metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
RETRACTED ARTICLE

This article has been retracted. To view the retraction notice, click here.

Retracted: Bis(2-eth­­oxy-6-formyl­phenolato-κ2O1,O6)nickel(II)

aApplied Technical College, Qiqihar University, Qiqihar 161006, People's Republic of China
*Correspondence e-mail: zhenquan_han@126.com

(Received 18 March 2008; accepted 25 March 2008; online 29 March 2008)

The title compound, [Ni(C9H9O3)2], was synthesized by the reaction of 3-ethoxy­salicylaldehyde with nickel(II) nitrate in methanol solution. The asymmetric unit onsists of two half-molecules; each Ni atom lies on a centre of symmetry. The NiII ions are coordinated by four O atoms from two deprotonated 3-ethoxy­salicylaldehyde ligands in a slightly distorted square-planar coordination environment.

Related literature

For related literature, see: Carlsson et al. (2004[Carlsson, H., Haukka, M., Bousseksou, A., Latour, J.-M. & Nordlander, E. (2004). Inorg. Chem. 43, 8252-8262.]); Li & Chen (2006[Li, Y.-G. & Chen, H.-J. (2006). Acta Cryst. E62, m1038-m1039.]); Mounts & Fernando (1974[Mounts, R. D. & Fernando, Q. (1974). Acta Cryst. B30, 542-543.]); Volkmer et al. (1996[Volkmer, D., Hommerich, B., Griesar, K., Haase, W. & Krebs, B. (1996). Inorg. Chem. 35, 3792-3803.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C9H9O3)2]

  • Mr = 389.03

  • Triclinic, [P \overline 1]

  • a = 8.448 (2) Å

  • b = 10.123 (2) Å

  • c = 11.919 (3) Å

  • α = 111.175 (2)°

  • β = 97.377 (2)°

  • γ = 102.431 (3)°

  • V = 904.1 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.10 mm−1

  • T = 298 (2) K

  • 0.32 × 0.32 × 0.30 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.719, Tmax = 0.733

  • 5465 measured reflections

  • 3993 independent reflections

  • 3187 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.116

  • S = 1.02

  • 3993 reflections

  • 231 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—O5 1.837 (2)
Ni1—O4 1.852 (2)
Ni2—O1 1.843 (2)
Ni2—O2 1.851 (2)
O5—Ni1—O5i 180
O5—Ni1—O4 94.16 (9)
O5i—Ni1—O4 85.84 (9)
O4—Ni1—O4i 180
O1—Ni2—O1ii 180
O1—Ni2—O2 93.70 (9)
O1ii—Ni2—O2 86.30 (9)
O2ii—Ni2—O2 180
Symmetry codes: (i) -x, -y+1, -z; (ii) -x, -y, -z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The authors interest in nickel(II) complexes arises from the fact that Ni(II) is the active center of the urease enzyme (Carlsson et al., 2004; Volkmer et al., 1996). The author reports herein the crystal structure of the title nickel(II) complex.

In the asymmetric unit of the title compound, there are two independent complex (Fig. 1). Each NiII ion lies on an inversion center and is coordinated by four O atoms from two deprotonated 3-ethoxysalicylaldehyde ligands. The coordinate bond values (Table 1) in each molecule are comparable to each other between the two independent complex molecules. The structure is similar to other nickel(II) complexes derived from the derivatives of salicylaldehyde (Li & Chen, 2006; Mounts & Fernando, 1974).

Related literature top

For related literature, see: Carlsson et al. (2004); Li & Chen (2006); Mounts & Fernando (1974); Volkmer et al. (1996).

Experimental top

All chemicals were of AR grade. 3-Ethoxysalicylaldehyde (33.2 mg, 0.2 mmol) and nickel(II) nitrate hexahydrate (29.0 mg, 0.1 mmol) were refluxed for 30 min in 10 ml methanol solution. The mixture was cooled to room temperature and filtered. Keeping the filtrate in air for a week, yielded red block crystals suitable for X-ray analysis.

Refinement top

H atoms were placed in idealized positions and constrained to ride on their parent atoms with C–H distances in the range 0.93–0.97 Å, and with Uiso(H) set at 1.2Ueq(C) and 1.5Ueq(methyl C). Although no significant density was located in the solvent accessible VOIDS of 47.00 Å3, these might be able to accommodate disordered water molecules.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structures of the two centrosymmetric independent molecules, showing 30% probability displacement ellipsoids and the atom-numbering scheme. The unlabeled atoms are related by the symmetry operators (-x, -y+1, -z) and (-x, -y, -z) for the molecules containing Ni1 and Ni2 respectively.
Bis(2-ethoxy-6-formylphenolato-κ2O1,O6)nickel(II) top
Crystal data top
[Ni(C9H9O3)2]Z = 2
Mr = 389.03F(000) = 404
Triclinic, P1Dx = 1.429 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.448 (2) ÅCell parameters from 2386 reflections
b = 10.123 (2) Åθ = 2.2–27.9°
c = 11.919 (3) ŵ = 1.10 mm1
α = 111.175 (2)°T = 298 K
β = 97.377 (2)°Block, red
γ = 102.431 (3)°0.32 × 0.32 × 0.30 mm
V = 904.1 (4) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3993 independent reflections
Radiation source: fine-focus sealed tube3187 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 108
Tmin = 0.719, Tmax = 0.733k = 1313
5465 measured reflectionsl = 1115
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0596P)2 + 0.672P]
where P = (Fo2 + 2Fc2)/3
3993 reflections(Δ/σ)max < 0.001
231 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.66 e Å3
Crystal data top
[Ni(C9H9O3)2]γ = 102.431 (3)°
Mr = 389.03V = 904.1 (4) Å3
Triclinic, P1Z = 2
a = 8.448 (2) ÅMo Kα radiation
b = 10.123 (2) ŵ = 1.10 mm1
c = 11.919 (3) ÅT = 298 K
α = 111.175 (2)°0.32 × 0.32 × 0.30 mm
β = 97.377 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3993 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3187 reflections with I > 2σ(I)
Tmin = 0.719, Tmax = 0.733Rint = 0.013
5465 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.02Δρmax = 0.65 e Å3
3993 reflectionsΔρmin = 0.66 e Å3
231 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.50000.00000.02805 (13)
Ni20.00000.00000.00000.02920 (14)
O10.0505 (2)0.0121 (2)0.15045 (16)0.0363 (4)
O20.0576 (3)0.1741 (2)0.0663 (2)0.0506 (5)
O30.1596 (3)0.0689 (2)0.33683 (18)0.0484 (5)
O40.0529 (3)0.3494 (3)0.1190 (2)0.0513 (5)
O50.1989 (2)0.63719 (19)0.02863 (17)0.0350 (4)
O60.4541 (3)0.8659 (2)0.1053 (2)0.0552 (6)
C10.3232 (3)0.4873 (3)0.1220 (3)0.0366 (6)
C20.3219 (3)0.6192 (3)0.0278 (2)0.0328 (5)
C30.4641 (3)0.7438 (3)0.0107 (3)0.0416 (7)
C40.5959 (4)0.7345 (4)0.0462 (3)0.0534 (8)
H40.68720.81700.02140.064*
C50.5940 (4)0.6031 (4)0.1404 (3)0.0583 (9)
H50.68370.59830.17790.070*
C60.4608 (4)0.4814 (4)0.1777 (3)0.0508 (8)
H60.46060.39380.24030.061*
C70.1866 (3)0.3570 (3)0.1613 (3)0.0387 (6)
H70.19460.27130.22200.046*
C80.5934 (4)0.9930 (4)0.1562 (4)0.0630 (10)
H8A0.61621.03040.09390.076*
H8B0.69100.96870.18590.076*
C90.5528 (5)1.1062 (5)0.2603 (4)0.0745 (11)
H9A0.45231.12510.23080.112*
H9B0.64241.19590.29330.112*
H9C0.53751.07060.32380.112*
C100.0426 (4)0.2306 (3)0.2817 (3)0.0403 (6)
C110.0741 (3)0.0937 (3)0.2595 (2)0.0344 (6)
C120.1373 (4)0.0681 (3)0.3646 (3)0.0408 (6)
C130.1716 (5)0.1762 (4)0.4812 (3)0.0603 (9)
H130.21430.15820.54840.072*
C140.1433 (6)0.3135 (4)0.5010 (3)0.0737 (12)
H140.16890.38660.58060.088*
C150.0782 (5)0.3389 (4)0.4027 (3)0.0604 (10)
H150.05710.42920.41580.073*
C160.0311 (4)0.2596 (3)0.1806 (3)0.0390 (6)
H160.06170.34670.19960.047*
C170.2484 (5)0.0970 (4)0.4322 (3)0.0552 (8)
H17A0.18310.09920.49300.066*
H17B0.35280.02020.47330.066*
C180.2804 (6)0.2441 (5)0.3720 (4)0.0832 (14)
H18A0.17690.32080.34140.125*
H18B0.35270.26060.43150.125*
H18C0.33220.24490.30470.125*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0239 (2)0.0277 (2)0.0327 (2)0.00622 (17)0.00861 (17)0.01208 (19)
Ni20.0308 (2)0.0285 (2)0.0283 (2)0.00865 (18)0.00732 (18)0.01098 (18)
O10.0484 (11)0.0311 (9)0.0290 (9)0.0129 (8)0.0067 (8)0.0113 (8)
O20.0517 (13)0.0484 (12)0.0514 (13)0.0158 (10)0.0160 (10)0.0173 (10)
O30.0639 (14)0.0438 (12)0.0361 (10)0.0201 (10)0.0001 (10)0.0152 (9)
O40.0470 (12)0.0502 (13)0.0537 (13)0.0132 (10)0.0147 (10)0.0164 (11)
O50.0277 (9)0.0310 (9)0.0459 (11)0.0057 (7)0.0132 (8)0.0149 (8)
O60.0374 (11)0.0432 (12)0.0731 (16)0.0024 (9)0.0148 (11)0.0170 (11)
C10.0303 (13)0.0484 (16)0.0388 (14)0.0144 (12)0.0129 (11)0.0225 (12)
C20.0246 (12)0.0412 (14)0.0404 (14)0.0104 (10)0.0093 (10)0.0238 (12)
C30.0300 (13)0.0469 (17)0.0530 (18)0.0070 (12)0.0110 (12)0.0272 (15)
C40.0316 (15)0.061 (2)0.072 (2)0.0021 (14)0.0163 (15)0.0362 (18)
C50.0380 (17)0.079 (3)0.069 (2)0.0179 (17)0.0286 (16)0.036 (2)
C60.0414 (16)0.065 (2)0.0521 (18)0.0205 (15)0.0228 (14)0.0239 (16)
C70.0367 (14)0.0426 (15)0.0386 (14)0.0161 (12)0.0154 (12)0.0132 (12)
C80.0436 (18)0.055 (2)0.076 (3)0.0064 (16)0.0034 (17)0.0253 (19)
C90.073 (3)0.060 (2)0.064 (2)0.008 (2)0.005 (2)0.0134 (19)
C100.0472 (16)0.0387 (15)0.0354 (14)0.0168 (13)0.0131 (12)0.0114 (12)
C110.0318 (13)0.0374 (14)0.0314 (13)0.0086 (11)0.0091 (10)0.0110 (11)
C120.0423 (15)0.0421 (15)0.0341 (14)0.0127 (12)0.0064 (12)0.0115 (12)
C130.084 (3)0.064 (2)0.0297 (15)0.030 (2)0.0049 (16)0.0120 (15)
C140.114 (3)0.064 (2)0.0347 (17)0.041 (2)0.0089 (19)0.0036 (16)
C150.093 (3)0.0484 (19)0.0391 (17)0.0340 (19)0.0151 (17)0.0092 (14)
C160.0474 (16)0.0345 (14)0.0392 (15)0.0176 (12)0.0166 (12)0.0139 (12)
C170.062 (2)0.065 (2)0.0424 (17)0.0247 (17)0.0015 (15)0.0249 (16)
C180.118 (4)0.077 (3)0.062 (2)0.057 (3)0.000 (2)0.027 (2)
Geometric parameters (Å, º) top
Ni1—O51.837 (2)C6—H60.9300
Ni1—O5i1.837 (2)C7—H70.9300
Ni1—O41.852 (2)C8—C91.491 (5)
Ni1—O4i1.852 (2)C8—H8A0.9700
Ni2—O11.843 (2)C8—H8B0.9700
Ni2—O1ii1.843 (2)C9—H9A0.9600
Ni2—O2ii1.851 (2)C9—H9B0.9600
Ni2—O21.851 (2)C9—H9C0.9600
O1—C111.309 (3)C10—C111.405 (4)
O2—C161.282 (3)C10—C151.406 (4)
O3—C121.365 (3)C10—C161.438 (4)
O3—C171.429 (3)C11—C121.430 (4)
O4—C71.294 (3)C12—C131.369 (4)
O5—C21.319 (3)C13—C141.402 (5)
O6—C31.367 (4)C13—H130.9300
O6—C81.417 (4)C14—C151.362 (5)
C1—C21.404 (4)C14—H140.9300
C1—C61.412 (4)C15—H150.9300
C1—C71.432 (4)C16—H160.9300
C2—C31.426 (4)C17—C181.502 (5)
C3—C41.380 (4)C17—H17A0.9700
C4—C51.391 (5)C17—H17B0.9700
C4—H40.9300C18—H18A0.9600
C5—C61.364 (5)C18—H18B0.9600
C5—H50.9300C18—H18C0.9600
O5—Ni1—O5i180O6—C8—H8B110.2
O5—Ni1—O494.16 (9)C9—C8—H8B110.2
O5i—Ni1—O485.84 (9)H8A—C8—H8B108.5
O5—Ni1—O4i85.84 (9)C8—C9—H9A109.5
O5i—Ni1—O4i94.16 (9)C8—C9—H9B109.5
O4—Ni1—O4i180H9A—C9—H9B109.5
O1—Ni2—O1ii180C8—C9—H9C109.5
O1—Ni2—O2ii86.30 (9)H9A—C9—H9C109.5
O1ii—Ni2—O2ii93.70 (9)H9B—C9—H9C109.5
O1—Ni2—O293.70 (9)C11—C10—C15120.7 (3)
O1ii—Ni2—O286.30 (9)C11—C10—C16120.0 (2)
O2ii—Ni2—O2180C15—C10—C16119.3 (3)
C11—O1—Ni2126.59 (17)O1—C11—C10125.3 (2)
C16—O2—Ni2127.6 (2)O1—C11—C12117.4 (2)
C12—O3—C17118.6 (2)C10—C11—C12117.3 (2)
C7—O4—Ni1127.6 (2)O3—C12—C13125.1 (3)
C2—O5—Ni1127.62 (17)O3—C12—C11114.3 (2)
C3—O6—C8118.6 (3)C13—C12—C11120.5 (3)
C2—C1—C6120.1 (3)C12—C13—C14121.2 (3)
C2—C1—C7120.5 (2)C12—C13—H13119.4
C6—C1—C7119.4 (3)C14—C13—H13119.4
O5—C2—C1125.0 (2)C15—C14—C13119.4 (3)
O5—C2—C3117.0 (2)C15—C14—H14120.3
C1—C2—C3118.0 (2)C13—C14—H14120.3
O6—C3—C4125.7 (3)C14—C15—C10120.9 (3)
O6—C3—C2114.0 (2)C14—C15—H15119.6
C4—C3—C2120.3 (3)C10—C15—H15119.6
C3—C4—C5120.8 (3)O2—C16—C10124.7 (3)
C3—C4—H4119.6O2—C16—H16117.6
C5—C4—H4119.6C10—C16—H16117.6
C6—C5—C4120.2 (3)O3—C17—C18107.2 (3)
C6—C5—H5119.9O3—C17—H17A110.3
C4—C5—H5119.9C18—C17—H17A110.3
C5—C6—C1120.6 (3)O3—C17—H17B110.3
C5—C6—H6119.7C18—C17—H17B110.3
C1—C6—H6119.7H17A—C17—H17B108.5
O4—C7—C1125.0 (3)C17—C18—H18A109.5
O4—C7—H7117.5C17—C18—H18B109.5
C1—C7—H7117.5H18A—C18—H18B109.5
O6—C8—C9107.6 (3)C17—C18—H18C109.5
O6—C8—H8A110.2H18A—C18—H18C109.5
C9—C8—H8A110.2H18B—C18—H18C109.5
Symmetry codes: (i) x, y+1, z; (ii) x, y, z.

Experimental details

Crystal data
Chemical formula[Ni(C9H9O3)2]
Mr389.03
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.448 (2), 10.123 (2), 11.919 (3)
α, β, γ (°)111.175 (2), 97.377 (2), 102.431 (3)
V3)904.1 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.10
Crystal size (mm)0.32 × 0.32 × 0.30
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.719, 0.733
No. of measured, independent and
observed [I > 2σ(I)] reflections
5465, 3993, 3187
Rint0.013
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.116, 1.02
No. of reflections3993
No. of parameters231
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.66

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ni1—O51.837 (2)Ni2—O11.843 (2)
Ni1—O41.852 (2)Ni2—O21.851 (2)
O5—Ni1—O5i180O1—Ni2—O1ii180
O5—Ni1—O494.16 (9)O1—Ni2—O293.70 (9)
O5i—Ni1—O485.84 (9)O1ii—Ni2—O286.30 (9)
O4—Ni1—O4i180O2ii—Ni2—O2180
Symmetry codes: (i) x, y+1, z; (ii) x, y, z.
 

Acknowledgements

The author acknowledges Qiqihar University for a research grant.

References

First citationBruker (1998). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarlsson, H., Haukka, M., Bousseksou, A., Latour, J.-M. & Nordlander, E. (2004). Inorg. Chem. 43, 8252–8262.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, Y.-G. & Chen, H.-J. (2006). Acta Cryst. E62, m1038–m1039.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMounts, R. D. & Fernando, Q. (1974). Acta Cryst. B30, 542–543.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVolkmer, D., Hommerich, B., Griesar, K., Haase, W. & Krebs, B. (1996). Inorg. Chem. 35, 3792–3803.  CSD CrossRef PubMed CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds