organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages o665-o666

Three-dimensional network in piper­azine-1,4-diium–picrate–piperazine (1/2/1)

aScience College, Three-Gorges University, Yichang 443002, People's Republic of China, and bSchool of Chemical Engineering and Pharmacy, Wuhan Institute of Chemical Technology, Wuhan 430074, People's Republic of China
*Correspondence e-mail: zhonglong_wang@126.com

(Received 19 February 2008; accepted 29 February 2008; online 5 March 2008)

In the title compound, C4H12N22+·2C6H2N3O7·C4H10N2, the piperazine-1,4-diium cations and piperazine mol­ecules lie on crystallographic inversion centres. In the crystal structure, inter­molecular N—H⋯O and N—H⋯N hydrogen bonds link the components to form two-dimensional layers parallel to the (001) plane. These layers are, in turn, connected by weak inter­molecular C—H⋯O hydrogen bonds and ππ stacking inter­actions [centroid–centroid distance between parallel aryl rings = 3.764 (2) Å, interplanar spacing = 3.500 (2) Å and ring offset = 1.387 (2) Å], forming a three-dimensional framework.

Related literature

For related literature, see: Akutagawa et al. (2003[Akutagawa, T., Uchimaru, T., Sakai, K. I., Hasegawa, T. & Nakamura, T. (2003). J. Phys. Chem. B, 107, 6248-6251.]); Anitha et al. (2006a[Anitha, K., Athimoolam, S. & Natarajan, S. (2006a). Acta Cryst. C62, o426-o428.],b[Anitha, K., Athimoolam, S. & Natarajan, S. (2006b). Acta Cryst. C62, o567-o570.]); Arnaud et al. (2007[Arnaud, V., Berthelot, M., Evain, M., Graton, J. & Le Questel, J. Y. (2007). Chem. Eur. J. 13, 1499-1510.]); Colquhoun et al. (1986[Colquhoun, H. M., Doughty, S. M., Stoddart, J. F., Slawin, A. M. Z. & Williams, D. J. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 253-257.]); Hundal et al. (1997[Hundal, G., Kumar, S., Hundal, M. S., Singh, H., Sanz-Aparicio, J. & Martinez-Ripoll, M. (1997). Acta Cryst. C53, 799-801.]); Kavitha et al. (2005[Kavitha, S. J., Panchanatheswaran, K., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o473-o474.], 2006[Kavitha, S. J., Panchanatheswaran, K., Low, J. N., Ferguson, G. & Glidewell, C. (2006). Acta Cryst. C62, o165-o169.]); Ma et al. (2005[Ma, L.-F., Zhao, B.-T. & Wang, L.-Y. (2005). Acta Cryst. E61, o964-o966.]); Szumna et al. (2000[Szumna, A., Jurczak, J. & Urbańczyk-Lipkowska, Z. (2000). J. Mol. Struct. 526, 165-175.]); Vembu et al. (2003[Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003). Acta Cryst. E59, o913-o916.]).

[Scheme 1]

Experimental

Crystal data
  • C4H12N22+·2C6H2N3O7·C4H10N2

  • Mr = 630.50

  • Triclinic, [P \overline 1]

  • a = 7.7150 (6) Å

  • b = 8.1658 (6) Å

  • c = 11.3024 (8) Å

  • α = 98.140 (1)°

  • β = 98.974 (1)°

  • γ = 109.250 (1)°

  • V = 649.62 (8) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 299 (2) K

  • 0.20 × 0.10 × 0.06 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.963, Tmax = 0.992

  • 6131 measured reflections

  • 2258 independent reflections

  • 1917 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.169

  • S = 1.13

  • 2258 reflections

  • 208 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O1 0.86 (4) 1.95 (4) 2.745 (4) 153 (4)
N4—H4A⋯O7 0.86 (4) 2.31 (4) 2.870 (5) 123 (3)
N4—H4B⋯N5 0.86 (4) 1.94 (4) 2.799 (4) 176 (4)
N5—H5A⋯O2i 0.86 (4) 2.41 (4) 3.153 (5) 145 (4)
C2—H2⋯O6ii 0.93 2.47 3.335 (5) 155
C7—H7B⋯O1iii 0.97 2.52 3.211 (5) 128
C8—H8B⋯O1 0.97 2.60 3.267 (5) 127
C8—H8B⋯O2 0.97 2.52 3.458 (5) 162
C9—H9A⋯O5iv 0.97 2.60 3.272 (5) 127
C10—H10A⋯O4v 0.97 2.52 3.310 (5) 138
Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z; (iii) -x, -y+2, -z+1; (iv) -x+1, -y+3, -z+2; (v) -x+1, -y+2, -z+2.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Studies of picric acid (abbr. PA, pKa = 0.38) have been carried out for many years due to its formation of salts which involve electrostatic forces, multiple hydrogen bond modes (e.g. Hundal et al., 1997; Szumna et al., 2000) and ππ stacking interactions (Colquhoun et al., 1986) which can improve the quality of the crystalline materials. Recently, picrate anion containing molecular adducts have also been reported frequently in order to probe the competition between various intermolecular forces in crystal engineering (Anitha et al., 2006a, 2006b; Vembu et al., 2003; Ma et al., 2005; Akutagawa et al., 2003, Kavitha et al., 2005; Arnaud et al., 2007). As part of our study on molecular adducts involved with PA and piperazine (abbr. PP), we report here the molecular and supra-molecular structure of the title compound (I).

In (I), the asymmetric unit (atoms labelled without lower case suffixes in Fig.1) consists of one picrate anion, half a PA di-cation and half a neutral PA molecule. In the picrate anion, the nitro group at the 4-position is almost coplanar with the phenyl ring with a dihedral angle of only 4.1 (2)°, however, the nitro groups at the 2- and 6-positions are both significantly twisted out of the plane of the benzene ring, with dihedral angles of 45.2 (2)° and 21.7 (2)°, respectively. The rotations of the nitro groups at the 2- and 6- positions means that the picrate anion retains the approximate mirror symmetry which is also observed in the structure of a recently reported analog (Kavitha et al., 2006).

Analysis of the crystal packing of (I) shows that the component ions and molecules are linked into a simple three-dimensional network by a combination of N–H···O (or N), C–H···O hydrogen bonds and ππ stacking interactions which can be analyzed in terms of several substructures. First, by the co-operative hydrogen-bonding actions, i.e. bifurcated N4···O1(O7), bifurcated C8···O1(O2) and C7···O1 (-x, 2 - y, 1 - z) hydrogen bonds, the PA anions, PP di-cations and PP neutral molecules are linked into a one-dimensional tape structure parallel to the [110] direction generated by translation and inversion operations (Fig.2). Secondly, by a combinative actions of N5—H5A···O2 (x, 1 + y, z) and C2—H2···O6 (x, y - 1, z) hydrogen-bonds, the adjacent [110] 1-D tapes are joined together, forming a two-dimensional layer parallel to the (001) plane lying in domain of -0.299 < z < 1.299 (Fig.3). Finally, the neighbouring (001) layers are joined together by means of C9···O5 (-x + 1, -y + 3, -z + 2), C10···O4 (-x + 1, -y + 2, -z + 2) hydrogen bonds and ππ stacking interactions, which form the simple 3-D network. The geometry details of the ππ stacking interactions are as follows. The C1—C6 aryl rings of the anions at (x, y, z) and (1 - x, 2 - y, 2 - z) are strictly parallel, with an inter-planar spacing of 3.500 (2) Å; the ring-centroid separation is 3.764 (2) Å, corresponding to a ring offset of 1.387 (2) Å.

Related literature top

For related literature, see: Akutagawa et al. (2003); Allen et al. (1987); Anitha et al. (2006a,b); Arnaud et al. (2007); Colquhoun et al. (1986); Hundal et al. (1997); Kavitha et al. (2005, 2006); Ma et al. (2005); Szumna et al. (2000); Vembu et al. (2003).

Experimental top

All the reagents and solvents were used as obtained without further purification. 1:2 molar amount of anhydrous piperazine (0.2 mmol, 17.2 mg) and picric acid (0.4 mmol, 91.6 mg) were dissolved in 95% methanol (10 ml). The mixture was stirred for half an hour at ambient temperature and then filtered. The resulting yellow solution was kept in air for several days. Plate yellow crystals of (I) suitable for single-crystal X-ray diffraction analysis were grown by slow evaporation of the solution at the bottom of the vessel (yield: 45%, 56.7 mg, based on 2:1 organic salt; melting point: 512–514 K).

Refinement top

H atoms bonded to C atoms were placed in calculated positions with C–H=0.93Å (aromatic), 0.97Å (methylene) and Uiso(H) = 1.2Ueq(both aromatic and methylene C). H atoms attached to N atoms were located from the difference maps with the N–H distances being refined freely and Uiso(H) =1.2Ueq(N).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Inter-ion hydrogen bonds are shown as dashed lines, atoms marked with 'a', 'b' and 'c' are at symmetry positions (-x, 2 - y, 1 - z), (1 - x, 3 - y, 1 - z) and (-1 + x, -1 + y, z), respectively. An additional piperazine molecule is shown to illustrate the hydrogen bonding.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of the one-dimensional tape running parallel to the [110] direction. Hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms not involved in the motifs have been omitted. [symmetry code: (iii) -x, -y + 2, -z + 1]
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the linkage of adjacent 2-D layers by C9—H9A···O5, C10—H10A···O4 hydrogen bonds and π-π stacking interactions, which form the three-dimensional network. The green outlined area shows the 2-D layer parallel to the (001) plane. For the sake of clarity, H atoms not involved in the motifs have been omitted.
piperazine-1,4-diium–picrate–piperazine (1/2/1) top
Crystal data top
C4H12N22+·2C6H2N3O7·C4H10N2Z = 1
Mr = 630.50F(000) = 328
Triclinic, P1Dx = 1.612 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7150 (6) ÅCell parameters from 2518 reflections
b = 8.1658 (6) Åθ = 2.7–26.2°
c = 11.3024 (8) ŵ = 0.14 mm1
α = 98.140 (1)°T = 299 K
β = 98.974 (1)°Plate, yellow
γ = 109.250 (1)°0.20 × 0.10 × 0.06 mm
V = 649.62 (8) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2258 independent reflections
Radiation source: fine focus sealed Siemens Mo tube1917 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
0.3° wide ω exposures scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 99
Tmin = 0.963, Tmax = 0.992k = 99
6131 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0397P)2 + 1.340P]
where P = (Fo2 + 2Fc2)/3
2258 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C4H12N22+·2C6H2N3O7·C4H10N2γ = 109.250 (1)°
Mr = 630.50V = 649.62 (8) Å3
Triclinic, P1Z = 1
a = 7.7150 (6) ÅMo Kα radiation
b = 8.1658 (6) ŵ = 0.14 mm1
c = 11.3024 (8) ÅT = 299 K
α = 98.140 (1)°0.20 × 0.10 × 0.06 mm
β = 98.974 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2258 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
1917 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.992Rint = 0.028
6131 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.169H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.27 e Å3
2258 reflectionsΔρmin = 0.27 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1576 (5)0.8052 (4)0.9002 (3)0.0332 (8)
C20.2353 (5)0.7965 (5)1.0152 (3)0.0378 (9)
H20.22960.68831.03480.045*
C30.3230 (5)0.9530 (5)1.1019 (3)0.0348 (8)
C40.3317 (5)1.1141 (5)1.0738 (3)0.0380 (9)
H40.39121.21811.13290.046*
C50.2518 (5)1.1200 (5)0.9578 (3)0.0371 (8)
C60.1526 (5)0.9660 (5)0.8609 (3)0.0333 (8)
C70.1883 (5)1.0168 (5)0.4896 (3)0.0392 (9)
H7A0.30731.00680.52260.047*
H7B0.19711.05700.41320.047*
C80.0332 (5)0.8378 (5)0.4654 (3)0.0381 (9)
H8A0.05490.75610.40340.046*
H8B0.03370.79120.53970.046*
C90.3474 (5)1.5596 (5)0.4793 (4)0.0405 (9)
H9A0.41241.68690.49380.049*
H9B0.21331.53520.45810.049*
C100.5940 (5)1.5299 (5)0.6247 (3)0.0386 (9)
H10A0.62101.48480.69760.046*
H10B0.66391.65660.64250.046*
N10.0732 (4)0.6390 (4)0.8092 (3)0.0405 (8)
N20.4143 (5)0.9504 (4)1.2226 (3)0.0443 (8)
N30.2705 (6)1.2965 (4)0.9349 (3)0.0528 (9)
N40.1521 (4)1.1476 (4)0.5768 (3)0.0364 (7)
H4A0.157 (6)1.118 (5)0.647 (4)0.044*
H4B0.228 (6)1.255 (6)0.584 (4)0.044*
N50.3922 (5)1.4953 (4)0.5905 (3)0.0383 (7)
H5A0.359 (6)1.548 (5)0.649 (4)0.046*
O10.0655 (4)0.9638 (4)0.7581 (2)0.0471 (7)
O20.1103 (5)0.6367 (4)0.7077 (3)0.0579 (8)
O30.0265 (5)0.5088 (4)0.8379 (3)0.0720 (10)
O40.4179 (6)0.8106 (4)1.2447 (3)0.0925 (14)
O50.4870 (5)1.0892 (4)1.2985 (3)0.0599 (9)
O60.3035 (6)1.4152 (4)1.0227 (3)0.0831 (12)
O70.2583 (6)1.3203 (4)0.8304 (3)0.0799 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0349 (19)0.0294 (18)0.0331 (19)0.0089 (15)0.0063 (15)0.0074 (15)
C20.044 (2)0.0331 (19)0.036 (2)0.0137 (17)0.0052 (17)0.0123 (16)
C30.041 (2)0.039 (2)0.0265 (18)0.0153 (16)0.0073 (15)0.0104 (15)
C40.043 (2)0.0330 (19)0.037 (2)0.0147 (16)0.0079 (16)0.0037 (15)
C50.048 (2)0.034 (2)0.0346 (19)0.0204 (17)0.0097 (17)0.0113 (15)
C60.0357 (19)0.038 (2)0.0319 (19)0.0159 (16)0.0114 (16)0.0127 (15)
C70.0343 (19)0.041 (2)0.043 (2)0.0122 (16)0.0077 (16)0.0143 (17)
C80.045 (2)0.0317 (19)0.040 (2)0.0151 (16)0.0065 (17)0.0120 (16)
C90.035 (2)0.0284 (18)0.055 (2)0.0098 (15)0.0019 (17)0.0097 (17)
C100.047 (2)0.0268 (18)0.0346 (19)0.0065 (16)0.0011 (16)0.0090 (15)
N10.0443 (19)0.0374 (18)0.0353 (18)0.0124 (15)0.0026 (14)0.0059 (14)
N20.052 (2)0.0418 (19)0.0361 (18)0.0139 (16)0.0038 (15)0.0122 (15)
N30.081 (3)0.0366 (19)0.045 (2)0.0290 (18)0.0066 (18)0.0097 (16)
N40.0375 (17)0.0305 (16)0.0325 (17)0.0015 (13)0.0018 (13)0.0119 (13)
N50.0465 (19)0.0312 (16)0.0364 (17)0.0113 (14)0.0139 (14)0.0050 (13)
O10.0584 (17)0.0417 (15)0.0355 (15)0.0130 (13)0.0024 (13)0.0163 (12)
O20.083 (2)0.0518 (18)0.0359 (16)0.0215 (16)0.0153 (15)0.0029 (13)
O30.082 (2)0.0404 (17)0.070 (2)0.0071 (16)0.0138 (18)0.0096 (16)
O40.140 (4)0.0456 (19)0.063 (2)0.017 (2)0.035 (2)0.0223 (17)
O50.082 (2)0.0534 (19)0.0335 (15)0.0252 (17)0.0068 (15)0.0042 (14)
O60.150 (4)0.0452 (19)0.061 (2)0.053 (2)0.010 (2)0.0046 (16)
O70.142 (4)0.0444 (19)0.049 (2)0.030 (2)0.005 (2)0.0194 (15)
Geometric parameters (Å, º) top
C1—C21.366 (5)C9—N51.465 (5)
C1—C61.454 (5)C9—C10ii1.504 (5)
C1—N11.461 (5)C9—H9A0.9700
C2—C31.385 (5)C9—H9B0.9700
C2—H20.9300C10—N51.465 (5)
C3—C41.380 (5)C10—C9ii1.504 (5)
C3—N21.441 (5)C10—H10A0.9700
C4—C51.373 (5)C10—H10B0.9700
C4—H40.9300N1—O31.210 (4)
C5—C61.442 (5)N1—O21.224 (4)
C5—N31.464 (5)N2—O41.210 (4)
C6—O11.243 (4)N2—O51.221 (4)
C7—N41.475 (5)N3—O61.215 (4)
C7—C81.508 (5)N3—O71.219 (4)
C7—H7A0.9700N4—C8i1.484 (5)
C7—H7B0.9700N4—H4A0.86 (4)
C8—N4i1.484 (5)N4—H4B0.86 (4)
C8—H8A0.9700N5—H5A0.86 (4)
C8—H8B0.9700
C2—C1—C6125.4 (3)N5—C9—C10ii110.2 (3)
C2—C1—N1117.1 (3)N5—C9—H9A109.6
C6—C1—N1117.5 (3)C10ii—C9—H9A109.6
C1—C2—C3118.3 (3)N5—C9—H9B109.6
C1—C2—H2120.8C10ii—C9—H9B109.6
C3—C2—H2120.8H9A—C9—H9B108.1
C4—C3—C2121.2 (3)N5—C10—C9ii109.1 (3)
C4—C3—N2118.7 (3)N5—C10—H10A109.9
C2—C3—N2120.0 (3)C9ii—C10—H10A109.9
C5—C4—C3119.5 (3)N5—C10—H10B109.9
C5—C4—H4120.2C9ii—C10—H10B109.9
C3—C4—H4120.2H10A—C10—H10B108.3
C4—C5—C6124.3 (3)O3—N1—O2122.7 (3)
C4—C5—N3116.0 (3)O3—N1—C1118.9 (3)
C6—C5—N3119.7 (3)O2—N1—C1118.3 (3)
O1—C6—C5126.4 (3)O4—N2—O5122.3 (3)
O1—C6—C1122.4 (3)O4—N2—C3118.7 (3)
C5—C6—C1111.1 (3)O5—N2—C3119.0 (3)
N4—C7—C8110.9 (3)O6—N3—O7122.6 (4)
N4—C7—H7A109.5O6—N3—C5117.9 (3)
C8—C7—H7A109.5O7—N3—C5119.5 (3)
N4—C7—H7B109.5C7—N4—C8i112.2 (3)
C8—C7—H7B109.5C7—N4—H4A109 (3)
H7A—C7—H7B108.0C8i—N4—H4A109 (3)
N4i—C8—C7110.4 (3)C7—N4—H4B114 (3)
N4i—C8—H8A109.6C8i—N4—H4B102 (3)
C7—C8—H8A109.6H4A—N4—H4B110 (4)
N4i—C8—H8B109.6C10—N5—C9110.9 (3)
C7—C8—H8B109.6C10—N5—H5A109 (3)
H8A—C8—H8B108.1C9—N5—H5A109 (3)
C6—C1—C2—C32.3 (6)N4—C7—C8—N4i55.1 (4)
N1—C1—C2—C3177.5 (3)C2—C1—N1—O344.6 (5)
C1—C2—C3—C40.2 (6)C6—C1—N1—O3135.6 (4)
C1—C2—C3—N2177.1 (3)C2—C1—N1—O2133.7 (4)
C2—C3—C4—C50.2 (6)C6—C1—N1—O246.1 (5)
N2—C3—C4—C5177.5 (3)C4—C3—N2—O4175.0 (4)
C3—C4—C5—C61.6 (6)C2—C3—N2—O42.4 (6)
C3—C4—C5—N3178.8 (3)C4—C3—N2—O54.3 (5)
C4—C5—C6—O1173.8 (4)C2—C3—N2—O5178.4 (4)
N3—C5—C6—O15.7 (6)C4—C5—N3—O620.6 (6)
C4—C5—C6—C13.2 (5)C6—C5—N3—O6159.0 (4)
N3—C5—C6—C1177.2 (3)C4—C5—N3—O7157.2 (4)
C2—C1—C6—O1173.5 (4)C6—C5—N3—O723.2 (6)
N1—C1—C6—O16.7 (5)C8—C7—N4—C8i56.1 (4)
C2—C1—C6—C53.7 (5)C9ii—C10—N5—C958.5 (4)
N1—C1—C6—C5176.1 (3)C10ii—C9—N5—C1059.1 (4)
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+3, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O10.86 (4)1.95 (4)2.745 (4)153 (4)
N4—H4A···O70.86 (4)2.31 (4)2.870 (5)123 (3)
N4—H4B···N50.86 (4)1.94 (4)2.799 (4)176 (4)
N5—H5A···O2iii0.86 (4)2.41 (4)3.153 (5)145 (4)
C2—H2···O6iv0.932.473.335 (5)155
C7—H7B···O1i0.972.523.211 (5)128
C8—H8B···O10.972.603.267 (5)127
C8—H8B···O20.972.523.458 (5)162
C9—H9A···O5v0.972.603.272 (5)127
C10—H10A···O4vi0.972.523.310 (5)138
Symmetry codes: (i) x, y+2, z+1; (iii) x, y+1, z; (iv) x, y1, z; (v) x+1, y+3, z+2; (vi) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC4H12N22+·2C6H2N3O7·C4H10N2
Mr630.50
Crystal system, space groupTriclinic, P1
Temperature (K)299
a, b, c (Å)7.7150 (6), 8.1658 (6), 11.3024 (8)
α, β, γ (°)98.140 (1), 98.974 (1), 109.250 (1)
V3)649.62 (8)
Z1
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.20 × 0.10 × 0.06
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.963, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
6131, 2258, 1917
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.169, 1.13
No. of reflections2258
No. of parameters208
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.27

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O10.86 (4)1.95 (4)2.745 (4)153 (4)
N4—H4A···O70.86 (4)2.31 (4)2.870 (5)123 (3)
N4—H4B···N50.86 (4)1.94 (4)2.799 (4)176 (4)
N5—H5A···O2i0.86 (4)2.41 (4)3.153 (5)145 (4)
C2—H2···O6ii0.932.473.335 (5)155
C7—H7B···O1iii0.972.523.211 (5)128
C8—H8B···O10.972.603.267 (5)127
C8—H8B···O20.972.523.458 (5)162
C9—H9A···O5iv0.972.603.272 (5)127
C10—H10A···O4v0.972.523.310 (5)138
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x, y+2, z+1; (iv) x+1, y+3, z+2; (v) x+1, y+2, z+2.
 

Acknowledgements

This work received financial support from the Hubei Province Key Fundamental Project.

References

First citationAkutagawa, T., Uchimaru, T., Sakai, K. I., Hasegawa, T. & Nakamura, T. (2003). J. Phys. Chem. B, 107, 6248–6251.  Web of Science CSD CrossRef CAS Google Scholar
First citationAnitha, K., Athimoolam, S. & Natarajan, S. (2006a). Acta Cryst. C62, o426–o428.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAnitha, K., Athimoolam, S. & Natarajan, S. (2006b). Acta Cryst. C62, o567–o570.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationArnaud, V., Berthelot, M., Evain, M., Graton, J. & Le Questel, J. Y. (2007). Chem. Eur. J. 13, 1499–1510.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationColquhoun, H. M., Doughty, S. M., Stoddart, J. F., Slawin, A. M. Z. & Williams, D. J. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 253–257.  CSD CrossRef Web of Science Google Scholar
First citationHundal, G., Kumar, S., Hundal, M. S., Singh, H., Sanz-Aparicio, J. & Martinez-Ripoll, M. (1997). Acta Cryst. C53, 799–801.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKavitha, S. J., Panchanatheswaran, K., Low, J. N., Ferguson, G. & Glidewell, C. (2006). Acta Cryst. C62, o165–o169.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKavitha, S. J., Panchanatheswaran, K., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o473–o474.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMa, L.-F., Zhao, B.-T. & Wang, L.-Y. (2005). Acta Cryst. E61, o964–o966.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzumna, A., Jurczak, J. & Urbańczyk-Lipkowska, Z. (2000). J. Mol. Struct. 526, 165–175.  Web of Science CSD CrossRef CAS Google Scholar
First citationVembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003). Acta Cryst. E59, o913–o916.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages o665-o666
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds