organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-{[(1,3-Benzo­thia­zolium-2-yl)hydra­zono](phen­yl)meth­yl}-3-methyl-1-phenyl-1H-pyrazol-5-olate monohydrate

aAdvanced Photonics Center, School of Electronic Science and Engineering, Southeast University, 210096 Nanjing, Jiangsu, People's Republic of China, and bDepartment of Chemistry, Taishan University, 271021 Taian, Shandong, People's Republic of China
*Correspondence e-mail: sunyf50@hotmail.com

(Received 24 February 2008; accepted 6 March 2008; online 12 March 2008)

The title compound, C24H19N5OS·H2O, was synthesized by the reaction of 4-benzoyl-3-methyl-1-phenyl­pyrazol-5-one and 2-hydrazino-1,3-benzothia­zole. Proton transfer leads to the formation of a zwitterionic structure and the mol­ecule exists in the enolate form. The pyrazolone ring makes dihedral angles of 35.4 (3), 69.7 (3) and 40.1 (3)° with the 1-phenyl, indirectly bound phenyl and benzothia­zole ring systems, respectively. The mol­ecules are linked into one-dimensional chains by a combination of N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds.

Related literature

For related literature, see: Akama & Tong (1996[Akama, Y. & Tong, A. (1996). Microchem. J. 53, 34-41.]); Eller & Holzer (2004[Eller, G. A. & Holzer, W. (2004). Heterocycles, 63, 2537-2555.]); Morakot et al. (2008[Morakot, N., Ngeontae, W., Aeungmaitrepirom, W. & Tuntulani, T. (2008). Bull. Korean Chem. Soc. 29, 221-224.]); Rana et al. (2007[Rana, A., Siddiqui, N. & Khan, S. A. (2007). Indian J. Pharm. Sci. 69, 10-17.]); Sieroń (2007[Sieroń, L. (2007). Acta Cryst. E63, m598-m600.]); Kim et al. (2005[Kim, Y. H., Youk, J. S., Kim, S. H. & Chang, S. K. (2005). Bull. Korean Chem. Soc. 26, 47-50.]); Costa et al. (2006[Costa, S. P. G., Batista, R. M. F., Sousa, A. M. R. C. & Raposo, M. M. M. (2006). Mater. Sci. Forum, 514-516, 147-151.]); Usman et al. (2003[Usman, A., Fun, H.-K., Chantrapromma, S., Zhang, M., Chen, Z.-F., Tang, Y.-Z., Shi, S.-M. & Liang, H. (2003). Acta Cryst. E59, m41-m43.]). Two related compounds we have previously reported exist in the enamine–keto tautomeric form (Sun et al., 2006[Sun, Y., Zhang, D., Gao, H., Wang, H. & Tao, R. (2006). Anal. Sci. X, 22, x289-x290.], 2007[Sun, Y.-F., Sun, X.-Z., Zhang, D.-D. & Cui, Y.-P. (2007). Acta Cryst. E63, o2005-o2006.]).

[Scheme 1]

Experimental

Crystal data
  • C24H19N5OS·H2O

  • Mr = 443.52

  • Triclinic, [P \overline 1]

  • a = 7.1059 (16) Å

  • b = 12.906 (3) Å

  • c = 13.439 (3) Å

  • α = 67.173 (4)°

  • β = 85.597 (4)°

  • γ = 76.226 (4)°

  • V = 1103.1 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 273 (2) K

  • 0.15 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.974, Tmax = 0.982

  • 5750 measured reflections

  • 3850 independent reflections

  • 3210 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.139

  • S = 1.09

  • 3850 reflections

  • 290 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H25⋯N5i 0.85 1.97 2.815 (3) 178
O2—H26⋯O1ii 0.85 2.00 2.829 (3) 166
N1—H1⋯O2 0.86 1.81 2.662 (3) 173
N2—H2⋯O1 0.86 1.78 2.541 (3) 146
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+2, -y+1, -z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyrazolone derivatives play an important role as substructures of numerous pharmaceuticals, agrochemicals, dyes and pigments, as well as chelating and extracting agents. Moreover, they are capable of prototropic tautomerism (Akama & Tong, 1996; Eller & Holzer, 2004). Furthermore, interest in the study of compounds containing the benzothiazole moiety has increased on account of their broad spectrum of biological activities (Rana et al., 2007), and also their potential applications in the areas of sensor (Morakot et al., 2008; Kim et al., 2005), non-linear optics, laser dyes, electroluminescent devices (Costa et al., 2006) and also as chelating agents (Usman et al., 2003; Sieroń, 2007). In continuation of our studies on pyrazolone derivatives, we report here the synthesis and crystal structure of the title compound, (I).

The title compound (Fig. 1) is a prototropic isomer, in which proton transfer leads to the formation of a zwitterionic structure. The molecule exists in the enolate form, in contrast to the enamine–keto tautomeric form which is exhibited by related pyrazolone analogues reported previously by us (Sun et al., 2006, 2007). In the title molecule the central pyrazolone (C15—C17/N4/N5) ring is essentially planar, with an r.m.s. deviation of 0.0033 Å for the fitted atoms. This ring makes dihedral angles of 35.4 (3), 69.7 (3) and 40.1 (3) ° with the 1-phenyl, methylene-bound phenyl and benzothiazole rings, respectively. In addition, the molecule features an intramolecular hydrogen bond between the N2 and O1 atoms (Table 1) arising from the fact that atoms O1 and N2 are on the same side of the N3—C8 bond. In the crystal structure, molecules are linked into a one-dimensional chains by a combination of N—H···O, O—H···N and O—H···O hydrogen bonds (Table 1 and Fig. 2).

Related literature top

For related literature, see: Akama & Tong (1996); Eller & Holzer (2004); Morakot et al. (2008); Rana et al. (2007); Sieroń (2007); Kim et al. (2005); Costa et al. (2006); Usman et al. (2003). Two related compounds we have previously reported exist in the enamine–keto tautomeric form (Sun et al., 2006, 2007).

Experimental top

A mixture of 1-phenyl-3-methyl-4-benzoyl-pyrazolone-5 (1 mmol) and 2-hydrazino-1,3-benzothiazole (1 mmol) in anhydrous ethanol (20 ml) was refluxed for 3 hr, and then cooled to room temperature. The precipitate was filtered and dried. The crude product was recrystallized from ethanol. Yellow crystals were thus obtained in 65% yield. m.p. 447–449 K. Spectroscopic analysis:1H NMR (600 MHz, MSO-d6, δ, p.p.m.): 1.70(s, 3H), 7.13–7.61(m, 11H), 7.76(d, 1H, J = 7.8 Hz), 7.87(d, 2H, J = 7.8 Hz). A single-crystal suitable for an X-ray structural analysis was obtained by slowly evaporating a ethanolic solution of the title compound at room temperature.

Refinement top

All H atoms were initially located in a difference Fourier map and were subsequebtly treated as riding atoms, with C—H = 0.93 Å (aromatic), 0.96 Å(methyl), N—H = 0.86 Å and O—H = 0.85 Å, and with Uiso(H) = kUeq(C,N,O), where k = 1.5 for the methyl group or 1.2 for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The chain structure formed via hydrogen bonds, indicated by dashed lines.
4-{[(1,3-Benzothiazolium-2-yl)hydrazono](phenyl)methyl}-3-methyl-1- phenyl-1H-pyrazol-5-olate monohydrate top
Crystal data top
C24H19N5OS·H2OZ = 2
Mr = 443.52F(000) = 464
Triclinic, P1Dx = 1.335 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1059 (16) ÅCell parameters from 2939 reflections
b = 12.906 (3) Åθ = 3.0–27.6°
c = 13.439 (3) ŵ = 0.18 mm1
α = 67.173 (4)°T = 273 K
β = 85.597 (4)°Block, yellow
γ = 76.226 (4)°0.15 × 0.12 × 0.10 mm
V = 1103.1 (4) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3850 independent reflections
Radiation source: fine-focus sealed tube3210 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.974, Tmax = 0.982k = 1115
5750 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.0377P)2 + 1.1858P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3850 reflectionsΔρmax = 0.27 e Å3
290 parametersΔρmin = 0.19 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0158 (18)
Crystal data top
C24H19N5OS·H2Oγ = 76.226 (4)°
Mr = 443.52V = 1103.1 (4) Å3
Triclinic, P1Z = 2
a = 7.1059 (16) ÅMo Kα radiation
b = 12.906 (3) ŵ = 0.18 mm1
c = 13.439 (3) ÅT = 273 K
α = 67.173 (4)°0.15 × 0.12 × 0.10 mm
β = 85.597 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3850 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3210 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.982Rint = 0.018
5750 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0513 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.09Δρmax = 0.27 e Å3
3850 reflectionsΔρmin = 0.19 e Å3
290 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.85393 (12)0.44604 (7)0.44483 (6)0.0482 (2)
O10.8025 (3)0.58715 (19)0.03090 (16)0.0513 (5)
O20.9942 (3)0.28493 (19)0.14541 (16)0.0551 (6)
H250.89650.27510.12030.066*
H261.03890.33280.09120.066*
N10.9422 (3)0.3293 (2)0.32447 (18)0.0416 (5)
H10.95310.31090.26890.050*
N20.7798 (3)0.5218 (2)0.23487 (19)0.0448 (6)
H20.77550.51810.17260.054*
N30.7050 (4)0.6224 (2)0.25456 (19)0.0475 (6)
N40.5118 (3)0.6743 (2)0.06729 (18)0.0425 (6)
N50.3329 (4)0.7428 (2)0.0612 (2)0.0483 (6)
C10.8564 (4)0.4347 (2)0.3203 (2)0.0379 (6)
C20.9815 (4)0.3026 (3)0.5016 (2)0.0458 (7)
C31.0124 (4)0.2522 (2)0.4260 (2)0.0424 (6)
C41.1057 (5)0.1373 (3)0.4546 (3)0.0580 (8)
H41.12380.10240.40460.070*
C51.1705 (6)0.0766 (3)0.5594 (3)0.0730 (11)
H51.23290.00090.58050.088*
C61.1459 (6)0.1268 (3)0.6336 (3)0.0743 (11)
H61.19420.08360.70360.089*
C71.0508 (5)0.2401 (3)0.6061 (3)0.0618 (9)
H71.03340.27410.65670.074*
C80.5842 (4)0.7029 (2)0.1837 (2)0.0424 (6)
C90.5070 (4)0.8052 (2)0.2121 (2)0.0450 (7)
C100.5184 (6)0.9135 (3)0.1387 (3)0.0637 (10)
H100.57880.92110.07320.076*
C110.4416 (7)1.0104 (3)0.1612 (3)0.0761 (12)
H110.44891.08290.11060.091*
C120.3545 (6)0.9999 (3)0.2576 (3)0.0722 (11)
H120.29951.06540.27230.087*
C130.3485 (6)0.8927 (3)0.3327 (3)0.0683 (10)
H130.29210.88540.39910.082*
C140.4252 (5)0.7953 (3)0.3107 (2)0.0544 (8)
H140.42170.72280.36260.065*
C150.5207 (4)0.7042 (2)0.0832 (2)0.0400 (6)
C160.6280 (4)0.6487 (2)0.0189 (2)0.0412 (6)
C170.3392 (4)0.7598 (3)0.0289 (2)0.0462 (7)
C180.1601 (5)0.8263 (3)0.0615 (3)0.0729 (11)
H18A0.17890.90050.05290.109*
H18B0.13350.78470.13570.109*
H18C0.05280.83630.01680.109*
C190.5566 (4)0.6468 (3)0.1605 (2)0.0432 (7)
C200.4799 (5)0.7263 (3)0.2587 (2)0.0567 (8)
H200.40280.79750.26390.068*
C210.5176 (6)0.7001 (4)0.3495 (3)0.0697 (10)
H210.46600.75390.41610.084*
C220.6305 (6)0.5954 (4)0.3418 (3)0.0713 (11)
H220.65460.57760.40300.086*
C230.7080 (5)0.5169 (3)0.2440 (3)0.0656 (10)
H230.78600.44610.23910.079*
C240.6718 (5)0.5417 (3)0.1523 (3)0.0533 (8)
H240.72450.48810.08590.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0615 (5)0.0509 (5)0.0402 (4)0.0127 (4)0.0018 (3)0.0254 (3)
O10.0423 (12)0.0656 (14)0.0433 (11)0.0049 (10)0.0022 (9)0.0223 (10)
O20.0562 (13)0.0765 (15)0.0451 (12)0.0244 (11)0.0044 (10)0.0317 (11)
N10.0471 (13)0.0462 (13)0.0386 (12)0.0140 (11)0.0022 (10)0.0219 (11)
N20.0536 (15)0.0465 (14)0.0398 (13)0.0094 (11)0.0044 (11)0.0225 (11)
N30.0593 (16)0.0439 (14)0.0441 (14)0.0107 (12)0.0025 (12)0.0217 (12)
N40.0437 (13)0.0494 (14)0.0378 (12)0.0101 (11)0.0015 (10)0.0207 (11)
N50.0455 (14)0.0536 (15)0.0499 (14)0.0085 (12)0.0035 (11)0.0251 (12)
C10.0398 (15)0.0432 (15)0.0370 (14)0.0147 (12)0.0009 (11)0.0189 (12)
C20.0505 (17)0.0499 (17)0.0410 (15)0.0163 (14)0.0009 (13)0.0183 (13)
C30.0420 (15)0.0445 (16)0.0437 (15)0.0146 (13)0.0014 (12)0.0174 (13)
C40.063 (2)0.0499 (19)0.061 (2)0.0114 (16)0.0041 (16)0.0227 (16)
C50.074 (2)0.052 (2)0.077 (3)0.0050 (18)0.012 (2)0.0091 (19)
C60.081 (3)0.072 (3)0.055 (2)0.014 (2)0.0184 (19)0.0072 (19)
C70.074 (2)0.066 (2)0.0454 (18)0.0179 (18)0.0098 (16)0.0188 (16)
C80.0502 (17)0.0423 (16)0.0381 (15)0.0157 (13)0.0042 (13)0.0165 (13)
C90.0537 (17)0.0456 (16)0.0399 (15)0.0136 (14)0.0020 (13)0.0190 (13)
C100.105 (3)0.0468 (18)0.0417 (17)0.0216 (18)0.0103 (17)0.0185 (14)
C110.130 (4)0.0421 (18)0.057 (2)0.024 (2)0.013 (2)0.0198 (16)
C120.097 (3)0.054 (2)0.072 (2)0.009 (2)0.013 (2)0.0373 (19)
C130.078 (2)0.072 (2)0.060 (2)0.0152 (19)0.0226 (18)0.0352 (19)
C140.065 (2)0.0505 (18)0.0456 (17)0.0155 (16)0.0107 (15)0.0167 (14)
C150.0466 (16)0.0393 (15)0.0368 (14)0.0130 (12)0.0011 (12)0.0154 (12)
C160.0446 (16)0.0427 (15)0.0362 (14)0.0158 (13)0.0031 (12)0.0121 (12)
C170.0479 (17)0.0460 (16)0.0473 (16)0.0101 (13)0.0000 (13)0.0208 (14)
C180.060 (2)0.085 (3)0.077 (3)0.0082 (19)0.0081 (19)0.047 (2)
C190.0476 (16)0.0533 (17)0.0388 (15)0.0244 (14)0.0074 (12)0.0221 (13)
C200.060 (2)0.069 (2)0.0448 (17)0.0205 (17)0.0010 (15)0.0217 (16)
C210.068 (2)0.107 (3)0.0412 (18)0.035 (2)0.0035 (16)0.028 (2)
C220.071 (2)0.116 (3)0.061 (2)0.052 (2)0.0242 (19)0.057 (2)
C230.065 (2)0.078 (2)0.081 (3)0.0356 (19)0.0250 (19)0.053 (2)
C240.0599 (19)0.0571 (19)0.0522 (18)0.0248 (16)0.0109 (15)0.0259 (15)
Geometric parameters (Å, º) top
S1—C11.735 (3)C9—C141.377 (4)
S1—C21.744 (3)C9—C101.379 (4)
O1—C161.287 (3)C10—C111.377 (5)
O2—H250.8500C10—H100.9300
O2—H260.8500C11—C121.365 (5)
N1—C11.332 (3)C11—H110.9300
N1—C31.384 (4)C12—C131.369 (5)
N1—H10.8600C12—H120.9300
N2—C11.297 (3)C13—C141.379 (5)
N2—N31.397 (3)C13—H130.9300
N2—H20.8600C14—H140.9300
N3—C81.288 (4)C15—C161.400 (4)
N4—C161.361 (3)C15—C171.418 (4)
N4—N51.382 (3)C17—C181.495 (4)
N4—C191.424 (3)C18—H18A0.9600
N5—C171.317 (4)C18—H18B0.9600
C2—C71.380 (4)C18—H18C0.9600
C2—C31.384 (4)C19—C201.373 (4)
C3—C41.384 (4)C19—C241.375 (4)
C4—C51.372 (5)C20—C211.379 (5)
C4—H40.9300C20—H200.9300
C5—C61.365 (5)C21—C221.367 (6)
C5—H50.9300C21—H210.9300
C6—C71.371 (5)C22—C231.368 (5)
C6—H60.9300C22—H220.9300
C7—H70.9300C23—C241.379 (4)
C8—C151.449 (4)C23—H230.9300
C8—C91.484 (4)C24—H240.9300
C1—S1—C289.71 (13)C12—C11—H11120.0
H25—O2—H26104.4C10—C11—H11120.0
C1—N1—C3114.1 (2)C11—C12—C13119.7 (3)
C1—N1—H1122.9C11—C12—H12120.2
C3—N1—H1122.9C13—C12—H12120.2
C1—N2—N3113.0 (2)C12—C13—C14120.6 (3)
C1—N2—H2123.5C12—C13—H13119.7
N3—N2—H2123.5C14—C13—H13119.7
C8—N3—N2116.6 (2)C9—C14—C13120.1 (3)
C16—N4—N5111.7 (2)C9—C14—H14119.9
C16—N4—C19128.9 (2)C13—C14—H14119.9
N5—N4—C19119.3 (2)C16—C15—C17104.9 (2)
C17—N5—N4105.4 (2)C16—C15—C8126.7 (3)
N2—C1—N1125.9 (2)C17—C15—C8128.4 (3)
N2—C1—S1121.5 (2)O1—C16—N4123.3 (3)
N1—C1—S1112.7 (2)O1—C16—C15130.4 (3)
C7—C2—C3120.3 (3)N4—C16—C15106.3 (2)
C7—C2—S1128.5 (3)N5—C17—C15111.8 (3)
C3—C2—S1111.2 (2)N5—C17—C18118.1 (3)
C4—C3—N1126.9 (3)C15—C17—C18130.1 (3)
C4—C3—C2120.8 (3)C17—C18—H18A109.5
N1—C3—C2112.2 (3)C17—C18—H18B109.5
C5—C4—C3117.7 (3)H18A—C18—H18B109.5
C5—C4—H4121.2C17—C18—H18C109.5
C3—C4—H4121.2H18A—C18—H18C109.5
C6—C5—C4121.8 (4)H18B—C18—H18C109.5
C6—C5—H5119.1C20—C19—C24120.5 (3)
C4—C5—H5119.1C20—C19—N4118.8 (3)
C5—C6—C7120.7 (3)C24—C19—N4120.7 (3)
C5—C6—H6119.6C19—C20—C21119.7 (3)
C7—C6—H6119.6C19—C20—H20120.2
C6—C7—C2118.6 (3)C21—C20—H20120.2
C6—C7—H7120.7C22—C21—C20120.2 (4)
C2—C7—H7120.7C22—C21—H21119.9
N3—C8—C15127.9 (3)C20—C21—H21119.9
N3—C8—C9113.3 (2)C21—C22—C23119.8 (3)
C15—C8—C9118.8 (2)C21—C22—H22120.1
C14—C9—C10118.6 (3)C23—C22—H22120.1
C14—C9—C8121.8 (3)C22—C23—C24120.7 (4)
C10—C9—C8119.7 (3)C22—C23—H23119.6
C11—C10—C9121.0 (3)C24—C23—H23119.6
C11—C10—H10119.5C19—C24—C23119.1 (3)
C9—C10—H10119.5C19—C24—H24120.5
C12—C11—C10119.9 (3)C23—C24—H24120.5
C1—N2—N3—C8162.4 (3)C11—C12—C13—C141.6 (6)
C16—N4—N5—C170.3 (3)C10—C9—C14—C133.1 (5)
C19—N4—N5—C17175.6 (2)C8—C9—C14—C13177.5 (3)
N3—N2—C1—N1178.3 (2)C12—C13—C14—C90.7 (6)
N3—N2—C1—S12.1 (3)N3—C8—C15—C1630.2 (5)
C3—N1—C1—N2179.8 (3)C9—C8—C15—C16149.0 (3)
C3—N1—C1—S10.6 (3)N3—C8—C15—C17149.2 (3)
C2—S1—C1—N2178.6 (2)C9—C8—C15—C1731.6 (4)
C2—S1—C1—N11.7 (2)N5—N4—C16—O1179.2 (2)
C1—S1—C2—C7176.8 (3)C19—N4—C16—O13.8 (4)
C1—S1—C2—C32.5 (2)N5—N4—C16—C150.8 (3)
C1—N1—C3—C4179.2 (3)C19—N4—C16—C15174.6 (3)
C1—N1—C3—C21.4 (3)C17—C15—C16—O1179.2 (3)
C7—C2—C3—C42.8 (5)C8—C15—C16—O11.2 (5)
S1—C2—C3—C4177.9 (2)C17—C15—C16—N40.9 (3)
C7—C2—C3—N1176.7 (3)C8—C15—C16—N4179.5 (3)
S1—C2—C3—N12.6 (3)N4—N5—C17—C150.4 (3)
N1—C3—C4—C5177.6 (3)N4—N5—C17—C18176.6 (3)
C2—C3—C4—C51.7 (5)C16—C15—C17—N50.8 (3)
C3—C4—C5—C60.4 (6)C8—C15—C17—N5179.7 (3)
C4—C5—C6—C71.5 (6)C16—C15—C17—C18175.6 (3)
C5—C6—C7—C20.4 (6)C8—C15—C17—C183.9 (5)
C3—C2—C7—C61.7 (5)C16—N4—C19—C20142.4 (3)
S1—C2—C7—C6179.2 (3)N5—N4—C19—C2032.7 (4)
N2—N3—C8—C152.5 (4)C16—N4—C19—C2438.7 (4)
N2—N3—C8—C9178.3 (2)N5—N4—C19—C24146.2 (3)
N3—C8—C9—C1452.3 (4)C24—C19—C20—C210.5 (5)
C15—C8—C9—C14128.3 (3)N4—C19—C20—C21178.4 (3)
N3—C8—C9—C10127.0 (3)C19—C20—C21—C220.1 (5)
C15—C8—C9—C1052.3 (4)C20—C21—C22—C230.7 (5)
C14—C9—C10—C113.1 (6)C21—C22—C23—C240.7 (5)
C8—C9—C10—C11177.5 (3)C20—C19—C24—C230.5 (4)
C9—C10—C11—C120.7 (7)N4—C19—C24—C23178.4 (3)
C10—C11—C12—C131.6 (7)C22—C23—C24—C190.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H25···N5i0.851.972.815 (3)178
O2—H26···O1ii0.852.002.829 (3)166
N1—H1···O20.861.812.662 (3)173
N2—H2···O10.861.782.541 (3)146
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC24H19N5OS·H2O
Mr443.52
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)7.1059 (16), 12.906 (3), 13.439 (3)
α, β, γ (°)67.173 (4), 85.597 (4), 76.226 (4)
V3)1103.1 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.15 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.974, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
5750, 3850, 3210
Rint0.018
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.139, 1.09
No. of reflections3850
No. of parameters290
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.19

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H25···N5i0.851.972.815 (3)178.3
O2—H26···O1ii0.852.002.829 (3)166.2
N1—H1···O20.861.812.662 (3)173.0
N2—H2···O10.861.782.541 (3)146.4
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z.
 

Acknowledgements

This project was supported by the Jiangsu Planned Projects for Postdoctoral Research Funds (No. 0701001B).

References

First citationAkama, Y. & Tong, A. (1996). Microchem. J. 53, 34–41.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1997). SMART, SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosta, S. P. G., Batista, R. M. F., Sousa, A. M. R. C. & Raposo, M. M. M. (2006). Mater. Sci. Forum, 514–516, 147–151.  CrossRef CAS Google Scholar
First citationEller, G. A. & Holzer, W. (2004). Heterocycles, 63, 2537–2555.  CAS Google Scholar
First citationKim, Y. H., Youk, J. S., Kim, S. H. & Chang, S. K. (2005). Bull. Korean Chem. Soc. 26, 47–50.  CAS Google Scholar
First citationMorakot, N., Ngeontae, W., Aeungmaitrepirom, W. & Tuntulani, T. (2008). Bull. Korean Chem. Soc. 29, 221–224.  CAS Google Scholar
First citationRana, A., Siddiqui, N. & Khan, S. A. (2007). Indian J. Pharm. Sci. 69, 10–17.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSieroń, L. (2007). Acta Cryst. E63, m598–m600.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSun, Y.-F., Sun, X.-Z., Zhang, D.-D. & Cui, Y.-P. (2007). Acta Cryst. E63, o2005–o2006.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y., Zhang, D., Gao, H., Wang, H. & Tao, R. (2006). Anal. Sci. X, 22, x289–x290.  CSD CrossRef CAS Google Scholar
First citationUsman, A., Fun, H.-K., Chantrapromma, S., Zhang, M., Chen, Z.-F., Tang, Y.-Z., Shi, S.-M. & Liang, H. (2003). Acta Cryst. E59, m41–m43.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds