organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages o671-o672

1-Methyl-6-nitro-1H-benzimidazole

aFaculty of Food and Chemical Technology, Slovak Technical University, Radlinskeho 9, SK-81237 Bratislava, Slovak Republic, and bFaculty of Pharmacy, Comenius University, Odbojarov 10, SK-83232 Bratislava, Slovak Republic
*Correspondence e-mail: kettmann@fpharm.uniba.sk

(Received 20 February 2008; accepted 3 March 2008; online 5 March 2008)

The title compound, C8H7N3O2, a potential anti­tumour drug and an anti­oxidant agent, was studied in order to give more insight into structure–function relationships. The 1-methyl­benzimidazole unit of the mol­ecule was found to be exactly planar and the nitro group is inclined at an angle of 10.4 (2)° to the plane of the heterocycle. The bond lengths in the present derivative were analyzed in details and compared with those of the parent unsubstituted analogues in the Cambridge Structural Database. The results have shown that the additional nitro group is not involved in conjugation with the adjacent π-system and hence has no effect on the charge distribution of the heterocyclic ring.

Related literature

For related literature on related crystal structures, see for example: Türktekin et al., (2004[Türktekin, S., Akkurt, M., Şireci, N., Küçükbay, H. & Büyükgüngör, O. (2004). Acta Cryst. E60, o817-o819.]) as retrieved from the Cambridge Structural Database (Version of 2007; Allen, 2002[Allen, F. H. (2002). Acta Cryst, B58, 380-388.]). For the synthesis, see: Ellis & Jones (1974[Ellis, G. P. & Jones, R. T. (1974). J. Chem. Soc. Perkin Trans. 1, pp. 903-909.]). For the length of the pure Csp2—Nsp2 single bond, see: Adler et al. (1976[Adler, R. W., Goode, N. C., King, T. S., Mellor, J. M. & Miller, B. W. (1976). J. Chem. Soc. Chem. Commun. pp. 173-174.]). For related literature on biological aspects of the benzimidazole derivatives in general, see: Alpan et al. (2007[Alpan, A. S., Gunesi, H. S. & Topcu, Z. (2007). Acta Biochim. Pol. 54, 561-565.]); Kettmann et al. (2004[Kettmann, V., Košťálová, D. & Holtje, H.-D. (2004). J. Comput. Aided Mol. Des. 18, 785-797.]); Le et al. (2004[Le, H. T., Lemaire, I. B., Gilbert, A. K., Jolicoeur, F., Yang, L., Leduc, N. & Lemaire, S. (2004). J. Pharmacol. Exp. Ther. 309, 146-155.]); Nguyen et al. (2004[Nguyen, D. M., Schrump, W. D., Chen, G. A., Tsal, W., Nguyen, P., Trepel, J. B. & Schrump, D. S. (2004). Clin. Cancer Res. 10,1813-1825.]); Statkova-Abeghe et al. (2005[Statkova-Abeghe, S., Ivanova, I., Daskalova, S. & Dzhambazov, B. (2005). Med. Chem. Res. 14, 429-439.]). Anti­oxidant properties of the compound are discussed by Hanus et al. (2004[Hanus, J., Katuščák, S., Katuščák, D., Bukovský, V. & Rychlý, J. (2004). Proceedings of the International Conference on Durability of Paper and Writing, Ljubljana, Slovenia, p. 86.]); Katuščák (2003[Katuščák, S. (2003). Chemical Technology of Wood, Pulp and Paper in Culture, Education and Industry, edited by G. Baudin, J. Fellegi, B. Gollerstedt, S. Katuščák, I. Pikulik & J. Paris, pp. 27-34. Bratislava: Slovak Technical University.]).

[Scheme 1]

Experimental

Crystal data
  • C8H7N3O2

  • Mr = 177.17

  • Orthorhombic, P b c a

  • a = 12.852 (3) Å

  • b = 7.043 (2) Å

  • c = 17.690 (4) Å

  • V = 1601.2 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 (2) K

  • 0.30 × 0.20 × 0.15 mm

Data collection
  • Siemens P4 diffractometer

  • Absorption correction: none

  • 3027 measured reflections

  • 2325 independent reflections

  • 1493 reflections with I > 2σ(I)

  • Rint = 0.035

  • 3 standard reflections every 97 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.130

  • S = 0.96

  • 2325 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Selected bond lengths (Å)

N1—C2 1.3571 (17)
N1—C8 1.3817 (17)
C2—N3 1.3107 (19)
N3—C9 1.3803 (18)
C4—C5 1.366 (2)
C4—C9 1.4001 (19)
C5—C6 1.4095 (19)
C6—C7 1.3840 (19)
C6—N4 1.4563 (18)
C7—C8 1.3775 (18)
C8—C9 1.4104 (17)

Data collection: XSCANS (Siemens, 1991[Siemens (1991). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzimidazole derivatives are known to possess a variety of biological properties (Le et al., 2004), the anti-cancer activity being one of the most important (Nguyen et al., 2004). Recently, it has been reported that the cytotoxic activity of 1H-benzimidazoles is related to inhibition of the DNA-topoisomerase binary complex and is potentiated by introduction to the 6-position of a small substituent containing an oxygen atom able to accept a hydrogen bond (e.g. nitro, acetyl, amide) (Alpan et al., 2007; Statkova-Abeghe et al., 2005). It was, however, unclear whether the influence of the substituents reflects their effect on the charge distribution of the heterocycle or results from interaction of the substituents with additional DNA or enzyme functionalities. Consequently, we prepared a series of 6-substituted 1-methylbenzimidazoles and determined and compared their molecular and electronic structures by using theoretical and experimental techniques. In this communication we report the crystal structure of the 6-nitro derivative, (I). Another point of interest in (I) stems from its use in paper processing as an antioxidant agent (Katuščák, 2003; Hanus et al., 2004), a property which is also dependent on the molecular and electronic structures of the compound.

As expected, the 1-methylbenzimidazole substructure is planar to within experimental error and the nitro group is rotated by 10.4 (2)° from the plane of the heterocycle (Fig.1).

As mentioned above, the main purpose of this work was to compare precise molecular dimensions in the present derivative, (I), with those of the unsubstituted 1-methylbenzimidazole. As the latter compound has no entry in the Cambridge Structural Database (CSD, Version of 2007; Allen & Kennard, 1983), the CSD was searched for compounds possessing the benzimidazole nucleus and just 1-substituent with methylene group in the α-position; 42 such compounds [hereafter (II)] were found. The comparison have shown that the corresponding bond lengths in the benzimidazole heterocycle in (I) and in the molecules of (II) are equal within the limits of experimental error. This, along with the single-bond character of C6—N4 (Adler et al., 1976) indicates that the nitro group is deconjugated with the benzimidazole ring. This implies that the large difference in cytotoxic activities between (I) and (II) lies in the interaction of the 6-substituent with additional DNA intercalation component or enzyme amino acid residues which surrounds the intercalation site (Kettmann et al., 2004). These results will serve as a basis for subsequent molecular-modelling studies of the DNA-enzyme-ligand interactions.

Related literature top

For related literature on related crystal structures, see for example: Türktekin et al., (2004) as retrieved from the Cambridge Structural Database (Version of 2007; Allen & Kennard, 1983). For the synthesis, see: Ellis & Jones (1974). For the length of the pure Csp2—Nsp2 single bond, see: Adler et al. (1976). For related literature on biological aspects of the benzimidazole derivatives in general, see: Alpan et al. (2007); Kettmann et al. (2004); Le et al. (2004); Nguyen et al. (2004); Statkova-Abeghe et al. (2005). Antioxidant properties of the compound are discussed by Hanus et al. (2004); Katuščák (2003).

Experimental top

The synthesis of the title compound, (I), was described earlier (Ellis & Jones, 1974). In short, a solution of formaldehyde (4 g, 0.133 mol) in absolute ethanol (40 ml) was heated under reflux for 30 min with commercially available 4-nitro-1,2-phenylenediamine (7.1 g, 0.046 mol) and concentrated hydrochloric acid (3 ml). On basification with ammonia, (I) was obtained as yellow crystals (25% yield; m.p. 454–456 K).

Refinement top

H atoms were visible in difference maps but were placed in calculated positions and were refined isotropic (Uiso of the H atoms were set to 1.2 (1.5 for the methyl H atoms) times Ueq of the parent atom) using a riding model with C—H = 0.93 Å (CHarom) and 0.96 Å (CH3).

Computing details top

Data collection: XSCANS (Siemens, 1991); cell refinement: XSCANS (Siemens, 1991); data reduction: XSCANS (Siemens, 1991); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot of the title molecule with the labelling scheme for the non-H atoms, which are drawn as 35% probability ellipsoids.
1-Methyl-6-nitro-1H-benzimidazole top
Crystal data top
C8H7N3O2Dx = 1.470 Mg m3
Mr = 177.17Melting point: 455 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 20 reflections
a = 12.852 (3) Åθ = 7–19°
b = 7.043 (2) ŵ = 0.11 mm1
c = 17.690 (4) ÅT = 296 K
V = 1601.2 (7) Å3Prism, yellow
Z = 80.30 × 0.20 × 0.15 mm
F(000) = 736
Data collection top
Siemens P4
diffractometer
Rint = 0.035
Radiation source: fine-focus sealed tubeθmax = 30.0°, θmin = 2.3°
Graphite monochromatorh = 118
ω/2θ scansk = 19
3027 measured reflectionsl = 241
2325 independent reflections3 standard reflections every 97 reflections
1493 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0722P)2]
where P = (Fo2 + 2Fc2)/3
2325 reflections(Δ/σ)max = 0.002
119 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C8H7N3O2V = 1601.2 (7) Å3
Mr = 177.17Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.852 (3) ŵ = 0.11 mm1
b = 7.043 (2) ÅT = 296 K
c = 17.690 (4) Å0.30 × 0.20 × 0.15 mm
Data collection top
Siemens P4
diffractometer
Rint = 0.035
3027 measured reflections3 standard reflections every 97 reflections
2325 independent reflections intensity decay: none
1493 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 0.96Δρmax = 0.18 e Å3
2325 reflectionsΔρmin = 0.15 e Å3
119 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.42194 (9)0.26257 (16)0.47003 (6)0.0416 (3)
C20.52515 (10)0.2941 (2)0.45973 (9)0.0497 (4)
H20.55250.33600.41400.060*
N30.58338 (9)0.26080 (19)0.51910 (7)0.0532 (3)
C40.53023 (11)0.1419 (2)0.64798 (8)0.0553 (4)
H40.59680.14190.66860.066*
C50.44659 (12)0.0845 (2)0.68983 (8)0.0544 (4)
H50.45610.04320.73930.065*
C60.34599 (10)0.08772 (19)0.65813 (7)0.0425 (3)
C70.32568 (9)0.14664 (19)0.58497 (7)0.0390 (3)
H70.25870.14960.56500.047*
C80.41167 (10)0.20061 (17)0.54376 (7)0.0374 (3)
C90.51357 (10)0.20067 (19)0.57335 (8)0.0444 (3)
C100.33948 (11)0.2912 (3)0.41540 (9)0.0555 (4)
H10A0.34280.41850.39620.083*
H10B0.27330.27110.43930.083*
H10C0.34760.20290.37450.083*
N40.25815 (11)0.03037 (18)0.70486 (7)0.0499 (3)
O10.16986 (9)0.0586 (2)0.68211 (6)0.0653 (3)
O20.27589 (11)0.0462 (2)0.76606 (6)0.0721 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0348 (5)0.0474 (6)0.0425 (6)0.0030 (4)0.0002 (4)0.0008 (5)
C20.0376 (7)0.0532 (8)0.0583 (8)0.0041 (6)0.0085 (6)0.0036 (7)
N30.0334 (6)0.0599 (8)0.0663 (8)0.0019 (5)0.0008 (5)0.0071 (6)
C40.0428 (7)0.0662 (9)0.0570 (8)0.0084 (7)0.0178 (6)0.0072 (8)
C50.0592 (9)0.0607 (9)0.0434 (7)0.0103 (7)0.0138 (7)0.0029 (7)
C60.0460 (7)0.0436 (7)0.0379 (6)0.0027 (6)0.0017 (5)0.0048 (5)
C70.0350 (6)0.0417 (6)0.0404 (6)0.0007 (5)0.0039 (5)0.0044 (6)
C80.0349 (6)0.0376 (6)0.0398 (6)0.0011 (5)0.0036 (5)0.0046 (5)
C90.0348 (6)0.0450 (7)0.0535 (8)0.0029 (5)0.0055 (6)0.0089 (6)
C100.0477 (8)0.0748 (10)0.0441 (7)0.0036 (7)0.0071 (6)0.0084 (7)
N40.0605 (8)0.0515 (7)0.0377 (6)0.0001 (6)0.0029 (5)0.0052 (5)
O10.0503 (6)0.0928 (9)0.0527 (6)0.0051 (6)0.0055 (5)0.0053 (6)
O20.0891 (10)0.0851 (9)0.0420 (6)0.0051 (7)0.0043 (6)0.0149 (6)
Geometric parameters (Å, º) top
N1—C21.3571 (17)C6—C71.3840 (19)
N1—C81.3817 (17)C6—N41.4563 (18)
N1—C101.4483 (18)C7—C81.3775 (18)
C2—N31.3107 (19)C7—H70.9300
C2—H20.9300C8—C91.4104 (17)
N3—C91.3803 (18)C10—H10A0.9600
C4—C51.366 (2)C10—H10B0.9600
C4—C91.4001 (19)C10—H10C0.9600
C4—H40.9300N4—O11.2202 (16)
C5—C61.4095 (19)N4—O21.2308 (16)
C5—H50.9300
C2—N1—C8105.76 (11)C8—C7—H7122.4
C2—N1—C10127.08 (12)C6—C7—H7122.4
C8—N1—C10127.15 (11)C7—C8—N1131.56 (12)
N3—C2—N1114.93 (13)C7—C8—C9123.28 (12)
N3—C2—H2122.5N1—C8—C9105.17 (11)
N1—C2—H2122.5N3—C9—C4130.31 (13)
C2—N3—C9103.93 (12)N3—C9—C8110.22 (12)
C5—C4—C9118.57 (13)C4—C9—C8119.46 (13)
C5—C4—H4120.7N1—C10—H10A109.5
C9—C4—H4120.7N1—C10—H10B109.5
C4—C5—C6120.08 (13)H10A—C10—H10B109.5
C4—C5—H5120.0N1—C10—H10C109.5
C6—C5—H5120.0H10A—C10—H10C109.5
C7—C6—C5123.36 (13)H10B—C10—H10C109.5
C7—C6—N4117.89 (12)O1—N4—O2122.26 (14)
C5—C6—N4118.74 (12)O1—N4—C6119.23 (12)
C8—C7—C6115.24 (11)O2—N4—C6118.50 (13)
C8—N1—C2—N30.55 (16)C10—N1—C8—C9178.72 (13)
C10—N1—C2—N3178.49 (14)C2—N3—C9—C4178.82 (15)
N1—C2—N3—C90.52 (16)C2—N3—C9—C80.29 (15)
C9—C4—C5—C60.9 (2)C5—C4—C9—N3178.51 (14)
C4—C5—C6—C70.2 (2)C5—C4—C9—C80.5 (2)
C4—C5—C6—N4178.40 (14)C7—C8—C9—N3179.82 (12)
C5—C6—C7—C80.9 (2)N1—C8—C9—N30.02 (15)
N4—C6—C7—C8179.47 (11)C7—C8—C9—C40.6 (2)
C6—C7—C8—N1178.54 (13)N1—C8—C9—C4179.25 (12)
C6—C7—C8—C91.26 (19)C7—C6—N4—O19.28 (19)
C2—N1—C8—C7179.50 (14)C5—C6—N4—O1169.38 (13)
C10—N1—C8—C71.5 (2)C7—C6—N4—O2170.32 (13)
C2—N1—C8—C90.32 (14)C5—C6—N4—O211.02 (19)

Experimental details

Crystal data
Chemical formulaC8H7N3O2
Mr177.17
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)12.852 (3), 7.043 (2), 17.690 (4)
V3)1601.2 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3027, 2325, 1493
Rint0.035
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.130, 0.96
No. of reflections2325
No. of parameters119
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.15

Computer programs: XSCANS (Siemens, 1991), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Selected bond lengths (Å) top
N1—C21.3571 (17)C5—C61.4095 (19)
N1—C81.3817 (17)C6—C71.3840 (19)
C2—N31.3107 (19)C6—N41.4563 (18)
N3—C91.3803 (18)C7—C81.3775 (18)
C4—C51.366 (2)C8—C91.4104 (17)
C4—C91.4001 (19)
 

Acknowledgements

This work was supported by the Grant Agency of the Slovak Republic (project Nos. 1/4298/07 and 1/0225/08) as well as by the Science and Technology Assistance Agency (APVV-20–007304). The authors also thank the Ministry of Education of the Slovak Republic (contract No. 2003SP200280301).

References

First citationAdler, R. W., Goode, N. C., King, T. S., Mellor, J. M. & Miller, B. W. (1976). J. Chem. Soc. Chem. Commun. pp. 173–174.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst, B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAlpan, A. S., Gunesi, H. S. & Topcu, Z. (2007). Acta Biochim. Pol. 54, 561–565.  Web of Science PubMed CAS Google Scholar
First citationEllis, G. P. & Jones, R. T. (1974). J. Chem. Soc. Perkin Trans. 1, pp. 903–909.  CrossRef Web of Science Google Scholar
First citationHanus, J., Katuščák, S., Katuščák, D., Bukovský, V. & Rychlý, J. (2004). Proceedings of the International Conference on Durability of Paper and Writing, Ljubljana, Slovenia, p. 86.  Google Scholar
First citationKatuščák, S. (2003). Chemical Technology of Wood, Pulp and Paper in Culture, Education and Industry, edited by G. Baudin, J. Fellegi, B. Gollerstedt, S. Katuščák, I. Pikulik & J. Paris, pp. 27–34. Bratislava: Slovak Technical University.  Google Scholar
First citationKettmann, V., Košťálová, D. & Holtje, H.-D. (2004). J. Comput. Aided Mol. Des. 18, 785–797.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLe, H. T., Lemaire, I. B., Gilbert, A. K., Jolicoeur, F., Yang, L., Leduc, N. & Lemaire, S. (2004). J. Pharmacol. Exp. Ther. 309, 146–155.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNguyen, D. M., Schrump, W. D., Chen, G. A., Tsal, W., Nguyen, P., Trepel, J. B. & Schrump, D. S. (2004). Clin. Cancer Res. 10,1813–1825.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1991). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStatkova-Abeghe, S., Ivanova, I., Daskalova, S. & Dzhambazov, B. (2005). Med. Chem. Res. 14, 429–439.  Web of Science CrossRef CAS Google Scholar
First citationTürktekin, S., Akkurt, M., Şireci, N., Küçükbay, H. & Büyükgüngör, O. (2004). Acta Cryst. E60, o817–o819.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages o671-o672
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds