S., Ullah, I. & Malik, A. (2006). J. Chem. Soc. Pak. 28, 583-589.], 2007a[Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007a). Acta Cryst. E63, o4001.],b[Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007b). Acta Cryst. E63, o4117.],c[Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007c). Acta Cryst. E63, o4585.]); Siddiqui, Ahmad, Khan & Siddiqui (2007[Siddiqui, W. A., Ahmad, S., Khan, I. U. & Siddiqui, H. L. (2007). Synth. Commun. 37, 767-773.]); Siddiqui, Ahmad, Khan, Siddiqui & Ahmad (2007[Siddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Ahmad, V. U. (2007). J. Chem. Soc. Pak. 29, 44-47.]); Siddiqui, Ahmad, Khan, Siddiqui & Parvez (2007[Siddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Parvez, M. (2007). Acta Cryst. E63, o4116.]).

[Scheme 1]

Experimental

Crystal data
  • C8H7NO3S

  • Mr = 197.21

  • Monoclinic, P 21 /m

  • a = 7.463 (7) Å

  • b = 6.761 (6) Å

  • c = 8.748 (8) Å

  • β = 103.78 (3)°

  • V = 428.7 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 173 (2) K

  • 0.12 × 0.08 × 0.07 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.960, Tmax = 0.976

  • 1724 measured reflections

  • 1045 independent reflections

  • 889 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.106

  • S = 1.03

  • 1045 reflections

  • 76 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O1 0.96 2.49 2.869 (4) 104
C2—H2⋯O1i 0.95 2.29 3.227 (4) 169
C8—H8B⋯O2ii 0.96 2.49 3.358 (3) 151
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y, -z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SAPI91 (Fan, 1991[Fan, H.-F. (1991). SAPI91. Rigaku Corporation, Tokyo, Japan.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzisothiazolone-1,1-dioxide is part of a class of heterocycles which has been investigated in pharmaceutical research (Kap-Sun & Nicholas, 1998). 1,2-benzisothiazole-3-one 1,1-dioxide (saccharin) has been widely incorporated into a variety of biologically active compounds. It has been identified as an important molecular component in various classes of 5-HTla antagonists, analgesics and human mast cell tryptase inhibitors (Liang et al., 2006). In particular, N-substituted derivatives, e.g with N-hydroxy and N-alkyl substituents, have shown important biological activites (Nagasawa et al., 1995). Among N-alkyl derivatives, various synthetic routes have been reported for the synthesis of the title compound involving ionic liquids and free radical mechanisms (Hu et al., 2004; Masashi et al., 1999). In continuation of our research on the synthesis of 1,2-benzothiazine 1,1-dioxide derivatives, we have in addtion, embarked on the synthesis of benzisothiazole derivatives (Siddiqui et al., 2006; Siddiqui et al., 2007a,b,c; Siddiqui, Ahmad, Khan & Siddiqui, 2007; Siddiqui, Ahmad, Khan, Siddiqui & Ahmad, 2007; Siddiqui, Ahmad, Khan, Siddiqui & Parvez, 2007). Herein, we report the synthesis and crystal structure of the title compound, (I).

With the exception atoms O2 and H8B, all atoms of the molecule of (I) (Fig. 1) lie on a crystallographic mirror plane. The benzisothiazole moiety is exactly planar. The molecular dimensions are in accord with the corresponding dimensions reported in similar structures (Siddiqui et al., 2007a-c; Siddiqui, Ahmad, Khan, Siddiqui & Parvez, 2007). The structure is stabilized by one intramolecular and two intermolecular interactions of the type C—H···O (details are in Table).

Related literature top

For related literature, see: Hu et al. (2004); Kap-Sun & Nicholas (1998); Liang et al. (2006); Masashi et al. (1999); Nagasawa et al. (1995); Siddiqui et al. (2006, 2007a,b,c); Siddiqui, Ahmad, Khan & Siddiqui (2007); Siddiqui, Ahmad, Khan, Siddiqui & Ahmad (2007); Siddiqui, Ahmad, Khan, Siddiqui & Parvez (2007).

Experimental top

Saccharin (2.0 g, 11.0 mmol.) was added to a solution of sodium hydroxide (0.875 g, 22.0 mmol.) in distilled water (25 ml) under constant stirring to give a transparent solution. A solution of dimethylsulfate (2.08 ml, 22.0 mmol.) in methanol (10.0 ml) was then added dropwise over 2 minutes. Precipitates started appearing within 5 minutes and stirring was continued for 20 min. at room temperature. The precipitates were filtered, washed with cold water and dried (343 K) to get 1.75 g of (I) (8.9 mmol. 81%). Recrystallization Solvent: CHCl3. The solution was subjected to slow evaporation at 313 K to obtain colourless crystals.

Refinement top

H-atoms bonded were included in the refinements at geometrically idealized positions with aromatic and methyl C—H distances 0.95 and 0.96 Å, respectively, and Uiso = 1.2 times Ueq of the atoms to which they were bonded. The final difference map was free of any chemically significant features.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SAPI91 (Fan, 1991); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) drawing of (I) with displacement ellipsoids plotted at 50% probability level. Symmetry code: (iii) x, -y + 1/2, z.
2-Methyl-1,2-benzisothiazol-3(2H)-one 1,1-dioxide top
Crystal data top
C8H7NO3SF(000) = 204
Mr = 197.21Dx = 1.528 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 1724 reflections
a = 7.463 (7) Åθ = 3.2–27.4°
b = 6.761 (6) ŵ = 0.35 mm1
c = 8.748 (8) ÅT = 173 K
β = 103.78 (3)°Prism, colorless
V = 428.7 (7) Å30.12 × 0.08 × 0.07 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
1045 independent reflections
Radiation source: fine-focus sealed tube889 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω and ϕ scansθmax = 27.4°, θmin = 3.2°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 99
Tmin = 0.960, Tmax = 0.976k = 88
1724 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.2966P]
where P = (Fo2 + 2Fc2)/3
1045 reflections(Δ/σ)max < 0.001
76 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C8H7NO3SV = 428.7 (7) Å3
Mr = 197.21Z = 2
Monoclinic, P21/mMo Kα radiation
a = 7.463 (7) ŵ = 0.35 mm1
b = 6.761 (6) ÅT = 173 K
c = 8.748 (8) Å0.12 × 0.08 × 0.07 mm
β = 103.78 (3)°
Data collection top
Nonius KappaCCD
diffractometer
1045 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
889 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.976Rint = 0.023
1724 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.03Δρmax = 0.41 e Å3
1045 reflectionsΔρmin = 0.42 e Å3
76 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.68037 (10)0.25000.26611 (7)0.0314 (2)
O10.2425 (3)0.25000.4038 (3)0.0416 (5)
O20.7324 (2)0.0698 (2)0.20266 (16)0.0445 (4)
N10.4534 (3)0.25000.2520 (3)0.0314 (5)
C10.7314 (4)0.25000.4722 (3)0.0254 (5)
C20.9043 (4)0.25000.5750 (3)0.0337 (6)
H21.01410.25000.53810.040*
C30.9090 (4)0.25000.7337 (3)0.0403 (7)
H31.02490.25000.80790.048*
C40.7486 (4)0.25000.7873 (3)0.0379 (7)
H40.75660.25000.89740.045*
C50.5767 (4)0.25000.6832 (3)0.0308 (6)
H50.46700.25000.72030.037*
C60.5690 (3)0.25000.5235 (3)0.0251 (5)
C70.4012 (4)0.25000.3931 (3)0.0289 (6)
C80.3218 (5)0.25000.0986 (3)0.0455 (8)
H8A0.19820.25000.11300.055*
H8B0.34050.13410.04100.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0415 (4)0.0319 (4)0.0237 (3)0.0000.0133 (3)0.000
O10.0284 (10)0.0449 (13)0.0521 (13)0.0000.0107 (9)0.000
O20.0587 (10)0.0435 (9)0.0369 (8)0.0058 (7)0.0223 (7)0.0101 (7)
N10.0355 (12)0.0301 (12)0.0266 (11)0.0000.0031 (9)0.000
C10.0319 (13)0.0222 (12)0.0237 (12)0.0000.0099 (10)0.000
C20.0276 (13)0.0367 (16)0.0371 (14)0.0000.0085 (11)0.000
C30.0402 (16)0.0417 (17)0.0340 (15)0.0000.0010 (12)0.000
C40.0553 (18)0.0343 (16)0.0238 (13)0.0000.0087 (12)0.000
C50.0392 (15)0.0257 (13)0.0324 (14)0.0000.0181 (12)0.000
C60.0280 (12)0.0189 (12)0.0297 (13)0.0000.0093 (10)0.000
C70.0330 (14)0.0221 (13)0.0320 (13)0.0000.0086 (11)0.000
C80.0551 (19)0.0452 (19)0.0284 (15)0.0000.0053 (13)0.000
Geometric parameters (Å, º) top
S1—O2i1.430 (2)C2—H20.9500
S1—O21.430 (2)C3—C41.386 (4)
S1—N11.668 (3)C3—H30.9500
S1—C11.752 (3)C4—C51.385 (4)
O1—C71.211 (3)C4—H40.9500
N1—C71.380 (4)C5—C61.384 (4)
N1—C81.462 (4)C5—H50.9500
C1—C21.386 (4)C6—C71.479 (4)
C1—C61.389 (4)C8—H8A0.9600
C2—C31.380 (4)C8—H8B0.9600
O2i—S1—O2116.79 (14)C4—C3—H3119.2
O2i—S1—N1109.63 (8)C5—C4—C3121.1 (3)
O2—S1—N1109.63 (8)C5—C4—H4119.5
O2i—S1—C1112.76 (8)C3—C4—H4119.5
O2—S1—C1112.76 (8)C6—C5—C4118.2 (2)
N1—S1—C192.54 (12)C6—C5—H5120.9
C7—N1—C8123.3 (2)C4—C5—H5120.9
C7—N1—S1115.6 (2)C5—C6—C1119.7 (2)
C8—N1—S1121.1 (2)C5—C6—C7127.0 (2)
C2—C1—C6122.7 (2)C1—C6—C7113.2 (2)
C2—C1—S1127.5 (2)O1—C7—N1124.0 (3)
C6—C1—S1109.9 (2)O1—C7—C6127.2 (3)
C3—C2—C1116.7 (3)N1—C7—C6108.8 (2)
C3—C2—H2121.6N1—C8—H8A109.6
C1—C2—H2121.6N1—C8—H8B109.4
C2—C3—C4121.6 (3)H8A—C8—H8B109.5
C2—C3—H3119.2
O2i—S1—N1—C7115.28 (8)C3—C4—C5—C60.000 (1)
O2—S1—N1—C7115.28 (8)C4—C5—C6—C10.0
C1—S1—N1—C70.0C4—C5—C6—C7180.0
O2i—S1—N1—C864.72 (8)C2—C1—C6—C50.0
O2—S1—N1—C864.72 (8)S1—C1—C6—C5180.0
C1—S1—N1—C8180.0C2—C1—C6—C7180.0
O2i—S1—C1—C267.46 (9)S1—C1—C6—C70.0
O2—S1—C1—C267.46 (9)C8—N1—C7—O10.0
N1—S1—C1—C2180.0S1—N1—C7—O1180.0
O2i—S1—C1—C6112.54 (9)C8—N1—C7—C6180.0
O2—S1—C1—C6112.54 (9)S1—N1—C7—C60.0
N1—S1—C1—C60.0C5—C6—C7—O10.0
C6—C1—C2—C30.0C1—C6—C7—O1180.0
S1—C1—C2—C3180.0C5—C6—C7—N1180.0
C1—C2—C3—C40.000 (1)C1—C6—C7—N10.0
C2—C3—C4—C50.000 (1)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O10.962.492.869 (4)104
C2—H2···O1ii0.952.293.227 (4)169
C8—H8B···O2iii0.962.493.358 (3)151
Symmetry codes: (ii) x+1, y, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC8H7NO3S
Mr197.21
Crystal system, space groupMonoclinic, P21/m
Temperature (K)173
a, b, c (Å)7.463 (7), 6.761 (6), 8.748 (8)
β (°) 103.78 (3)
V3)428.7 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.12 × 0.08 × 0.07
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.960, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
1724, 1045, 889
Rint0.023
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.106, 1.03
No. of reflections1045
No. of parameters76
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.42

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SAPI91 (Fan, 1991), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O10.962.492.869 (4)104
C2—H2···O1i0.952.293.227 (4)169
C8—H8B···O2ii0.962.493.358 (3)151
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z.
 

References

First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFan, H.-F. (1991). SAPI91. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationHu, Y., Chen, Z. C., Le, Z. G. & Zheng, Q. G. (2004). J. Chem. Res. 4, 276–278.  CrossRef Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKap-Sun, Y. & Nicholas, A. M. (1998). Tetrahedron Lett. 39, 5309–5312.  Google Scholar
First citationLiang, X., Hong, S., Ying, L., Suhong, Z. & Mark, L. T. (2006). Tetrahedron, 62, 7902–7910.  Google Scholar
First citationMasashi, K., Hideo, T., Kentaro, Y. & Masataka, Y. (1999). Tetrahedron, 55, 14885–14900.  Google Scholar
First citationNagasawa, H. T., Kawle, S. P., Elberling, J. A., DeMaster, E. G. & Fukuto, J. M. (1995). J. Med. Chem. 38, 1865–1871.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Khan, I. U. & Siddiqui, H. L. (2007). Synth. Commun. 37, 767–773.  Web of Science CrossRef CAS Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Ahmad, V. U. (2007). J. Chem. Soc. Pak. 29, 44–47.  CAS Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Parvez, M. (2007). Acta Cryst. E63, o4116.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007a). Acta Cryst. E63, o4001.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007b). Acta Cryst. E63, o4117.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007c). Acta Cryst. E63, o4585.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Ullah, I. & Malik, A. (2006). J. Chem. Soc. Pak. 28, 583–589.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds