organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Amino-1-benzyl-4-(4-chloro­phen­yl)-3-(4-pyrid­yl)-1,4-di­hydro­pyrano[2,3-c]pyrazole-5-carbo­nitrile

aInstitute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Eberhard-Karls-University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany, and bDepartment of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, D-55099 Mainz, Germany
*Correspondence e-mail: stefan.laufer@uni-tuebingen.de

(Received 6 February 2008; accepted 20 February 2008; online 12 March 2008)

The crystal structure of the title compound, C25H18ClN5O, was determined in the course of our studies on the synthesis of 1,4-dihydro­pyrano[2,3-c]pyrazole as an inhibitor of the p38 mitogen-activated protein kinase (MAPK). The compound was prepared via a base-catalysed synthesis from 1-benzyl-3-(4-pyrid­yl)-1H-pyrazol-5(4H)-one with p-chloro­aldehyde and malononitrile. The crystal data obtained were used to generate a three-dimensional pharmacophore model for in silico database screening. The phenyl ring is disordered over two positions, with site occupancy factors of 0.55 and 0.45. The dihedral angles between the 1,4-dihydropyrano[2,3-c]pyrazole unit and the chloro­phenyl and pyridine rings are 83.7 (1) and 16.0 (1)°, respectively. The chloro­phenyl and pyridine rings make a dihedral angle of 86.8 (2)°.

Related literature

The therapeutic potential of p38 mitogen-activated protein (MAP) kinase inhibitors for the treatment of inflammatory-associated diseases has been extensively reviewed (Kumar et al., 2003[Kumar, S., Boehm, J. & Lee, J. C. (2003). Nat. Rev. Drug Discov. 2, 717-726.]; Pargellis & Regan, 2003[Pargellis, C. & Regan, J. (2003). Curr. Opin. Investig. Drugs, 4, 566-571.]). The synthesis of the title compound was performed according to the published procedures (Dyachenko & Chernega, 2005[Dyachenko, V. D. & Chernega, A. N. (2005). Russ. J. Gen. Chem. 75, 952-960.]; Dyachenko & Rusanov, 2004[Dyachenko, V. D. & Rusanov, E. B. (2004). Chem. Heterocycl. Compd. 40, 231-240.]; Klokol et al., 1999[Klokol, G. V., Krivokolysko, S. G., Dyachenko, V. D. & Litvinov, V. P. (1999). Chem. Heterocycl. Compd, 35, 1183-1186.]).

[Scheme 1]

Experimental

Crystal data
  • C25H18ClN5O

  • Mr = 439.89

  • Monoclinic, P 21 /c

  • a = 5.7021 (11) Å

  • b = 17.795 (3) Å

  • c = 21.056 (9) Å

  • β = 90.954 (8)°

  • V = 2136.2 (11) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.81 mm−1

  • T = 193 (2) K

  • 0.46 × 0.12 × 0.08 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (CORINC; Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]) Tmin = 0.825, Tmax = 0.998 (expected range = 0.725–0.865)

  • 4443 measured reflections

  • 4018 independent reflections

  • 2971 reflections with I > 2σ(I)

  • Rint = 0.026

  • 3 standard reflections frequency: 60 min intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.203

  • S = 1.07

  • 4018 reflections

  • 307 parameters

  • 66 restraints

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N17—H17A⋯N30i 0.91 2.08 2.955 (3) 162
N17—H17B⋯N19ii 0.94 2.15 3.068 (3) 165
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y+1, -z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435-436.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

p38 mitogen-activated protein (MAP) kinases are important enzymes in signal-transduction cascades which are responsive to stress stimuli, such as cytokines, ultraviolet irradiation, heat shock and osmotic shock, and are involved in cell transformation, proliferation, differentation and apoptosis. Until now there is a lack in new lead structures. Virtual screening of a database of compounds is one possibility to obtain new hints. The crystal structure of the title compound (Fig. 1) was used to consider a possible binding mode in the ATP pocket of the enzyme.

1,4-Dihydropyrano[2,3-c]pyrazole derivatives related to 2 have been published as crystal structures (Dyachenko & Rusanov, 2004). The nitrogen atoms N19 and N30 are involved in H-bond interactions with the amino group (N17) forming three-dimensional network (Fig. 2). The unsubstituted benzene ring is disordered in two orientations and was refined using a split model. The 1,4-Dihydropyrano[2,3-c]pyrazole moiety is almost planar and is nearly perpendiculare (83.7 (1)°) to the C20—C25 ring. The dihedral angle between the pyridine ring and the C20—C25 ring is 86.8 (2)°.

Related literature top

The therapeutic potential of p38 mitogen-activated protein (MAP) kinase inhibitors for the treatment of inflammatory associated diseases has been extensively reviewed (Kumar et al., 2003; Pargellis & Regan, 2003). The synthesis of the title compound was performed according to the published procedures (Dyachenko & Chernega, 2005; Dyachenko & Rusanov, 2004; Klokol et al., 1999).

Experimental top

1-Benzyl-3-(4-pyridyl)-1H-pyrazol-5(4H)-one (1): A solution of ethyl 3-oxo-3-(4-pyridyl)propanoate (7.76 mmol) and triethylamine (7.76 mmol) in ethanol (15 ml) was cooled with an ice-bath. 2-Benzylhydrazinium chloride (7.76 mmol) was added and the reaction mixture was heated up to 60 °C for three hours. The solvent was evaporated to yield 98% of 1.

6-Amino-1-benzyl-4-(4-chlorophenyl)-3-(4-pyridyl)-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile (2): A mixture of p-chlorobenzaldehyde (0.80 mmol), malononitrile (0.80 mmol), N-methylmorpholine (0.80 mmol) in ethanol (10 ml) was stirred for one minute at room temperature. 1 was added and left to stand for one day. The precipitate formed was filtered and washed with ethanol and hexane. The compound was recrystallized from ethanol (31% yield).

Refinement top

Hydrogen atoms attached to carbons were placed at calculated positions with C—H=0.95A% (aromatic) or 0.99–1.00 Å (sp3 C-atom). Hydrogen atom attached to N17 were located in diff. fourier maps. All H atoms were refined with fixed isotropic thermal parameters using a riding motion model with Uiso(H) = 1.2–1.5Ueq (parent atom). The phenyl ring C11 - C16 is disordered over two positions with s.o.f. of 0.55/0.45 and was refined as a rigid group.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. PLATON (Spek, 2003) view of 2. Displacement ellipsoids are drawn at the 50% probability level. H atoms are depicted as circles of arbitrary size.
[Figure 2] Fig. 2. Crystal packing of compound 2. View along a axis. Only important H atoms are shown. Hydrogen bonds and disorederd phenyl rings are shown with dashed lines.
6-Amino-1-benzyl-4-(4-chlorophenyl)-3-(4-pyridyl)-1,4- dihydropyrano[2,3-c]pyrazole-5-carbonitrile top
Crystal data top
C25H18ClN5OF(000) = 912
Mr = 439.89Dx = 1.368 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 5.7021 (11) Åθ = 30–42°
b = 17.795 (3) ŵ = 1.81 mm1
c = 21.056 (9) ÅT = 193 K
β = 90.954 (8)°Needle, colourless
V = 2136.2 (11) Å30.46 × 0.12 × 0.08 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2971 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.026
Graphite monochromatorθmax = 69.9°, θmin = 3.3°
ω/2θ scansh = 06
Absorption correction: ψ scan
(CORINC; Dräger & Gattow, 1971)
k = 021
Tmin = 0.825, Tmax = 0.998l = 2525
4443 measured reflections3 standard reflections every 60 min
4018 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.203H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0991P)2 + 1.7529P]
where P = (Fo2 + 2Fc2)/3
4018 reflections(Δ/σ)max = 0.002
307 parametersΔρmax = 0.50 e Å3
66 restraintsΔρmin = 0.64 e Å3
Crystal data top
C25H18ClN5OV = 2136.2 (11) Å3
Mr = 439.89Z = 4
Monoclinic, P21/cCu Kα radiation
a = 5.7021 (11) ŵ = 1.81 mm1
b = 17.795 (3) ÅT = 193 K
c = 21.056 (9) Å0.46 × 0.12 × 0.08 mm
β = 90.954 (8)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2971 reflections with I > 2σ(I)
Absorption correction: ψ scan
(CORINC; Dräger & Gattow, 1971)
Rint = 0.026
Tmin = 0.825, Tmax = 0.9983 standard reflections every 60 min
4443 measured reflections intensity decay: 2%
4018 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06766 restraints
wR(F2) = 0.203H-atom parameters constrained
S = 1.07Δρmax = 0.50 e Å3
4018 reflectionsΔρmin = 0.64 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.9067 (5)0.26498 (14)0.08891 (12)0.0361 (6)
C20.7214 (5)0.31100 (16)0.08484 (13)0.0336 (6)
O30.6666 (4)0.34475 (12)0.02838 (9)0.0367 (5)
C40.4711 (5)0.38996 (16)0.03011 (13)0.0328 (6)
C50.3506 (5)0.40201 (16)0.08494 (13)0.0332 (6)
C60.4017 (5)0.36554 (17)0.14986 (13)0.0327 (6)
H60.26350.33410.16150.039*
C70.6089 (5)0.31463 (16)0.14147 (13)0.0330 (6)
C80.7427 (5)0.26449 (17)0.18021 (14)0.0340 (7)
N90.9221 (5)0.23499 (15)0.14809 (12)0.0372 (6)
C101.0661 (6)0.2425 (2)0.03898 (16)0.0438 (8)
H10A1.21880.22810.05850.053*0.55
H10B1.09330.28590.01060.053*0.55
H10C1.11200.28800.01520.053*0.45
H10D1.21000.22170.05930.053*0.45
C11A0.9722 (14)0.1768 (3)0.0004 (3)0.060 (5)0.55
C12A0.9179 (14)0.1866 (3)0.0645 (3)0.079 (2)0.55
H12A0.94150.23410.08400.095*0.55
C13A0.8290 (16)0.1269 (4)0.1000 (3)0.106 (4)0.55
H13A0.79190.13360.14380.127*0.55
C14A0.7945 (17)0.0574 (4)0.0714 (4)0.126 (5)0.55
H14A0.73380.01660.09570.151*0.55
C15A0.8488 (17)0.0477 (3)0.0074 (4)0.134 (5)0.55
H15A0.82520.00020.01220.161*0.55
C16A0.9377 (16)0.1074 (4)0.0282 (2)0.100 (3)0.55
H16A0.97480.10070.07190.120*0.55
C11B0.9766 (14)0.1880 (5)0.0057 (4)0.047 (4)0.45
C12B0.7484 (13)0.1612 (6)0.0118 (4)0.091 (4)0.45
H12B0.63510.17430.01890.110*0.45
C13B0.6861 (16)0.1152 (6)0.0627 (5)0.115 (5)0.45
H13B0.53020.09690.06680.138*0.45
C14B0.852 (2)0.0960 (7)0.1075 (5)0.140 (7)0.45
H14B0.80940.06460.14230.169*0.45
C15B1.080 (2)0.1229 (8)0.1014 (6)0.249 (14)0.45
H15B1.19360.10980.13210.299*0.45
C16B1.1425 (14)0.1689 (7)0.0505 (6)0.122 (5)0.45
H16B1.29850.18720.04640.146*0.45
N170.4223 (3)0.41620 (8)0.02841 (6)0.0399 (6)
H17A0.51160.39770.06030.060*
H17B0.28700.44580.03550.060*
C180.1547 (3)0.45076 (8)0.08023 (6)0.0361 (7)
N190.0041 (3)0.49044 (8)0.07707 (6)0.0465 (7)
C200.4394 (3)0.42549 (8)0.20151 (6)0.0333 (6)
C210.2730 (3)0.43846 (8)0.24634 (6)0.0660 (12)
H210.13340.40930.24620.079*
C220.3071 (9)0.4943 (3)0.2924 (2)0.0825 (16)
H220.18970.50390.32290.099*
C230.5087 (8)0.5345 (2)0.29324 (17)0.0548 (10)
C240.6723 (8)0.5225 (2)0.2495 (2)0.0604 (10)
H240.81280.55120.25040.072*
C250.6371 (7)0.4684 (2)0.20311 (18)0.0543 (9)
H250.75300.46100.17180.065*
Cl260.5572 (3)0.60204 (7)0.35216 (6)0.0929 (5)
C270.7013 (6)0.23447 (17)0.24463 (14)0.0368 (7)
C280.8630 (7)0.1865 (2)0.27282 (18)0.0548 (9)
H281.00780.17670.25270.066*
C290.8138 (7)0.1527 (2)0.33022 (18)0.0588 (10)
H290.92750.11960.34820.071*
N300.6181 (6)0.16380 (18)0.36153 (13)0.0514 (8)
C310.4668 (7)0.2105 (3)0.33473 (18)0.0625 (11)
H310.32610.22050.35670.075*
C320.4972 (7)0.2462 (2)0.27684 (18)0.0581 (10)
H320.37860.27810.25980.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0401 (14)0.0352 (13)0.0331 (13)0.0005 (11)0.0039 (10)0.0038 (10)
C20.0419 (17)0.0304 (14)0.0286 (14)0.0032 (12)0.0020 (12)0.0020 (11)
O30.0438 (12)0.0397 (11)0.0268 (10)0.0027 (9)0.0048 (8)0.0002 (8)
C40.0413 (16)0.0289 (14)0.0282 (14)0.0028 (12)0.0011 (12)0.0017 (11)
C50.0387 (16)0.0333 (15)0.0277 (14)0.0012 (12)0.0030 (12)0.0006 (11)
C60.0382 (16)0.0336 (15)0.0265 (14)0.0035 (12)0.0037 (11)0.0002 (11)
C70.0377 (16)0.0317 (14)0.0297 (14)0.0038 (12)0.0032 (12)0.0022 (11)
C80.0381 (16)0.0321 (15)0.0319 (15)0.0040 (12)0.0010 (12)0.0003 (12)
N90.0420 (14)0.0356 (13)0.0341 (13)0.0002 (11)0.0008 (11)0.0014 (10)
C100.0424 (18)0.0462 (19)0.0433 (18)0.0002 (15)0.0096 (14)0.0066 (15)
C11A0.096 (11)0.045 (5)0.040 (6)0.010 (5)0.008 (5)0.024 (4)
C12A0.119 (6)0.067 (5)0.052 (4)0.008 (5)0.023 (4)0.002 (4)
C13A0.142 (8)0.101 (7)0.074 (6)0.009 (6)0.036 (6)0.025 (6)
C14A0.167 (9)0.110 (8)0.100 (7)0.041 (7)0.009 (7)0.030 (6)
C15A0.187 (9)0.098 (7)0.116 (8)0.044 (7)0.008 (7)0.020 (6)
C16A0.149 (8)0.074 (5)0.077 (5)0.039 (6)0.010 (5)0.005 (4)
C11B0.042 (7)0.048 (5)0.050 (7)0.003 (5)0.003 (5)0.003 (5)
C12B0.077 (6)0.090 (7)0.107 (7)0.008 (5)0.003 (6)0.054 (6)
C13B0.104 (8)0.113 (8)0.129 (9)0.000 (7)0.007 (7)0.036 (7)
C14B0.155 (11)0.131 (10)0.135 (11)0.040 (8)0.000 (8)0.049 (8)
C15B0.248 (16)0.252 (16)0.248 (16)0.014 (10)0.019 (10)0.033 (10)
C16B0.129 (9)0.128 (9)0.110 (8)0.033 (7)0.036 (7)0.057 (7)
N170.0501 (16)0.0441 (15)0.0255 (12)0.0034 (12)0.0042 (11)0.0018 (11)
C180.0428 (17)0.0410 (17)0.0248 (14)0.0051 (14)0.0044 (12)0.0004 (12)
N190.0488 (17)0.0581 (18)0.0329 (14)0.0104 (15)0.0056 (12)0.0024 (12)
C200.0396 (16)0.0359 (15)0.0244 (13)0.0051 (13)0.0006 (11)0.0005 (11)
C210.052 (2)0.091 (3)0.056 (2)0.008 (2)0.0152 (18)0.032 (2)
C220.075 (3)0.112 (4)0.061 (3)0.011 (3)0.018 (2)0.046 (3)
C230.072 (3)0.047 (2)0.0450 (19)0.0216 (19)0.0219 (18)0.0117 (16)
C240.069 (3)0.048 (2)0.064 (2)0.0149 (19)0.002 (2)0.0152 (18)
C250.059 (2)0.051 (2)0.053 (2)0.0166 (18)0.0170 (17)0.0129 (17)
Cl260.1409 (12)0.0647 (7)0.0714 (7)0.0405 (7)0.0474 (8)0.0352 (6)
C270.0437 (17)0.0337 (15)0.0330 (15)0.0048 (13)0.0019 (13)0.0017 (12)
C280.054 (2)0.062 (2)0.049 (2)0.0111 (18)0.0050 (17)0.0155 (17)
C290.065 (2)0.062 (2)0.049 (2)0.008 (2)0.0004 (18)0.0187 (18)
N300.0636 (19)0.0524 (18)0.0380 (15)0.0055 (15)0.0010 (14)0.0104 (13)
C310.061 (2)0.081 (3)0.046 (2)0.008 (2)0.0127 (18)0.020 (2)
C320.058 (2)0.070 (3)0.047 (2)0.015 (2)0.0106 (17)0.0203 (18)
Geometric parameters (Å, º) top
N1—C21.338 (4)C11B—C16B1.3900
N1—N91.357 (3)C12B—C13B1.3900
N1—C101.457 (4)C12B—H12B0.9500
C2—O31.364 (3)C13B—C14B1.3900
C2—C71.365 (4)C13B—H13B0.9500
O3—C41.376 (4)C14B—C15B1.3900
C4—N171.342 (3)C14B—H14B0.9500
C4—C51.370 (4)C15B—C16B1.3900
C5—C181.416 (3)C15B—H15B0.9500
C5—C61.537 (4)C16B—H16B0.9500
C6—C71.502 (4)N17—H17A0.9113
C6—C201.536 (3)N17—H17B0.9442
C6—H61.0000C18—N191.1496
C7—C81.422 (4)C20—C251.362 (4)
C8—N91.342 (4)C20—C211.3687
C8—C271.481 (4)C21—C221.401 (5)
C10—C11B1.438 (7)C21—H210.9500
C10—C11A1.524 (5)C22—C231.354 (7)
C10—H10A0.9900C22—H220.9500
C10—H10B0.9900C23—C241.338 (6)
C10—H10C0.9900C23—Cl261.746 (4)
C10—H10D0.9900C24—C251.385 (5)
C11A—C12A1.3900C24—H240.9500
C11A—C16A1.3900C25—H250.9500
C12A—C13A1.3900C27—C321.373 (5)
C12A—H12A0.9500C27—C281.383 (5)
C13A—C14A1.3900C28—C291.382 (5)
C13A—H13A0.9500C28—H280.9500
C14A—C15A1.3900C29—N301.320 (5)
C14A—H14A0.9500C29—H290.9500
C15A—C16A1.3900N30—C311.318 (5)
C15A—H15A0.9500C31—C321.387 (5)
C16A—H16A0.9500C31—H310.9500
C11B—C12B1.3900C32—H320.9500
C2—N1—N9109.8 (2)C14A—C15A—H15A120.0
C2—N1—C10128.6 (3)C15A—C16A—C11A120.0
N9—N1—C10121.5 (3)C15A—C16A—H16A120.0
N1—C2—O3119.7 (2)C11A—C16A—H16A120.0
N1—C2—C7110.8 (3)C12B—C11B—C16B120.0
O3—C2—C7129.5 (3)C12B—C11B—C10127.8 (6)
C2—O3—C4114.1 (2)C16B—C11B—C10111.8 (6)
N17—C4—C5128.3 (3)C13B—C12B—C11B120.0
N17—C4—O3109.6 (2)C13B—C12B—H12B120.0
C5—C4—O3122.1 (3)C11B—C12B—H12B120.0
C4—C5—C18116.3 (2)C12B—C13B—C14B120.0
C4—C5—C6126.4 (3)C12B—C13B—H13B120.0
C18—C5—C6117.3 (2)C14B—C13B—H13B120.0
C7—C6—C20113.6 (2)C15B—C14B—C13B120.0
C7—C6—C5106.7 (2)C15B—C14B—H14B120.0
C20—C6—C5111.0 (2)C13B—C14B—H14B120.0
C7—C6—H6108.4C14B—C15B—C16B120.0
C20—C6—H6108.4C14B—C15B—H15B120.0
C5—C6—H6108.4C16B—C15B—H15B120.0
C2—C7—C8102.5 (3)C15B—C16B—C11B120.0
C2—C7—C6120.9 (3)C15B—C16B—H16B120.0
C8—C7—C6136.6 (3)C11B—C16B—H16B120.0
N9—C8—C7111.2 (3)C4—N17—H17A116.2
N9—C8—C27117.1 (3)C4—N17—H17B119.7
C7—C8—C27131.3 (3)H17A—N17—H17B123.3
C8—N9—N1105.7 (2)N19—C18—C5179.30 (13)
C11B—C10—N1116.0 (4)C25—C20—C21118.13 (16)
C11B—C10—C11A8.3 (5)C25—C20—C6120.9 (2)
N1—C10—C11A112.7 (4)C21—C20—C6120.99 (12)
C11B—C10—H10A113.4C20—C21—C22120.5 (2)
N1—C10—H10A109.1C20—C21—H21119.7
C11A—C10—H10A109.1C22—C21—H21119.7
C11B—C10—H10B100.8C23—C22—C21119.4 (3)
N1—C10—H10B109.1C23—C22—H22120.3
C11A—C10—H10B109.1C21—C22—H22120.3
H10A—C10—H10B107.8C24—C23—C22120.6 (3)
C11B—C10—H10C108.3C24—C23—Cl26119.6 (3)
N1—C10—H10C108.3C22—C23—Cl26119.8 (3)
C11A—C10—H10C116.4C23—C24—C25120.1 (4)
H10A—C10—H10C100.5C23—C24—H24119.9
H10B—C10—H10C8.5C25—C24—H24119.9
C11B—C10—H10D108.3C20—C25—C24121.2 (3)
N1—C10—H10D108.3C20—C25—H25119.4
C11A—C10—H10D103.3C24—C25—H25119.4
H10A—C10—H10D7.3C32—C27—C28116.5 (3)
H10B—C10—H10D114.5C32—C27—C8123.2 (3)
H10C—C10—H10D107.4C28—C27—C8120.0 (3)
C12A—C11A—C16A120.0C29—C28—C27120.0 (4)
C12A—C11A—C10120.2 (4)C29—C28—H28120.0
C16A—C11A—C10119.8 (4)C27—C28—H28120.0
C11A—C12A—C13A120.0N30—C29—C28123.8 (4)
C11A—C12A—H12A120.0N30—C29—H29118.1
C13A—C12A—H12A120.0C28—C29—H29118.1
C12A—C13A—C14A120.0C31—N30—C29115.7 (3)
C12A—C13A—H13A120.0N30—C31—C32125.0 (4)
C14A—C13A—H13A120.0N30—C31—H31117.5
C13A—C14A—C15A120.0C32—C31—H31117.5
C13A—C14A—H14A120.0C27—C32—C31118.9 (4)
C15A—C14A—H14A120.0C27—C32—H32120.5
C16A—C15A—C14A120.0C31—C32—H32120.5
C16A—C15A—H15A120.0
N9—N1—C2—O3177.1 (2)C13A—C14A—C15A—C16A0.0
C10—N1—C2—O31.6 (5)C14A—C15A—C16A—C11A0.0
N9—N1—C2—C71.2 (3)C12A—C11A—C16A—C15A0.0
C10—N1—C2—C7176.6 (3)C10—C11A—C16A—C15A179.0 (7)
N1—C2—O3—C4179.3 (3)N1—C10—C11B—C12B8.6 (10)
C7—C2—O3—C41.4 (4)C11A—C10—C11B—C12B76 (4)
C2—O3—C4—N17175.7 (2)N1—C10—C11B—C16B178.7 (6)
C2—O3—C4—C52.8 (4)C11A—C10—C11B—C16B111 (4)
N17—C4—C5—C182.8 (4)C16B—C11B—C12B—C13B0.0
O3—C4—C5—C18179.0 (2)C10—C11B—C12B—C13B172.3 (10)
N17—C4—C5—C6174.6 (3)C11B—C12B—C13B—C14B0.0
O3—C4—C5—C63.5 (5)C12B—C13B—C14B—C15B0.0
C4—C5—C6—C70.2 (4)C13B—C14B—C15B—C16B0.0
C18—C5—C6—C7177.6 (2)C14B—C15B—C16B—C11B0.0
C4—C5—C6—C20124.6 (3)C12B—C11B—C16B—C15B0.0
C18—C5—C6—C2058.0 (3)C10—C11B—C16B—C15B173.4 (9)
N1—C2—C7—C81.2 (3)C4—C5—C18—N19160 (100)
O3—C2—C7—C8176.8 (3)C6—C5—C18—N1922 (11)
N1—C2—C7—C6177.1 (3)C7—C6—C20—C2548.8 (3)
O3—C2—C7—C64.8 (5)C5—C6—C20—C2571.5 (3)
C20—C6—C7—C2119.2 (3)C7—C6—C20—C21132.64 (18)
C5—C6—C7—C23.6 (4)C5—C6—C20—C21107.0 (2)
C20—C6—C7—C858.5 (4)C25—C20—C21—C220.1 (3)
C5—C6—C7—C8178.8 (3)C6—C20—C21—C22178.7 (3)
C2—C7—C8—N90.9 (3)C20—C21—C22—C231.4 (6)
C6—C7—C8—N9177.0 (3)C21—C22—C23—C241.7 (7)
C2—C7—C8—C27171.3 (3)C21—C22—C23—Cl26177.8 (3)
C6—C7—C8—C2710.8 (6)C22—C23—C24—C250.4 (7)
C7—C8—N9—N10.2 (3)Cl26—C23—C24—C25179.1 (3)
C27—C8—N9—N1173.2 (2)C21—C20—C25—C241.4 (5)
C2—N1—N9—C80.6 (3)C6—C20—C25—C24180.0 (3)
C10—N1—N9—C8176.4 (3)C23—C24—C25—C201.2 (6)
C2—N1—C10—C11B75.7 (6)N9—C8—C27—C32164.6 (3)
N9—N1—C10—C11B99.3 (6)C7—C8—C27—C327.2 (5)
C2—N1—C10—C11A84.0 (5)N9—C8—C27—C289.2 (5)
N9—N1—C10—C11A91.0 (4)C7—C8—C27—C28179.0 (3)
C11B—C10—C11A—C12A0 (3)C32—C27—C28—C290.5 (6)
N1—C10—C11A—C12A115.3 (5)C8—C27—C28—C29173.7 (3)
C11B—C10—C11A—C16A179 (4)C27—C28—C29—N300.7 (7)
N1—C10—C11A—C16A63.8 (6)C28—C29—N30—C310.3 (6)
C16A—C11A—C12A—C13A0.0C29—N30—C31—C321.6 (7)
C10—C11A—C12A—C13A179.0 (7)C28—C27—C32—C310.6 (6)
C11A—C12A—C13A—C14A0.0C8—C27—C32—C31174.6 (4)
C12A—C13A—C14A—C15A0.0N30—C31—C32—C271.7 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N17—H17A···N30i0.912.082.955 (3)162
N17—H17B···N19ii0.942.153.068 (3)165
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC25H18ClN5O
Mr439.89
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)5.7021 (11), 17.795 (3), 21.056 (9)
β (°) 90.954 (8)
V3)2136.2 (11)
Z4
Radiation typeCu Kα
µ (mm1)1.81
Crystal size (mm)0.46 × 0.12 × 0.08
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(CORINC; Dräger & Gattow, 1971)
Tmin, Tmax0.825, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
4443, 4018, 2971
Rint0.026
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.203, 1.07
No. of reflections4018
No. of parameters307
No. of restraints66
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.64

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CORINC (Dräger & Gattow, 1971), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N17—H17A···N30i0.912.082.955 (3)161.7
N17—H17B···N19ii0.942.153.068 (3)165.1
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z.
 

Acknowledgements

The research was realised with EU financial support, part of the FP6 project `Macrocept'.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435–436.  CrossRef Web of Science IUCr Journals Google Scholar
First citationDräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.  Google Scholar
First citationDyachenko, V. D. & Chernega, A. N. (2005). Russ. J. Gen. Chem. 75, 952–960.  Web of Science CrossRef CAS Google Scholar
First citationDyachenko, V. D. & Rusanov, E. B. (2004). Chem. Heterocycl. Compd. 40, 231–240.  CrossRef CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationKlokol, G. V., Krivokolysko, S. G., Dyachenko, V. D. & Litvinov, V. P. (1999). Chem. Heterocycl. Compd, 35, 1183–1186.  CrossRef CAS Google Scholar
First citationKumar, S., Boehm, J. & Lee, J. C. (2003). Nat. Rev. Drug Discov. 2, 717–726.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPargellis, C. & Regan, J. (2003). Curr. Opin. Investig. Drugs, 4, 566–571.  PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds