metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Iodidotris(tri­phenyl­phosphine)copper(I) aceto­nitrile solvate

aDepartment of Chemistry, Jackson State University, Jackson, MS 39217, USA, and bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
*Correspondence e-mail: ffroncz@lsu.edu

(Received 22 November 2007; accepted 15 March 2008; online 29 March 2008)

The title compound, [CuI(C18H15P)3]·C2H3N, was obtained from the reaction of triphenyl­phosphine and copper(I) iodide in acetonitrile. The monomeric form of the complex has slightly distorted coordination of Cu by the I atom and three P atoms. The crystal structure is stabilized by C—H⋯π inter­actions between phenyl H atoms and phenyl rings. In addition, the complex mol­ecules exhibit C—H⋯N hydrogen bonds between phenyl H atoms and acetonitrile N atoms. The crystal used was an inversion twin, with nearly equal component populations of 0.522 (8) and 0.478 (8).

Related literature

For details of the crystal structures of organophosphine­copper(I) halide derivatives, see: Caulton et al. (1990[Caulton, K. G., Davies, G. & Holt, E. M. (1990). Polyhedron, 9, 2319-2351.]); Bowmaker et al. (2000[Bowmaker, G. A., Effendy, J. D. K., Hanna, J. V., Healy, P. C., Reid, J. C., Clifton, E. F. R. & White, A. H. (2000). J. Chem. Soc. Dalton Trans. pp. 753-761.]); Eller et al. (1977[Eller, P. G., Kubas, G. J. & Ryan, R. R. (1977). Inorg. Chem. 16, 2454-2462.]); Hamel et al. (2002[Hamel, A., Schier, A. & Schmidbaur, H. Z. (2002). Naturforsch. Teil B, 57, 877-880.]); Hanna et al. (2005[Hanna, J. V., Boyd, S. E., Healy, P. C., Bowmaker, G. A., Skelton, B. W. & White, A. H. (2005). J. Chem. Soc. Dalton Trans. pp. 2547-2556.]); Venkatraman et al. (2006[Venkatraman, R., Sitole, L., Wilson, M. R. & Fronczek, F. R. (2006). Acta Cryst. E62, m2992-m2994.]); Barron et al. (1987[Barron, P. F., Dyason, J. C., Healy, P. C., Engelhardt, L. M., Pakawatchai, C., Patrick, V. A. & White, A. H. (1987). J. Chem. Soc. Dalton Trans. pp. 1099-1106.]); Kräuter & Newmüller (1996[Kräuter, T. & Newmüller, B. (1996). Polyhedron, 15, 2851-2857.]).

[Scheme 1]

Experimental

Crystal data
  • [CuI(C18H15P)3]·C2H3N

  • Mr = 1018.30

  • Orthorhombic, P n a 21

  • a = 18.5726 (10) Å

  • b = 20.2631 (12) Å

  • c = 12.7839 (5) Å

  • V = 4811.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.23 mm−1

  • T = 115 (2) K

  • 0.30 × 0.25 × 0.17 mm

Data collection
  • Nonius KappaCCD diffractometer with an Oxford Cryosystems Cryostream cooler

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.709, Tmax = 0.818

  • 156685 measured reflections

  • 15969 independent reflections

  • 13488 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.068

  • S = 1.03

  • 15969 reflections

  • 561 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.66 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 7443 Friedel pairs

  • Flack parameter: 0.478 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯Cg1i 0.95 2.94 3.732 141
C40—H40⋯Cg2i 0.95 2.94 3.696 137
C39—H39⋯N1Sii 0.95 2.58 3.468 (4) 157
Symmetry codes: (i) [-x, -y+1, z-{\script{1\over 2}}]; (ii) x, y, z-1. Cg1 and Cg2 are the centroids of the C1–C6 and C7–C12 phenyl rings, respectively.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Organophosphinecopper (I) halides have widely investigated system due to the formation of varying types of crystal structures (Caulton et al., 1990). Eller et al. (1977) used the organophosphinecopper (I) systems for the direct Cu–SO2 adduct formation. Recently Hanna et al. (2005) reported the structural and solid state NMR studies of the four coordinate copper (I) complexes with different cations except iodide. During our study on the interaction of heterocyclic thiosemicarbazones with copper (I) halides, we were able to isolate the title compound (1), Venkatraman et al., (2006).

The structure consists of CuI(PPh3)3 unit similar to the structure described by Eller et al. (1977) for CuI(PPh2Me)3. The asymmetric unit of (1) contains one formula unit of the complex with no crystallographically imposed symmetry (Fig.1), and one acetonitrile solvent molecule. The Cu atom is surrounded by three phosphorus atoms and the iodide atom in a distorted tetrahedral geometry. The three independent Cu—P distances are not grossly different (2.3421 (6), 2.3463 (6), and 2.3295 (7) Å) for P1, P2, and P3, respectively, and the Cu—I distance is 2.6843 (3) Å. The Cu—P bond lengths in compound (1) are similar to values recorded for a range of other [Cu-(PPh3)3X] complexes [Bowmaker et al., (2000)]. The three P—Cu—I angles are 104.75 (2), 113.66 (2), and 97.69 (2)°, for P1, P2, and P3, respectively, [average 105.2°], and sums to 316.0°. The wide range of P—Cu—P/I angles indicate an irregular tetrahedral structure.

The molecular packing (Fig. 2) is stabilized by CH2—H···π interactions between the hydrogen of phenyl group and the phenyl ring, with C9—H9···Cg1i and C40—H40···Cg2i separations of 2.94 Å (Fig. 2 & Table 1) (Cg1 and Cg2 are the centroids of C1—C6 and C7—C12 phenyl rings, respectively). Further stability comes from weak C—H···N1Sii hydrogen bond in Fig. 2 and Table 1. A l l symmetry codes as in Table 1.

Related literature top

For the details of crystal structure of organophosphinecopper(I) halide derivatives, see: Caulton et al., (1990); Bowmaker et al., (2000); Eller et al. (1977); Hamel et al. (2002); Hanna et al. (2005); Venkatraman et al., (2006); Barron et al. (1987); Kräuter & Newmüller (1996).

Experimental top

To a solution of copper (I) iodide (Aldrich; 0.190 g, 1 mmol) in acetonitrile (Aldrich; 50 ml) was added solid triphenylphosphine (Aldrich; 0.262 g, 2 mmol) in presence 0.5 ml HCl. The resulting mixture was stirred overnight. The clear solution was filtered and allowed to evaporate at room temperature in the presence of air. A colorless crystalline product suitable for X-ray diffraction was formed (yield ca 70%).

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aromatic H atoms and 0.98 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic H atoms and Uiso(H) = 1.5Ueq(C) for methyl H atoms. A torsional parameter was refined for the methyl group. Refinement of the Flack (1983) parameter, using 7443 Friedel pairs indicated that the crystal used was an inversion twin with approximately equal components.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Numbering scheme and ellipsoids at the 50% level. H atoms are not shown.
[Figure 2] Fig. 2. C—H···N and C—H···π interactions. Geometric parameters and symmetry operations are given in the Table 1.
Iodidotris(triphenylphosphine)copper(I) acetonitrile solvate top
Crystal data top
[CuI(C18H15P)3]·C2H3NF(000) = 2072
Mr = 1018.30Dx = 1.406 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 8935 reflections
a = 18.573 (1) Åθ = 2.5–31.8°
b = 20.263 (1) ŵ = 1.23 mm1
c = 12.7839 (5) ÅT = 115 K
V = 4811.2 (4) Å3Fragment, colorless
Z = 40.30 × 0.25 × 0.17 mm
Data collection top
Nonius KappaCCD
diffractometer (with an Oxford Cryosystems Cryostream cooler)
15969 independent reflections
Radiation source: fine-focus sealed tube13488 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
ω scans with κ offsetsθmax = 31.8°, θmin = 2.8°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
h = 2727
Tmin = 0.709, Tmax = 0.818k = 2930
156685 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0253P)2 + 3.4731P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
15969 reflectionsΔρmax = 0.62 e Å3
561 parametersΔρmin = 0.66 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.478 (8)
Crystal data top
[CuI(C18H15P)3]·C2H3NV = 4811.2 (4) Å3
Mr = 1018.30Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 18.573 (1) ŵ = 1.23 mm1
b = 20.263 (1) ÅT = 115 K
c = 12.7839 (5) Å0.30 × 0.25 × 0.17 mm
Data collection top
Nonius KappaCCD
diffractometer (with an Oxford Cryosystems Cryostream cooler)
15969 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
13488 reflections with I > 2σ(I)
Tmin = 0.709, Tmax = 0.818Rint = 0.000
156685 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.068Δρmax = 0.62 e Å3
S = 1.03Δρmin = 0.66 e Å3
15969 reflectionsAbsolute structure: Flack (1983)
561 parametersAbsolute structure parameter: 0.478 (8)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I0.217564 (7)0.266851 (6)0.441186 (16)0.02077 (3)
Cu0.240945 (12)0.397554 (11)0.44517 (3)0.01359 (5)
P10.13455 (3)0.44254 (3)0.51291 (5)0.01432 (10)
P20.33677 (3)0.42893 (3)0.55393 (5)0.01575 (11)
P30.25929 (3)0.41255 (3)0.26648 (4)0.01450 (10)
C10.13962 (12)0.45371 (12)0.65502 (18)0.0178 (4)
C20.12435 (12)0.51230 (12)0.70821 (19)0.0207 (5)
H20.11080.55060.67000.025*
C30.12884 (14)0.51494 (14)0.8170 (2)0.0273 (6)
H30.11850.55490.85270.033*
C40.14844 (14)0.45912 (16)0.8732 (2)0.0301 (6)
H40.15130.46090.94730.036*
C50.16373 (14)0.40114 (15)0.8213 (2)0.0283 (6)
H50.17730.36300.85980.034*
C60.15930 (14)0.39828 (13)0.7130 (2)0.0217 (5)
H60.16980.35810.67790.026*
C70.11119 (12)0.52434 (11)0.46264 (16)0.0175 (5)
C80.05030 (12)0.53500 (12)0.40169 (18)0.0191 (4)
H80.01730.49990.39000.023*
C90.03727 (13)0.59699 (13)0.3575 (2)0.0228 (5)
H90.00400.60360.31480.027*
C100.08404 (14)0.64869 (13)0.3755 (2)0.0249 (5)
H100.07490.69080.34550.030*
C110.14434 (11)0.63916 (10)0.4375 (3)0.0234 (4)
H110.17600.67500.45090.028*
C120.15866 (13)0.57737 (12)0.48005 (19)0.0205 (5)
H120.20070.57090.52110.025*
C130.04853 (12)0.39823 (11)0.50234 (19)0.0186 (4)
C140.03752 (13)0.35252 (12)0.4235 (2)0.0268 (6)
H140.07530.34230.37620.032*
C150.02950 (15)0.32139 (13)0.4135 (2)0.0336 (7)
H150.03720.29080.35840.040*
C160.08436 (15)0.33469 (14)0.4829 (3)0.0360 (7)
H160.12950.31300.47580.043*
C170.07363 (14)0.37963 (15)0.5628 (2)0.0337 (6)
H170.11120.38850.61130.040*
C180.00801 (13)0.41170 (14)0.5719 (2)0.0256 (5)
H180.00120.44320.62610.031*
C190.42750 (12)0.41851 (12)0.49989 (19)0.0196 (5)
C200.48602 (14)0.45677 (13)0.5321 (2)0.0300 (6)
H200.47920.49120.58160.036*
C210.55453 (14)0.44453 (15)0.4916 (3)0.0359 (7)
H210.59390.47150.51210.043*
C220.56534 (14)0.39352 (14)0.4220 (2)0.0314 (7)
H220.61210.38520.39500.038*
C230.50823 (15)0.35457 (15)0.3917 (2)0.0293 (6)
H230.51590.31910.34450.035*
C240.43900 (12)0.36709 (12)0.4301 (2)0.0230 (5)
H240.39980.34030.40840.028*
C250.33421 (12)0.51645 (11)0.59215 (19)0.0176 (4)
C260.29808 (12)0.53569 (12)0.6835 (2)0.0205 (5)
H260.27810.50320.72840.025*
C270.29136 (14)0.60257 (14)0.7087 (2)0.0266 (6)
H270.26680.61530.77060.032*
C280.32047 (15)0.65019 (13)0.6435 (2)0.0313 (6)
H280.31660.69550.66150.038*
C290.35523 (14)0.63185 (13)0.5523 (2)0.0297 (6)
H290.37430.66470.50700.036*
C300.36235 (13)0.56523 (12)0.5268 (2)0.0226 (5)
H300.38660.55290.46430.027*
C310.34799 (14)0.38716 (13)0.6806 (2)0.0192 (5)
C320.31740 (14)0.32518 (13)0.6941 (2)0.0232 (5)
H320.29180.30520.63810.028*
C330.32387 (16)0.29223 (14)0.7889 (2)0.0319 (6)
H330.30250.25000.79770.038*
C340.36150 (18)0.32092 (15)0.8706 (2)0.0377 (7)
H340.36490.29890.93610.045*
C350.39419 (18)0.38161 (14)0.8570 (2)0.0372 (7)
H350.42100.40080.91250.045*
C360.38781 (16)0.41478 (14)0.7618 (2)0.0302 (6)
H360.41070.45630.75240.036*
C370.18119 (13)0.38725 (13)0.18883 (19)0.0193 (5)
C380.18054 (15)0.33782 (12)0.1132 (2)0.0261 (5)
H380.22340.31430.09710.031*
C390.11603 (19)0.32291 (14)0.0607 (2)0.0367 (7)
H390.11550.28930.00890.044*
C400.05379 (17)0.35655 (16)0.0839 (3)0.0403 (8)
H400.01020.34530.04920.048*
C410.05425 (16)0.40674 (18)0.1574 (3)0.0413 (8)
H410.01140.43050.17260.050*
C420.11817 (14)0.42195 (16)0.2089 (2)0.0303 (6)
H420.11870.45670.25870.036*
C430.26948 (12)0.49703 (12)0.21873 (19)0.0182 (4)
C440.28124 (15)0.54660 (13)0.2903 (2)0.0262 (5)
H440.28490.53600.36250.031*
C450.28790 (17)0.61243 (14)0.2582 (3)0.0380 (7)
H450.29690.64620.30810.046*
C460.28136 (16)0.62768 (15)0.1545 (3)0.0367 (7)
H460.28580.67230.13250.044*
C470.26847 (14)0.57923 (15)0.0817 (2)0.0320 (6)
H470.26320.59060.01000.038*
C480.26316 (14)0.51345 (14)0.1126 (2)0.0253 (5)
H480.25530.47990.06200.030*
C490.33584 (14)0.36919 (13)0.20742 (19)0.0182 (5)
C500.33779 (14)0.30007 (13)0.2073 (2)0.0228 (5)
H500.29830.27590.23500.027*
C510.39711 (15)0.26645 (13)0.1669 (2)0.0260 (5)
H510.39760.21960.16630.031*
C520.45517 (15)0.30119 (15)0.1277 (2)0.0299 (6)
H520.49530.27830.09940.036*
C530.45462 (15)0.36930 (15)0.1297 (2)0.0299 (6)
H530.49500.39320.10420.036*
C540.39532 (13)0.40330 (13)0.1690 (2)0.0218 (5)
H540.39550.45020.16960.026*
N1S0.0790 (2)0.23273 (17)0.8365 (3)0.0715 (12)
C1S0.05774 (19)0.22818 (15)0.7540 (3)0.0409 (7)
C2S0.0311 (2)0.22160 (19)0.6481 (3)0.0474 (8)
H21S0.07140.22500.59890.071*
H22S0.00380.25670.63380.071*
H23S0.00770.17860.64000.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I0.02420 (6)0.01553 (5)0.02259 (6)0.00050 (5)0.00066 (8)0.00298 (8)
Cu0.01321 (10)0.01381 (10)0.01374 (10)0.00034 (8)0.00041 (14)0.00155 (13)
P10.0120 (2)0.0155 (2)0.0155 (2)0.0003 (2)0.0003 (2)0.0000 (2)
P20.0126 (2)0.0172 (3)0.0174 (3)0.0001 (2)0.0028 (2)0.0018 (2)
P30.0143 (2)0.0160 (2)0.0132 (2)0.0010 (2)0.0002 (2)0.0014 (2)
C10.0116 (10)0.0240 (11)0.0179 (11)0.0007 (8)0.0006 (8)0.0002 (9)
C20.0157 (10)0.0236 (12)0.0230 (12)0.0015 (9)0.0021 (9)0.0027 (9)
C30.0206 (12)0.0366 (15)0.0249 (13)0.0027 (10)0.0038 (10)0.0104 (11)
C40.0241 (13)0.0509 (18)0.0154 (12)0.0049 (12)0.0013 (10)0.0033 (11)
C50.0244 (13)0.0401 (15)0.0206 (12)0.0013 (11)0.0017 (10)0.0055 (11)
C60.0206 (12)0.0228 (12)0.0218 (12)0.0005 (10)0.0002 (10)0.0006 (10)
C70.0169 (9)0.0173 (9)0.0185 (14)0.0015 (7)0.0008 (8)0.0002 (8)
C80.0177 (10)0.0211 (11)0.0185 (10)0.0006 (9)0.0022 (8)0.0024 (9)
C90.0200 (12)0.0283 (13)0.0203 (11)0.0055 (9)0.0036 (9)0.0039 (10)
C100.0249 (12)0.0218 (12)0.0280 (13)0.0035 (10)0.0030 (10)0.0092 (10)
C110.0222 (9)0.0189 (9)0.0291 (11)0.0037 (7)0.0009 (13)0.0022 (13)
C120.0157 (10)0.0226 (11)0.0232 (11)0.0019 (9)0.0031 (8)0.0029 (9)
C130.0150 (10)0.0178 (10)0.0230 (12)0.0018 (8)0.0027 (9)0.0026 (9)
C140.0248 (11)0.0211 (10)0.0346 (18)0.0005 (9)0.0096 (11)0.0008 (10)
C150.0322 (14)0.0226 (12)0.0459 (19)0.0054 (10)0.0181 (12)0.0014 (11)
C160.0229 (14)0.0332 (14)0.0518 (18)0.0130 (11)0.0144 (12)0.0186 (13)
C170.0171 (12)0.0432 (17)0.0407 (16)0.0053 (11)0.0000 (11)0.0120 (13)
C180.0177 (11)0.0324 (13)0.0267 (13)0.0043 (10)0.0006 (10)0.0006 (10)
C190.0142 (10)0.0236 (11)0.0209 (12)0.0029 (8)0.0005 (8)0.0045 (9)
C200.0173 (11)0.0271 (13)0.0456 (17)0.0003 (10)0.0036 (11)0.0096 (12)
C210.0156 (11)0.0315 (14)0.061 (2)0.0016 (10)0.0024 (12)0.0061 (13)
C220.0188 (11)0.0398 (14)0.0358 (19)0.0023 (10)0.0044 (10)0.0006 (12)
C230.0265 (13)0.0368 (15)0.0247 (13)0.0042 (11)0.0009 (10)0.0074 (11)
C240.0200 (10)0.0278 (11)0.0211 (13)0.0018 (8)0.0040 (10)0.0030 (11)
C250.0142 (10)0.0173 (10)0.0215 (11)0.0003 (8)0.0056 (8)0.0005 (9)
C260.0177 (11)0.0200 (11)0.0240 (12)0.0007 (8)0.0041 (9)0.0008 (9)
C270.0230 (13)0.0271 (14)0.0297 (14)0.0015 (10)0.0045 (10)0.0076 (11)
C280.0274 (13)0.0167 (12)0.0500 (18)0.0026 (10)0.0110 (12)0.0033 (11)
C290.0251 (13)0.0199 (12)0.0442 (16)0.0019 (10)0.0048 (11)0.0080 (11)
C300.0181 (11)0.0213 (11)0.0283 (13)0.0004 (9)0.0017 (9)0.0027 (10)
C310.0204 (12)0.0199 (12)0.0173 (11)0.0055 (9)0.0024 (9)0.0031 (9)
C320.0242 (13)0.0236 (12)0.0218 (12)0.0003 (10)0.0057 (10)0.0040 (10)
C330.0407 (16)0.0260 (13)0.0291 (14)0.0029 (12)0.0073 (12)0.0101 (11)
C340.0523 (19)0.0359 (16)0.0248 (14)0.0049 (14)0.0123 (13)0.0097 (12)
C350.055 (2)0.0293 (15)0.0269 (14)0.0028 (13)0.0216 (14)0.0001 (11)
C360.0380 (15)0.0233 (13)0.0292 (14)0.0009 (11)0.0147 (13)0.0009 (11)
C370.0191 (12)0.0250 (12)0.0139 (11)0.0024 (9)0.0014 (9)0.0040 (9)
C380.0346 (14)0.0217 (12)0.0221 (12)0.0049 (10)0.0064 (11)0.0021 (10)
C390.0541 (19)0.0272 (14)0.0288 (15)0.0167 (13)0.0190 (13)0.0082 (11)
C400.0323 (15)0.0476 (18)0.0408 (17)0.0187 (13)0.0207 (13)0.0226 (15)
C410.0196 (13)0.062 (2)0.0425 (18)0.0019 (13)0.0091 (12)0.0101 (16)
C420.0207 (12)0.0451 (17)0.0250 (13)0.0064 (12)0.0041 (10)0.0021 (12)
C430.0148 (10)0.0194 (11)0.0206 (11)0.0020 (8)0.0017 (8)0.0049 (9)
C440.0335 (14)0.0195 (11)0.0257 (13)0.0020 (10)0.0028 (11)0.0022 (9)
C450.0489 (18)0.0183 (12)0.0467 (19)0.0020 (12)0.0093 (15)0.0025 (12)
C460.0321 (15)0.0252 (15)0.053 (2)0.0040 (12)0.0123 (14)0.0181 (14)
C470.0240 (13)0.0397 (16)0.0324 (15)0.0034 (11)0.0027 (11)0.0208 (12)
C480.0224 (12)0.0327 (14)0.0209 (12)0.0016 (10)0.0015 (9)0.0092 (10)
C490.0180 (11)0.0224 (12)0.0141 (11)0.0052 (9)0.0027 (9)0.0012 (9)
C500.0251 (12)0.0241 (13)0.0193 (12)0.0030 (10)0.0008 (9)0.0009 (10)
C510.0329 (14)0.0241 (12)0.0209 (12)0.0097 (11)0.0000 (10)0.0006 (10)
C520.0266 (13)0.0379 (15)0.0252 (13)0.0155 (11)0.0063 (10)0.0027 (11)
C530.0222 (12)0.0368 (15)0.0308 (14)0.0056 (11)0.0082 (10)0.0077 (12)
C540.0184 (11)0.0246 (12)0.0224 (12)0.0034 (9)0.0043 (10)0.0053 (10)
N1S0.106 (3)0.055 (2)0.053 (2)0.026 (2)0.039 (2)0.0197 (17)
C1S0.0500 (19)0.0309 (15)0.0418 (18)0.0090 (13)0.0135 (15)0.0073 (13)
C2S0.054 (2)0.052 (2)0.0363 (18)0.0011 (16)0.0160 (15)0.0016 (15)
Geometric parameters (Å, º) top
Cu—I2.6843 (3)C26—C271.398 (4)
Cu—P12.3421 (6)C26—H260.9500
Cu—P22.3463 (6)C27—C281.385 (4)
Cu—P32.3295 (7)C27—H270.9500
P1—C71.830 (2)C28—C291.384 (4)
P1—C11.833 (2)C28—H280.9500
P1—C131.838 (2)C29—C301.395 (4)
P2—C191.833 (2)C29—H290.9500
P2—C311.839 (3)C30—H300.9500
P2—C251.840 (2)C31—C321.389 (4)
P3—C431.827 (2)C31—C361.392 (4)
P3—C371.831 (3)C32—C331.389 (4)
P3—C491.834 (3)C32—H320.9500
C1—C61.394 (3)C33—C341.385 (4)
C1—C21.397 (3)C33—H330.9500
C2—C31.395 (4)C34—C351.383 (4)
C2—H20.9500C34—H340.9500
C3—C41.388 (4)C35—C361.395 (4)
C3—H30.9500C35—H350.9500
C4—C51.378 (4)C36—H360.9500
C4—H40.9500C37—C421.389 (4)
C5—C61.389 (4)C37—C381.392 (4)
C5—H50.9500C38—C391.406 (4)
C6—H60.9500C38—H380.9500
C7—C81.390 (3)C39—C401.374 (5)
C7—C121.408 (3)C39—H390.9500
C8—C91.399 (3)C40—C411.385 (5)
C8—H80.9500C40—H400.9500
C9—C101.380 (4)C41—C421.392 (4)
C9—H90.9500C41—H410.9500
C10—C111.385 (4)C42—H420.9500
C10—H100.9500C43—C441.376 (4)
C11—C121.391 (3)C43—C481.402 (3)
C11—H110.9500C44—C451.401 (4)
C12—H120.9500C44—H440.9500
C13—C141.384 (3)C45—C461.367 (5)
C13—C181.403 (4)C45—H450.9500
C14—C151.401 (3)C46—C471.374 (5)
C14—H140.9500C46—H460.9500
C15—C161.377 (4)C47—C481.394 (4)
C15—H150.9500C47—H470.9500
C16—C171.383 (5)C48—H480.9500
C16—H160.9500C49—C541.393 (4)
C17—C181.386 (4)C49—C501.401 (4)
C17—H170.9500C50—C511.395 (4)
C18—H180.9500C50—H500.9500
C19—C241.388 (4)C51—C521.382 (4)
C19—C201.397 (3)C51—H510.9500
C20—C211.396 (4)C52—C531.380 (4)
C20—H200.9500C52—H520.9500
C21—C221.378 (4)C53—C541.393 (4)
C21—H210.9500C53—H530.9500
C22—C231.378 (4)C54—H540.9500
C22—H220.9500N1S—C1S1.130 (5)
C23—C241.400 (3)C1S—C2S1.447 (5)
C23—H230.9500C2S—H21S0.9800
C24—H240.9500C2S—H22S0.9800
C25—C301.396 (3)C2S—H23S0.9800
C25—C261.402 (3)
P1—Cu—P2108.39 (2)C30—C25—P2120.9 (2)
P3—Cu—P1115.80 (2)C26—C25—P2120.1 (2)
P3—Cu—P2115.77 (2)C27—C26—C25120.3 (2)
P1—Cu—I104.75 (2)C27—C26—H26119.9
P2—Cu—I113.66 (2)C25—C26—H26119.9
P3—Cu—I97.69 (2)C28—C27—C26120.1 (3)
C7—P1—C1104.4 (1)C28—C27—H27119.9
C7—P1—C13102.2 (1)C26—C27—H27119.9
C1—P1—C13100.2 (1)C29—C28—C27120.1 (3)
C7—P1—Cu115.01 (7)C29—C28—H28119.9
C1—P1—Cu111.79 (8)C27—C28—H28119.9
C13—P1—Cu121.07 (8)C28—C29—C30120.1 (3)
C19—P2—C31100.1 (1)C28—C29—H29120.0
C19—P2—C25103.6 (1)C30—C29—H29120.0
C31—P2—C25102.3 (1)C29—C30—C25120.7 (2)
C19—P2—Cu116.27 (8)C29—C30—H30119.7
C31—P2—Cu118.89 (9)C25—C30—H30119.7
C25—P2—Cu113.51 (7)C32—C31—C36119.2 (2)
C43—P3—C3799.4 (1)C32—C31—P2118.7 (2)
C43—P3—C49103.4 (1)C36—C31—P2122.1 (2)
C37—P3—C49104.9 (1)C33—C32—C31120.5 (3)
C43—P3—Cu117.71 (8)C33—C32—H32119.7
C37—P3—Cu112.29 (8)C31—C32—H32119.7
C49—P3—Cu117.04 (8)C34—C33—C32120.0 (3)
C6—C1—C2118.6 (2)C34—C33—H33120.0
C6—C1—P1116.1 (2)C32—C33—H33120.0
C2—C1—P1125.2 (2)C35—C34—C33120.0 (3)
C3—C2—C1120.4 (2)C35—C34—H34120.0
C3—C2—H2119.8C33—C34—H34120.0
C1—C2—H2119.8C34—C35—C36120.1 (3)
C4—C3—C2120.0 (2)C34—C35—H35120.0
C4—C3—H3120.0C36—C35—H35120.0
C2—C3—H3120.0C31—C36—C35120.1 (3)
C5—C4—C3120.0 (2)C31—C36—H36119.9
C5—C4—H4120.0C35—C36—H36119.9
C3—C4—H4120.0C42—C37—C38119.0 (2)
C4—C5—C6120.2 (3)C42—C37—P3115.2 (2)
C4—C5—H5119.9C38—C37—P3125.8 (2)
C6—C5—H5119.9C37—C38—C39119.5 (3)
C5—C6—C1120.8 (2)C37—C38—H38120.2
C5—C6—H6119.6C39—C38—H38120.2
C1—C6—H6119.6C40—C39—C38120.5 (3)
C8—C7—C12118.7 (2)C40—C39—H39119.7
C8—C7—P1122.0 (2)C38—C39—H39119.7
C12—C7—P1119.2 (2)C39—C40—C41120.3 (3)
C7—C8—C9120.4 (2)C39—C40—H40119.8
C7—C8—H8119.8C41—C40—H40119.8
C9—C8—H8119.8C40—C41—C42119.3 (3)
C10—C9—C8120.3 (2)C40—C41—H41120.4
C10—C9—H9119.8C42—C41—H41120.4
C8—C9—H9119.8C37—C42—C41121.3 (3)
C9—C10—C11119.9 (2)C37—C42—H42119.4
C9—C10—H10120.0C41—C42—H42119.4
C11—C10—H10120.0C44—C43—C48118.9 (2)
C10—C11—C12120.3 (2)C44—C43—P3118.6 (2)
C10—C11—H11119.9C48—C43—P3122.5 (2)
C12—C11—H11119.9C43—C44—C45121.0 (3)
C11—C12—C7120.4 (2)C43—C44—H44119.5
C11—C12—H12119.8C45—C44—H44119.5
C7—C12—H12119.8C46—C45—C44119.4 (3)
C14—C13—C18118.8 (2)C46—C45—H45120.3
C14—C13—P1120.6 (2)C44—C45—H45120.3
C18—C13—P1120.6 (2)C45—C46—C47120.7 (3)
C13—C14—C15119.9 (3)C45—C46—H46119.6
C13—C14—H14120.1C47—C46—H46119.6
C15—C14—H14120.1C46—C47—C48120.2 (3)
C16—C15—C14120.7 (3)C46—C47—H47119.9
C16—C15—H15119.6C48—C47—H47119.9
C14—C15—H15119.6C47—C48—C43119.7 (3)
C15—C16—C17119.8 (2)C47—C48—H48120.1
C15—C16—H16120.1C43—C48—H48120.1
C17—C16—H16120.1C54—C49—C50118.4 (2)
C16—C17—C18119.9 (3)C54—C49—P3121.5 (2)
C16—C17—H17120.1C50—C49—P3120.0 (2)
C18—C17—H17120.1C51—C50—C49120.6 (2)
C17—C18—C13120.9 (3)C51—C50—H50119.7
C17—C18—H18119.6C49—C50—H50119.7
C13—C18—H18119.6C52—C51—C50120.1 (2)
C24—C19—C20119.1 (2)C52—C51—H51119.9
C24—C19—P2118.0 (2)C50—C51—H51119.9
C20—C19—P2122.7 (2)C53—C52—C51119.8 (2)
C21—C20—C19120.1 (3)C53—C52—H52120.1
C21—C20—H20120.0C51—C52—H52120.1
C19—C20—H20120.0C52—C53—C54120.5 (2)
C22—C21—C20120.4 (3)C52—C53—H53119.8
C22—C21—H21119.8C54—C53—H53119.8
C20—C21—H21119.8C49—C54—C53120.6 (2)
C23—C22—C21119.9 (2)C49—C54—H54119.7
C23—C22—H22120.0C53—C54—H54119.7
C21—C22—H22120.0N1S—C1S—C2S179.3 (4)
C22—C23—C24120.3 (2)C1S—C2S—H21S109.5
C22—C23—H23119.8C1S—C2S—H22S109.5
C24—C23—H23119.8H21S—C2S—H22S109.5
C19—C24—C23120.2 (2)C1S—C2S—H23S109.5
C19—C24—H24119.9H21S—C2S—H23S109.5
C23—C24—H24119.9H22S—C2S—H23S109.5
C30—C25—C26118.7 (2)
P3—Cu—P1—C741.42 (8)C19—C20—C21—C221.9 (5)
P2—Cu—P1—C790.62 (8)C20—C21—C22—C230.4 (5)
I—Cu—P1—C7147.73 (8)C21—C22—C23—C240.9 (4)
P3—Cu—P1—C1160.21 (9)C20—C19—C24—C230.9 (4)
P2—Cu—P1—C128.18 (9)P2—C19—C24—C23176.1 (2)
I—Cu—P1—C193.47 (9)C22—C23—C24—C190.6 (4)
P3—Cu—P1—C1382.11 (9)C19—P2—C25—C3043.1 (2)
P2—Cu—P1—C13145.85 (9)C31—P2—C25—C30146.78 (19)
I—Cu—P1—C1324.20 (9)Cu—P2—C25—C3083.89 (19)
P3—Cu—P2—C1932.45 (9)C19—P2—C25—C26142.59 (19)
P1—Cu—P2—C19164.50 (9)C31—P2—C25—C2638.9 (2)
I—Cu—P2—C1979.49 (9)Cu—P2—C25—C2690.42 (19)
P3—Cu—P2—C31152.11 (10)C30—C25—C26—C270.8 (3)
P1—Cu—P2—C3175.84 (10)P2—C25—C26—C27175.18 (18)
I—Cu—P2—C3140.17 (10)C25—C26—C27—C280.1 (4)
P3—Cu—P2—C2587.57 (9)C26—C27—C28—C291.1 (4)
P1—Cu—P2—C2544.48 (9)C27—C28—C29—C301.3 (4)
I—Cu—P2—C25160.49 (8)C28—C29—C30—C250.5 (4)
P1—Cu—P3—C4363.46 (9)C26—C25—C30—C290.6 (3)
P2—Cu—P3—C4365.03 (9)P2—C25—C30—C29174.95 (19)
I—Cu—P3—C43173.98 (8)C19—P2—C31—C32105.8 (2)
P1—Cu—P3—C3751.02 (10)C25—P2—C31—C32147.8 (2)
P2—Cu—P3—C37179.52 (9)Cu—P2—C31—C3221.9 (2)
I—Cu—P3—C3759.50 (9)C19—P2—C31—C3672.3 (3)
P1—Cu—P3—C49172.41 (10)C25—P2—C31—C3634.1 (3)
P2—Cu—P3—C4959.10 (10)Cu—P2—C31—C36160.0 (2)
I—Cu—P3—C4961.89 (10)C36—C31—C32—C332.6 (4)
C7—P1—C1—C6177.91 (18)P2—C31—C32—C33179.3 (2)
C13—P1—C1—C676.6 (2)C31—C32—C33—C340.5 (5)
Cu—P1—C1—C653.0 (2)C32—C33—C34—C351.6 (5)
C7—P1—C1—C23.1 (2)C33—C34—C35—C361.6 (5)
C13—P1—C1—C2102.4 (2)C32—C31—C36—C352.7 (4)
Cu—P1—C1—C2128.07 (19)P2—C31—C36—C35179.3 (2)
C6—C1—C2—C30.0 (3)C34—C35—C36—C310.6 (5)
P1—C1—C2—C3178.94 (19)C43—P3—C37—C4263.8 (2)
C1—C2—C3—C40.1 (4)C49—P3—C37—C42170.4 (2)
C2—C3—C4—C50.3 (4)Cu—P3—C37—C4261.5 (2)
C3—C4—C5—C60.3 (4)C43—P3—C37—C38115.7 (2)
C4—C5—C6—C10.2 (4)C49—P3—C37—C389.1 (3)
C2—C1—C6—C50.0 (4)Cu—P3—C37—C38119.0 (2)
P1—C1—C6—C5179.1 (2)C42—C37—C38—C391.6 (4)
C1—P1—C7—C8122.92 (19)P3—C37—C38—C39178.9 (2)
C13—P1—C7—C818.9 (2)C37—C38—C39—C400.2 (4)
Cu—P1—C7—C8114.23 (18)C38—C39—C40—C411.6 (4)
C1—P1—C7—C1261.5 (2)C39—C40—C41—C421.1 (5)
C13—P1—C7—C12165.52 (19)C38—C37—C42—C412.2 (4)
Cu—P1—C7—C1261.40 (19)P3—C37—C42—C41178.3 (2)
C12—C7—C8—C90.9 (3)C40—C41—C42—C370.8 (5)
P1—C7—C8—C9174.72 (18)C37—P3—C43—C44135.0 (2)
C7—C8—C9—C101.3 (4)C49—P3—C43—C44117.1 (2)
C8—C9—C10—C110.2 (4)Cu—P3—C43—C4413.6 (2)
C9—C10—C11—C121.2 (4)C37—P3—C43—C4842.6 (2)
C10—C11—C12—C71.5 (4)C49—P3—C43—C4865.2 (2)
C8—C7—C12—C110.4 (4)Cu—P3—C43—C48164.05 (17)
P1—C7—C12—C11176.2 (2)C48—C43—C44—C450.9 (4)
C7—P1—C13—C14104.3 (2)P3—C43—C44—C45178.6 (2)
C1—P1—C13—C14148.4 (2)C43—C44—C45—C461.1 (4)
Cu—P1—C13—C1425.1 (2)C44—C45—C46—C470.1 (5)
C7—P1—C13—C1873.6 (2)C45—C46—C47—C481.2 (4)
C1—P1—C13—C1833.7 (2)C46—C47—C48—C431.4 (4)
Cu—P1—C13—C18157.04 (17)C44—C43—C48—C470.3 (4)
C18—C13—C14—C150.9 (4)P3—C43—C48—C47177.28 (19)
P1—C13—C14—C15177.04 (19)C43—P3—C49—C5418.8 (2)
C13—C14—C15—C161.4 (4)C37—P3—C49—C54122.4 (2)
C14—C15—C16—C170.5 (4)Cu—P3—C49—C54112.4 (2)
C15—C16—C17—C180.8 (4)C43—P3—C49—C50166.1 (2)
C16—C17—C18—C131.3 (4)C37—P3—C49—C5062.4 (2)
C14—C13—C18—C170.5 (4)Cu—P3—C49—C5062.8 (2)
P1—C13—C18—C17178.4 (2)C54—C49—C50—C511.8 (4)
C31—P2—C19—C2498.0 (2)P3—C49—C50—C51177.1 (2)
C25—P2—C19—C24156.6 (2)C49—C50—C51—C520.9 (4)
Cu—P2—C19—C2431.4 (2)C50—C51—C52—C530.7 (4)
C31—P2—C19—C2077.0 (2)C51—C52—C53—C541.4 (4)
C25—P2—C19—C2028.4 (2)C50—C49—C54—C531.2 (4)
Cu—P2—C19—C20153.61 (19)P3—C49—C54—C53176.4 (2)
C24—C19—C20—C212.1 (4)C52—C53—C54—C490.4 (4)
P2—C19—C20—C21177.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···Cg1i0.952.943.732141
C40—H40···Cg2i0.952.943.696137
C39—H39···N1Sii0.952.583.468 (4)157
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y, z1.

Experimental details

Crystal data
Chemical formula[CuI(C18H15P)3]·C2H3N
Mr1018.30
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)115
a, b, c (Å)18.573 (1), 20.263 (1), 12.7839 (5)
V3)4811.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.23
Crystal size (mm)0.30 × 0.25 × 0.17
Data collection
DiffractometerNonius KappaCCD
diffractometer (with an Oxford Cryosystems Cryostream cooler)
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.709, 0.818
No. of measured, independent and
observed [I > 2σ(I)] reflections
156685, 15969, 13488
Rint0.000
(sin θ/λ)max1)0.742
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.068, 1.03
No. of reflections15969
No. of parameters561
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.66
Absolute structureFlack (1983)
Absolute structure parameter0.478 (8)

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···Cg1i0.952.943.732141
C40—H40···Cg2i0.952.943.696137
C39—H39···N1Sii0.952.583.468 (4)156.8
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y, z1.
 

Acknowledgements

The purchase of the diffractometer was made possible by grant No. LEQSF(1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBarron, P. F., Dyason, J. C., Healy, P. C., Engelhardt, L. M., Pakawatchai, C., Patrick, V. A. & White, A. H. (1987). J. Chem. Soc. Dalton Trans. pp. 1099–1106.  CSD CrossRef Web of Science Google Scholar
First citationBowmaker, G. A., Effendy, J. D. K., Hanna, J. V., Healy, P. C., Reid, J. C., Clifton, E. F. R. & White, A. H. (2000). J. Chem. Soc. Dalton Trans. pp. 753–761.  Web of Science CSD CrossRef Google Scholar
First citationCaulton, K. G., Davies, G. & Holt, E. M. (1990). Polyhedron, 9, 2319–2351.  CrossRef CAS Web of Science Google Scholar
First citationEller, P. G., Kubas, G. J. & Ryan, R. R. (1977). Inorg. Chem. 16, 2454–2462.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHamel, A., Schier, A. & Schmidbaur, H. Z. (2002). Naturforsch. Teil B, 57, 877–880.  CAS Google Scholar
First citationHanna, J. V., Boyd, S. E., Healy, P. C., Bowmaker, G. A., Skelton, B. W. & White, A. H. (2005). J. Chem. Soc. Dalton Trans. pp. 2547–2556.  CSD CrossRef Google Scholar
First citationKräuter, T. & Newmüller, B. (1996). Polyhedron, 15, 2851–2857.  Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVenkatraman, R., Sitole, L., Wilson, M. R. & Fronczek, F. R. (2006). Acta Cryst. E62, m2992–m2994.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds