inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Dirubidium digallium oxide bis­­(ortho­borate)

aDepartment of Chemistry, University of Nebraska at Omaha, Omaha, NE 68182-0109, USA, and bNebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE 68588-0304, USA
*Correspondence e-mail: robertsmith@mail.unomaha.edu

(Received 8 February 2008; accepted 29 February 2008; online 7 March 2008)

The title compound, Rb2Ga2O(BO3)2, is part of the homologous series A2Ga2O(BO3)2 (A = Na, K, Rb and Cs). The structure contains pairs of gallium-centered tetra­hedra connected through a shared oxygen vertex. Orthoborate triangles connect the basal vertices of the tetra­hedra, forming a three-dimensional network with voids occupied by rubidium ions.

Related literature

For related literature, see: Chen et al. (2004[Chen, C., Lin, Z. & Wang, Z. (2004). Appl. Phys. B80, 1-25.]); Corbel & Leblanc (2000[Corbel, G. & Leblanc, M. (2000). J. Solid State Chem. 154, 344-349.]); Smith (1995[Smith, R. W. (1995). Acta Cryst. C51, 547-549.], 1997[Smith, R. W., Kennard, M. A. & Dudik, M. J. (1997). Mater. Res. Bull. 32, 649-656.]).

Experimental

Crystal data
  • Rb2Ga2O(BO3)2

  • Mr = 444.00

  • Monoclinic, P 21 /c

  • a = 8.8115 (18) Å

  • b = 7.7224 (16) Å

  • c = 11.997 (3) Å

  • β = 104.246 (4)°

  • V = 791.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 19.03 mm−1

  • T = 297 (2) K

  • 0.23 × 0.21 × 0.19 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: numerical (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.118, Tmax = 0.429

  • 8611 measured reflections

  • 1568 independent reflections

  • 1151 reflections with I > 2σ(I)

  • Rint = 0.093

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.091

  • S = 1.05

  • 1568 reflections

  • 118 parameters

  • Δρmax = 1.28 e Å−3

  • Δρmin = −0.90 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ga1—O3i 1.834 (5)
Ga1—O4ii 1.834 (5)
Ga1—O6 1.831 (5)
Ga1—O7iii 1.790 (5)
Ga2—O1 1.840 (5)
Ga2—O2iii 1.838 (5)
Ga2—O5iv 1.832 (5)
Ga2—O7 1.810 (5)
B1—O1 1.376 (10)
B1—O2v 1.370 (10)
B1—O3 1.358 (10)
B2—O4 1.366 (9)
B2—O5 1.395 (9)
B2—O6iii 1.341 (10)
O7iii—Ga1—O6 110.8 (2)
O7iii—Ga1—O4ii 110.4 (2)
O6—Ga1—O4ii 114.5 (2)
O7iii—Ga1—O3i 110.4 (2)
O6—Ga1—O3i 105.7 (2)
O4ii—Ga1—O3i 104.8 (2)
O7—Ga2—O5iv 109.3 (2)
O7—Ga2—O2iii 109.5 (2)
O5iv—Ga2—O2iii 110.6 (2)
O7—Ga2—O1 112.5 (2)
O5iv—Ga2—O1 109.3 (2)
O2iii—Ga2—O1 105.7 (2)
O3—B1—O2v 119.4 (7)
O3—B1—O1 117.8 (8)
O2v—B1—O1 122.7 (7)
O6iii—B2—O4 124.7 (7)
O6iii—B2—O5 116.3 (7)
O4—B2—O5 119.0 (7)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x+1, y, z; (iii) -x+1, -y, -z+1; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) x, y, z+1.

Data collection: SMART (Bruker, 2005[Bruker (2005). SMART. Bruker AXS Inc., Madison, Wisconson, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconson, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg & Putz, 2007[Brandenburg, K. & Putz, H. (2007). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Complex metal borates adopt various structure types that result from the many possible geometric arrangements formed by metal-centered polyhedra and borate anions, which can be either three- or four-coordinate. They are also of interest as nonlinear optical materials, such as β-BaB2O4, LiB3O5, and YAl3(BO3)4 (Chen et al., 2004). For these reasons, we have examined the phase diagrams of alkali metal gallium borates and have determined the crystal structures of some of the materials discovered. The homologous series A2Ga2O(BO3)2 (A = Na, K, Rb, Cs) is a portion of the new compounds discovered to date. In each, pairs of gallium-centered tetrahedra are connected through a shared oxygen vertex, and the tetrahedral basal planes are connected through shared oxygen vertices with triangular orthoborate anions. Depending on the size of the alkali metal ions, which occupy channels or spaces within the three-dimensional network, the compounds crystallize in different space groups: P31c for the Na member (Corbel & Leblanc, 2000), P321 for the K member (Smith et al., 1997), and P21/c for the Cs member (Smith, 1995), which is isotypic with the Rb compound reported herein (Fig. 1).

Related literature top

For related literature, see: Chen et al. (2004); Corbel & Leblanc (2000); Smith (1995,1997).

Experimental top

Powders of Rb2Ga2O(BO3)2 were prepared from stoichiometric mixtures of RbNO3, Ga(NO3)3, and H3BO3, which were decomposed in alumina crucibles at 300 °C and then heated to 500 °C at 50 °C increments, with a soak of several hours at each temperature and intermediate grinding between each soak period. Crystals were grown in a platinum dish from a 1:1 molar mixture of the prepared powder in the presence of Rb3BO3 flux. The mixture was heated to 700 °C and cooled at 10 °C/hour to room temperature, and a single-crystal was cut from the crystal mass for subsequent X-ray diffraction analysis.

Refinement top

The highest peak and the deepest hole are located 0.74 Å and 1.13 Å, respectively, from Rb2.

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2007); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the unit cell along the b axis. Displacement ellipsoids are drawn at the 50% probability level.
dirubidium digallium oxide bis(orthoborate) top
Crystal data top
Rb2Ga2O(BO3)2F(000) = 808
Mr = 444.00Dx = 3.727 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1660 reflections
a = 8.8115 (18) Åθ = 3.7–25.7°
b = 7.7224 (16) ŵ = 19.03 mm1
c = 11.997 (3) ÅT = 297 K
β = 104.246 (4)°Block, colorless
V = 791.3 (3) Å30.23 × 0.21 × 0.19 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
1568 independent reflections
Radiation source: fine-focus sealed tube1151 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.093
ω scansθmax = 26.1°, θmin = 2.4°
Absorption correction: numerical
(SADABS; Sheldrick, 2003)
h = 1010
Tmin = 0.118, Tmax = 0.429k = 99
8611 measured reflectionsl = 1414
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.037Secondary atom site location: difference Fourier map
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0376P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1568 reflectionsΔρmax = 1.28 e Å3
118 parametersΔρmin = 0.90 e Å3
Crystal data top
Rb2Ga2O(BO3)2V = 791.3 (3) Å3
Mr = 444.00Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.8115 (18) ŵ = 19.03 mm1
b = 7.7224 (16) ÅT = 297 K
c = 11.997 (3) Å0.23 × 0.21 × 0.19 mm
β = 104.246 (4)°
Data collection top
Bruker SMART APEX CCD
diffractometer
1568 independent reflections
Absorption correction: numerical
(SADABS; Sheldrick, 2003)
1151 reflections with I > 2σ(I)
Tmin = 0.118, Tmax = 0.429Rint = 0.093
8611 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037118 parameters
wR(F2) = 0.0910 restraints
S = 1.05Δρmax = 1.28 e Å3
1568 reflectionsΔρmin = 0.90 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rb10.05407 (9)0.12523 (11)0.15061 (7)0.0276 (2)
Rb20.53288 (9)0.12728 (10)0.62677 (7)0.0265 (2)
Ga10.84630 (9)0.12201 (10)0.38547 (7)0.0183 (2)
Ga20.31410 (9)0.06933 (11)0.86673 (8)0.0191 (2)
B10.6554 (10)0.0915 (10)0.9123 (8)0.0166 (19)
B20.1834 (10)0.1269 (11)0.4388 (8)0.0181 (18)
O10.5159 (5)0.0083 (6)0.8667 (5)0.0221 (13)
O20.7394 (6)0.0677 (7)0.0235 (4)0.0249 (13)
O30.7155 (6)0.1924 (7)0.8410 (5)0.0261 (13)
O40.0442 (5)0.2139 (6)0.4178 (5)0.0247 (13)
O50.3091 (5)0.2014 (6)0.4049 (5)0.0215 (12)
O60.7902 (6)0.0280 (7)0.5097 (5)0.0286 (14)
O70.1781 (6)0.0322 (7)0.7290 (5)0.0248 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.0180 (4)0.0338 (5)0.0310 (5)0.0050 (3)0.0063 (4)0.0004 (4)
Rb20.0225 (4)0.0282 (4)0.0260 (5)0.0032 (3)0.0008 (3)0.0024 (4)
Ga10.0125 (4)0.0193 (4)0.0237 (5)0.0007 (3)0.0055 (4)0.0004 (4)
Ga20.0122 (4)0.0203 (4)0.0252 (5)0.0007 (3)0.0052 (4)0.0005 (4)
B10.017 (4)0.011 (4)0.026 (5)0.003 (3)0.014 (4)0.000 (4)
B20.015 (4)0.017 (4)0.022 (5)0.000 (3)0.005 (4)0.002 (4)
O10.008 (3)0.022 (3)0.037 (4)0.001 (2)0.007 (2)0.005 (2)
O20.016 (3)0.031 (3)0.025 (3)0.008 (2)0.002 (2)0.010 (3)
O30.024 (3)0.024 (3)0.029 (3)0.012 (2)0.004 (3)0.000 (3)
O40.008 (3)0.023 (3)0.043 (4)0.006 (2)0.008 (2)0.001 (3)
O50.011 (3)0.021 (3)0.035 (3)0.001 (2)0.011 (2)0.004 (2)
O60.029 (3)0.024 (3)0.040 (4)0.004 (2)0.023 (3)0.010 (3)
O70.019 (3)0.026 (3)0.026 (3)0.003 (2)0.001 (2)0.006 (3)
Geometric parameters (Å, º) top
Rb1—O2i2.851 (5)Ga2—O2iv1.838 (5)
Rb1—O7ii2.928 (5)Ga2—O5viii1.832 (5)
Rb1—O7iii3.034 (5)Ga2—O71.810 (5)
Rb1—O4ii3.039 (5)Ga2—Rb1iii3.5346 (12)
Rb1—O3iv3.170 (5)Ga2—Rb2xiii3.6641 (13)
Rb1—B1iv3.298 (8)Ga2—Rb1viii3.8226 (12)
Rb1—O43.300 (6)Ga2—Rb2viii3.9973 (13)
Rb1—O4v3.341 (5)B1—O11.376 (10)
Rb1—B23.363 (9)B1—O2xiv1.370 (10)
Rb1—O53.365 (5)B1—O31.358 (10)
Rb1—O2vi3.430 (6)B1—Rb1iv3.298 (8)
Rb1—Ga2iii3.5346 (12)B1—Rb2viii3.724 (8)
Rb2—O32.722 (5)B2—O41.366 (9)
Rb2—O52.953 (5)B2—O51.395 (9)
Rb2—O5iv2.964 (5)B2—O6iv1.341 (10)
Rb2—O1vii2.977 (5)B2—Rb2iv3.419 (8)
Rb2—O63.045 (5)B2—Rb1viii3.584 (9)
Rb2—O13.060 (5)O1—Rb2xiii2.977 (5)
Rb2—O6iv3.151 (6)O2—B1xv1.370 (10)
Rb2—B23.340 (9)O2—Ga2iv1.838 (5)
Rb2—B13.340 (9)O2—Rb1ix2.851 (5)
Rb2—O2viii3.392 (6)O2—Rb2ii3.392 (6)
Rb2—B2iv3.419 (8)O2—Rb1vi3.430 (6)
Rb2—Rb2iv3.5477 (17)O3—Ga1viii1.834 (5)
Ga1—O3ii1.834 (5)O3—Rb1iv3.170 (5)
Ga1—O4ix1.834 (5)O4—Ga1i1.834 (5)
Ga1—O61.831 (5)O4—Rb1viii3.039 (5)
Ga1—O7iv1.790 (5)O4—Rb1xvi3.341 (5)
Ga1—Rb1ix3.7189 (13)O5—Ga2ii1.832 (5)
Ga1—Rb1x3.7966 (13)O5—Rb2iv2.964 (5)
Ga1—Rb2iv3.8275 (13)O6—B2iv1.341 (10)
Ga1—Rb1xi3.9828 (14)O6—Rb2iv3.151 (6)
Ga1—Rb1xii4.0307 (14)O7—Ga1iv1.790 (5)
Ga1—Rb2ii4.0975 (12)O7—Rb1viii2.928 (5)
Ga2—O11.840 (5)O7—Rb1iii3.034 (5)
O2i—Rb1—O7ii123.34 (15)Rb1x—Ga1—Rb2iv121.81 (3)
O2i—Rb1—O7iii60.74 (14)O7iv—Ga1—Rb1xi42.60 (17)
O7ii—Rb1—O7iii116.83 (11)O6—Ga1—Rb1xi79.48 (16)
O2i—Rb1—O4ii76.60 (14)O4ix—Ga1—Rb1xi99.91 (16)
O7ii—Rb1—O4ii81.35 (14)O3ii—Ga1—Rb1xi149.37 (17)
O7iii—Rb1—O4ii137.01 (13)Rb1ix—Ga1—Rb1xi76.19 (2)
O2i—Rb1—O3iv115.30 (15)Rb1x—Ga1—Rb1xi120.83 (2)
O7ii—Rb1—O3iv120.23 (13)Rb2iv—Ga1—Rb1xi74.04 (2)
O7iii—Rb1—O3iv100.16 (13)O7iv—Ga1—Rb1xii123.18 (18)
O4ii—Rb1—O3iv102.65 (13)O6—Ga1—Rb1xii125.38 (17)
O2i—Rb1—B1iv120.40 (19)O4ix—Ga1—Rb1xii55.16 (16)
O7ii—Rb1—B1iv106.42 (17)O3ii—Ga1—Rb1xii49.70 (17)
O7iii—Rb1—B1iv123.92 (17)Rb1ix—Ga1—Rb1xii75.60 (2)
O4ii—Rb1—B1iv81.11 (18)Rb1x—Ga1—Rb1xii61.41 (3)
O3iv—Rb1—B1iv24.13 (17)Rb2iv—Ga1—Rb1xii133.78 (3)
O2i—Rb1—O4107.29 (14)Rb1xi—Ga1—Rb1xii149.02 (3)
O7ii—Rb1—O466.27 (13)O7iv—Ga1—Rb2ii78.58 (17)
O7iii—Rb1—O455.84 (13)O6—Ga1—Rb2ii122.49 (17)
O4ii—Rb1—O4143.75 (4)O4ix—Ga1—Rb2ii113.96 (17)
O3iv—Rb1—O4107.42 (13)O3ii—Ga1—Rb2ii32.03 (17)
B1iv—Rb1—O4122.35 (19)Rb1ix—Ga1—Rb2ii77.80 (3)
O2i—Rb1—O4v63.98 (14)Rb1x—Ga1—Rb2ii119.20 (3)
O7ii—Rb1—O4v172.59 (13)Rb2iv—Ga1—Rb2ii77.84 (2)
O7iii—Rb1—O4v64.64 (13)Rb1xi—Ga1—Rb2ii119.89 (3)
O4ii—Rb1—O4v102.47 (12)Rb1xii—Ga1—Rb2ii65.61 (2)
O3iv—Rb1—O4v52.94 (12)O7—Ga2—O5viii109.3 (2)
B1iv—Rb1—O4v68.29 (16)O7—Ga2—O2iv109.5 (2)
O4—Rb1—O4v111.63 (12)O5viii—Ga2—O2iv110.6 (2)
O2i—Rb1—B2126.09 (18)O7—Ga2—O1112.5 (2)
O7ii—Rb1—B270.20 (18)O5viii—Ga2—O1109.3 (2)
O7iii—Rb1—B267.02 (17)O2iv—Ga2—O1105.7 (2)
O4ii—Rb1—B2150.35 (17)O7—Ga2—Rb1iii59.13 (17)
O3iv—Rb1—B285.29 (17)O5viii—Ga2—Rb1iii110.32 (14)
B1iv—Rb1—B298.7 (2)O2iv—Ga2—Rb1iii53.43 (16)
O4—Rb1—B223.63 (16)O1—Ga2—Rb1iii139.84 (15)
O4v—Rb1—B2104.94 (17)O7—Ga2—Rb2xiii91.67 (16)
O2i—Rb1—O5148.92 (14)O5viii—Ga2—Rb2xiii157.90 (16)
O7ii—Rb1—O555.79 (13)O2iv—Ga2—Rb2xiii66.83 (17)
O7iii—Rb1—O590.94 (13)O1—Ga2—Rb2xiii53.89 (15)
O4ii—Rb1—O5128.56 (13)Rb1iii—Ga2—Rb2xiii86.15 (3)
O3iv—Rb1—O580.03 (13)O7—Ga2—Rb1viii47.68 (16)
B1iv—Rb1—O585.03 (18)O5viii—Ga2—Rb1viii61.69 (16)
O4—Rb1—O541.80 (11)O2iv—Ga2—Rb1viii128.63 (16)
O4v—Rb1—O5117.62 (12)O1—Ga2—Rb1viii125.18 (17)
B2—Rb1—O523.93 (16)Rb1iii—Ga2—Rb1viii80.45 (2)
O2i—Rb1—O2vi101.45 (12)Rb2xiii—Ga2—Rb1viii138.19 (3)
O7ii—Rb1—O2vi112.08 (14)O7—Ga2—Rb271.19 (17)
O7iii—Rb1—O2vi129.57 (13)O5viii—Ga2—Rb296.97 (15)
O4ii—Rb1—O2vi61.13 (12)O2iv—Ga2—Rb2149.64 (18)
O3iv—Rb1—O2vi41.56 (13)O1—Ga2—Rb250.97 (17)
B1iv—Rb1—O2vi23.39 (18)Rb1iii—Ga2—Rb2128.63 (3)
O4—Rb1—O2vi145.74 (12)Rb2xiii—Ga2—Rb282.84 (2)
O4v—Rb1—O2vi65.28 (12)Rb1viii—Ga2—Rb275.46 (3)
B2—Rb1—O2vi122.11 (17)O7—Ga2—Rb2viii152.81 (16)
O5—Rb1—O2vi106.98 (12)O5viii—Ga2—Rb2viii43.56 (16)
O2i—Rb1—Ga2iii31.19 (10)O2iv—Ga2—Rb2viii86.43 (17)
O7ii—Rb1—Ga2iii131.89 (11)O1—Ga2—Rb2viii82.52 (16)
O7iii—Rb1—Ga2iii30.80 (10)Rb1iii—Ga2—Rb2viii123.67 (3)
O4ii—Rb1—Ga2iii107.55 (9)Rb2xiii—Ga2—Rb2viii115.16 (3)
O3iv—Rb1—Ga2iii104.14 (9)Rb1viii—Ga2—Rb2viii105.14 (3)
B1iv—Rb1—Ga2iii121.58 (14)Rb2—Ga2—Rb2viii106.28 (3)
O4—Rb1—Ga2iii84.39 (8)O3—B1—O2xiv119.4 (7)
O4v—Rb1—Ga2iii53.33 (8)O3—B1—O1117.8 (8)
B2—Rb1—Ga2iii97.81 (14)O2xiv—B1—O1122.7 (7)
O5—Rb1—Ga2iii121.74 (8)O3—B1—Rb1iv72.7 (4)
O2vi—Rb1—Ga2iii113.35 (9)O2xiv—B1—Rb1iv83.7 (4)
O3—Rb2—O5157.47 (16)O1—B1—Rb1iv109.9 (4)
O3—Rb2—O5iv95.27 (15)O3—B1—Rb252.0 (4)
O5—Rb2—O5iv106.33 (12)O2xiv—B1—Rb2166.2 (5)
O3—Rb2—O1vii81.27 (15)O1—B1—Rb266.4 (4)
O5—Rb2—O1vii76.31 (14)Rb1iv—B1—Rb283.14 (19)
O5iv—Rb2—O1vii157.67 (13)O3—B1—Rb2viii109.0 (5)
O3—Rb2—O698.49 (16)O2xiv—B1—Rb2viii65.4 (4)
O5—Rb2—O692.34 (14)O1—B1—Rb2viii99.5 (4)
O5iv—Rb2—O645.46 (13)Rb1iv—B1—Rb2viii145.8 (3)
O1vii—Rb2—O6112.93 (14)Rb2—B1—Rb2viii125.8 (2)
O3—Rb2—O147.31 (13)O6iv—B2—O4124.7 (7)
O5—Rb2—O1136.88 (12)O6iv—B2—O5116.3 (7)
O5iv—Rb2—O189.80 (13)O4—B2—O5119.0 (7)
O1vii—Rb2—O1103.37 (11)O6iv—B2—Rb270.3 (4)
O6—Rb2—O1124.94 (13)O4—B2—Rb2139.5 (5)
O3—Rb2—O6iv144.03 (14)O5—B2—Rb262.0 (4)
O5—Rb2—O6iv44.59 (13)O6iv—B2—Rb1116.6 (5)
O5iv—Rb2—O6iv90.03 (13)O4—B2—Rb175.6 (4)
O1vii—Rb2—O6iv105.77 (13)O5—B2—Rb178.1 (4)
O6—Rb2—O6iv110.17 (11)Rb2—B2—Rb1135.8 (3)
O1—Rb2—O6iv97.31 (13)O6iv—B2—Rb2iv62.6 (4)
O3—Rb2—B2150.50 (19)O4—B2—Rb2iv156.1 (6)
O5—Rb2—B224.64 (17)O5—B2—Rb2iv59.4 (4)
O5iv—Rb2—B2107.28 (18)Rb2—B2—Rb2iv63.31 (15)
O1vii—Rb2—B284.46 (17)Rb1—B2—Rb2iv80.99 (19)
O6—Rb2—B2110.85 (19)O6iv—B2—Rb1viii101.5 (5)
O1—Rb2—B2112.62 (17)O4—B2—Rb1viii56.0 (4)
O6iv—Rb2—B223.61 (16)O5—B2—Rb1viii113.6 (5)
O3—Rb2—B123.13 (17)Rb2—B2—Rb1viii85.5 (2)
O5—Rb2—B1156.39 (16)Rb1—B2—Rb1viii130.1 (2)
O5iv—Rb2—B190.97 (16)Rb2iv—B2—Rb1viii148.0 (3)
O1vii—Rb2—B193.85 (17)B1—O1—Ga2130.5 (5)
O6—Rb2—B1111.28 (17)B1—O1—Rb2xiii124.9 (4)
O1—Rb2—B124.32 (16)Ga2—O1—Rb2xiii96.17 (18)
O6iv—Rb2—B1121.60 (17)B1—O1—Rb289.3 (4)
B2—Rb2—B1134.8 (2)Ga2—O1—Rb2101.2 (2)
O3—Rb2—O2viii88.32 (14)Rb2xiii—O1—Rb2111.24 (16)
O5—Rb2—O2viii80.53 (13)B1xv—O2—Ga2iv127.1 (5)
O5iv—Rb2—O2viii103.70 (12)B1xv—O2—Rb1ix136.1 (4)
O1vii—Rb2—O2viii54.35 (12)Ga2iv—O2—Rb1ix95.4 (2)
O6—Rb2—O2viii58.60 (12)B1xv—O2—Rb2ii93.0 (4)
O1—Rb2—O2viii134.98 (13)Ga2iv—O2—Rb2ii83.28 (19)
O6iv—Rb2—O2viii124.89 (13)Rb1ix—O2—Rb2ii103.59 (16)
B2—Rb2—O2viii104.03 (17)B1xv—O2—Rb1vi72.9 (4)
B1—Rb2—O2viii111.40 (16)Ga2iv—O2—Rb1vi117.0 (2)
O3—Rb2—B2iv91.56 (19)Rb1ix—O2—Rb1vi78.55 (12)
O5—Rb2—B2iv105.54 (18)Rb2ii—O2—Rb1vi159.51 (17)
O5iv—Rb2—B2iv23.90 (16)B1—O3—Ga1viii125.4 (5)
O1vii—Rb2—B2iv133.78 (17)B1—O3—Rb2104.9 (5)
O6—Rb2—B2iv23.01 (17)Ga1viii—O3—Rb2127.0 (2)
O1—Rb2—B2iv104.57 (17)B1—O3—Rb1iv83.2 (4)
O6iv—Rb2—B2iv106.29 (17)Ga1viii—O3—Rb1iv104.1 (2)
B2—Rb2—B2iv116.69 (15)Rb2—O3—Rb1iv96.45 (16)
B1—Rb2—B2iv96.8 (2)B2—O4—Ga1i127.8 (5)
O2viii—Rb2—B2iv80.00 (16)B2—O4—Rb1viii102.1 (5)
O3—Rb2—Rb2iv147.74 (12)Ga1i—O4—Rb1viii99.4 (2)
O5—Rb2—Rb2iv53.31 (10)B2—O4—Rb180.8 (4)
O5iv—Rb2—Rb2iv53.02 (10)Ga1i—O4—Rb188.01 (19)
O1vii—Rb2—Rb2iv125.17 (11)Rb1viii—O4—Rb1167.46 (17)
O6—Rb2—Rb2iv56.49 (11)B2—O4—Rb1xvi132.8 (4)
O1—Rb2—Rb2iv127.20 (10)Ga1i—O4—Rb1xvi98.07 (19)
O6iv—Rb2—Rb2iv53.68 (10)Rb1viii—O4—Rb1xvi77.53 (12)
B2—Rb2—Rb2iv59.44 (15)Rb1—O4—Rb1xvi91.48 (13)
B1—Rb2—Rb2iv140.98 (13)B2—O5—Ga2ii122.8 (5)
O2viii—Rb2—Rb2iv93.49 (9)B2—O5—Rb293.4 (4)
B2iv—Rb2—Rb2iv57.25 (15)Ga2ii—O5—Rb2111.1 (2)
O7iv—Ga1—O6110.8 (2)B2—O5—Rb2iv96.7 (4)
O7iv—Ga1—O4ix110.4 (2)Ga2ii—O5—Rb2iv139.0 (2)
O6—Ga1—O4ix114.5 (2)Rb2—O5—Rb2iv73.67 (11)
O7iv—Ga1—O3ii110.4 (2)B2—O5—Rb177.9 (4)
O6—Ga1—O3ii105.7 (2)Ga2ii—O5—Rb189.68 (19)
O4ix—Ga1—O3ii104.8 (2)Rb2—O5—Rb1158.76 (17)
O7iv—Ga1—Rb1ix53.98 (17)Rb2iv—O5—Rb187.95 (13)
O6—Ga1—Rb1ix154.26 (16)B2iv—O6—Ga1132.7 (5)
O4ix—Ga1—Rb1ix62.46 (17)B2iv—O6—Rb294.4 (4)
O3ii—Ga1—Rb1ix99.52 (17)Ga1—O6—Rb2131.0 (2)
O7iv—Ga1—Rb1x157.95 (16)B2iv—O6—Rb2iv86.1 (4)
O6—Ga1—Rb1x72.13 (18)Ga1—O6—Rb2iv96.8 (2)
O4ix—Ga1—Rb1x52.16 (17)Rb2—O6—Rb2iv69.83 (11)
O3ii—Ga1—Rb1x88.92 (17)Ga1iv—O7—Ga2137.2 (3)
Rb1ix—Ga1—Rb1x113.93 (3)Ga1iv—O7—Rb1viii113.0 (2)
O7iv—Ga1—Rb2iv72.36 (17)Ga2—O7—Rb1viii105.1 (2)
O6—Ga1—Rb2iv54.84 (18)Ga1iv—O7—Rb1iii97.5 (2)
O4ix—Ga1—Rb2iv168.11 (17)Ga2—O7—Rb1iii90.1 (2)
O3ii—Ga1—Rb2iv84.37 (17)Rb1viii—O7—Rb1iii105.83 (16)
Rb1ix—Ga1—Rb2iv124.20 (3)
Symmetry codes: (i) x1, y, z; (ii) x, y+1/2, z1/2; (iii) x, y, z+1; (iv) x+1, y, z+1; (v) x, y1/2, z+1/2; (vi) x+1, y, z; (vii) x+1, y+1/2, z+3/2; (viii) x, y+1/2, z+1/2; (ix) x+1, y, z; (x) x+1, y+1/2, z+1/2; (xi) x+1, y1/2, z+1/2; (xii) x+1, y+1/2, z+1/2; (xiii) x+1, y1/2, z+3/2; (xiv) x, y, z+1; (xv) x, y, z1; (xvi) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaRb2Ga2O(BO3)2
Mr444.00
Crystal system, space groupMonoclinic, P21/c
Temperature (K)297
a, b, c (Å)8.8115 (18), 7.7224 (16), 11.997 (3)
β (°) 104.246 (4)
V3)791.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)19.03
Crystal size (mm)0.23 × 0.21 × 0.19
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionNumerical
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.118, 0.429
No. of measured, independent and
observed [I > 2σ(I)] reflections
8611, 1568, 1151
Rint0.093
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.091, 1.05
No. of reflections1568
No. of parameters118
Δρmax, Δρmin (e Å3)1.28, 0.90

Computer programs: SMART (Bruker, 2005), SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2007).

Selected geometric parameters (Å, º) top
Ga1—O3i1.834 (5)Ga2—O71.810 (5)
Ga1—O4ii1.834 (5)B1—O11.376 (10)
Ga1—O61.831 (5)B1—O2v1.370 (10)
Ga1—O7iii1.790 (5)B1—O31.358 (10)
Ga2—O11.840 (5)B2—O41.366 (9)
Ga2—O2iii1.838 (5)B2—O51.395 (9)
Ga2—O5iv1.832 (5)B2—O6iii1.341 (10)
O7iii—Ga1—O6110.8 (2)O7—Ga2—O1112.5 (2)
O7iii—Ga1—O4ii110.4 (2)O5iv—Ga2—O1109.3 (2)
O6—Ga1—O4ii114.5 (2)O2iii—Ga2—O1105.7 (2)
O7iii—Ga1—O3i110.4 (2)O3—B1—O2v119.4 (7)
O6—Ga1—O3i105.7 (2)O3—B1—O1117.8 (8)
O4ii—Ga1—O3i104.8 (2)O2v—B1—O1122.7 (7)
O7—Ga2—O5iv109.3 (2)O6iii—B2—O4124.7 (7)
O7—Ga2—O2iii109.5 (2)O6iii—B2—O5116.3 (7)
O5iv—Ga2—O2iii110.6 (2)O4—B2—O5119.0 (7)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x, y+1/2, z+1/2; (v) x, y, z+1.
 

Acknowledgements

This work was supported by the Nebraska Research Initiative.

References

First citationBrandenburg, K. & Putz, H. (2007). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconson, USA.  Google Scholar
First citationBruker (2005). SMART. Bruker AXS Inc., Madison, Wisconson, USA.  Google Scholar
First citationChen, C., Lin, Z. & Wang, Z. (2004). Appl. Phys. B80, 1–25.  Google Scholar
First citationCorbel, G. & Leblanc, M. (2000). J. Solid State Chem. 154, 344–349.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, R. W. (1995). Acta Cryst. C51, 547–549.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSmith, R. W., Kennard, M. A. & Dudik, M. J. (1997). Mater. Res. Bull. 32, 649–656.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds