organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages o651-o652

1,7-Dihydr­­oxy-2,3,4-trimeth­­oxy-9H-xanthen-9-one monohydrate from Halenia elliptica

aDepartment of Chemistry of Natural Drugs, School of Pharmacy, Fudan University, Shanghai 200032, People's Republic of China, and bLaboratory for Structural Biology, Department of Chemistry, Graduate Programs of Biotechnology, Chemistry and Materials Science, University of Alabama, Huntsville, AL 35899, USA
*Correspondence e-mail: chenlq@uah.edu

(Received 24 January 2008; accepted 19 February 2008; online 5 March 2008)

The title compound, C16H14O7·H2O, possesses a planar three-ring skeleton; its carbonyl, one of the two hydroxy and two of the three methoxy O atoms and the water mol­ecule form hydrogen bonds, giving rise to a layer structure.

Related literature

For the anti­depressant, anti­tumor, anti­microbial, anti­fungal, anti-inflammatory, anti­viral, cardiotonic, hypoglycemic, anti­hepatotoxic and immunomodulatory activities of simple xanthones, see: Basnet et al. (1994[Basnet, P., Kadota, S., Shimizu, M. & Namba, T. (1994). Planta Med. 60, 507-511.]); Fernandes et al. (1995[Fernandes, E. R., Carvalho, F. D., Remiao, F. G., Bastos, M. L., Pinto, M. M. & Gottlieb, O. R. (1995). Pharm. Res. 12, 1756-1760.]); Karan et al. (1999[Karan, M., Vasisht, K. & Handa, S. S. (1999). Phytother. Res. 13, 95-101.]); Liou et al. (1993[Liou, S. S., Shieh, W. L., Cheng, T. H., Won, S. J. & Lin, C. N. (1993). J. Pharm. Pharmacol. 45, 791-794.]); Miura et al. (2001[Miura, T., Ichiki, H., Hashimoto, I., Iwamoto, N., Kato, M., Kubo, M., Ishihara, E., Komatsu, Y., Okada, M., Ishida, T. & Tanigawa, K. (2001). Phytomedicine, 8, 85-87.]); Parmar et al. (1996[Parmar, V. S., Bisht, K. S., Jain, R., Singh, S., Sharma, S. K., Gupta, S., Malhotra, S., Tyagi, O. D. & Vardhan, A. (1996). Indian J. Chem. 35B, 220-232.]); Pedro et al. (2002[Pedro, M., Cerqueira, F., Sousa, M. E., Nascimento, M. S. & Pinto, M. (2002). Bioorg. Med. Chem. 10, 3725-3730.]); Sousa et al. (2002[Sousa, E. P., Silva, A. M. S., Pinto, M. M. M., Pedro, M. M., Cerqueira, F. A. M. & Nascimento, M. S. J. (2002). Helv. Chim. Acta, 85, 2862-2876.]). For the crystal structures of oxygenated xanthones, see: Evans et al. (2004[Evans, I. R., Howard, J. A. K., Šavikin-Fodulović, K. & Menković, N. (2004). Acta Cryst. E60, o1557-o1559.]); Gales et al. (2001[Gales, L., de Sousa, M. E., Pinto, M. M. M., Kijjoa, A. & Damas, A. M. (2001). Acta Cryst. C57, 1319-1323.]); Jiang et al. (2004[Jiang, K. J., Zhang, Y. H., Shao, Z. Y., Chen, J. J. & Kuai, B. K. (2004). Chin. J. Struct. Chem. 23, 262-266.]); Kabaleeswaran et al. (2003[Kabaleeswaran, V., Malathi, R. & Rajan, S. S. (2003). J. Chem. Crystallogr. 33, 233-237.]); Kato et al. (2005[Kato, L., De Oliveira, C. M. A., Vencato, I. & Lauriucci, C. (2005). J. Chem. Crystallogr. 35, 23-26.]); Kijjoa et al. (1998[Kijjoa, A., Jose, M., Gonzalez, T. G., Pinto, M. M. M., Damas, A. M., Mondranondra, I. O., Silva, A. M. S. & Herz, W. (1998). Phytochemistry, 49, 2159-2162.]); Shi et al. (2004[Shi, G.-F., Lu, R.-H., Yang, Y.-S., Li, C.-L., Yang, A.-M. & Cai, L.-X. (2004). Acta Cryst. E60, o878-o880.], 2005[Shi, G. F., Lu, R. H., Yang, Y. S., Li, C. L., Yang, A. M. & Cai, L. X. (2005). J. Chem. Crystallogr. 35, 135-139.]); Stout et al. (1969[Stout, G. H., Lin, T. S. & Singh, I. (1969). Tetrahedron, 25, 1975-1983.]); Vijayalakshmi et al. (1987[Vijayalakshmi, J., Rajan, S. S. & Srinivasan, R. (1987). Acta Cryst. C43, 2108-2110.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14O7·H2O

  • Mr = 336.29

  • Monoclinic, P 21 /c

  • a = 10.9272 (9) Å

  • b = 10.4511 (8) Å

  • c = 14.0201 (11) Å

  • β = 111.6830 (10)°

  • V = 1487.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 298 K

  • 0.2 × 0.1 × 0.05 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: none

  • 8808 measured reflections

  • 3563 independent reflections

  • 2848 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.141

  • S = 1.06

  • 3563 reflections

  • 233 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8i—H16i⋯O2 0.73 (3) 2.58 (3) 3.091 (2) 129.4
O8i—H16i⋯O3 0.73 (3) 2.46 (3) 3.177 (2) 167.3
O8ii—H15ii⋯O6 0.84 (5) 2.08 (5) 2.923 (2) 172.3
O7—H7⋯O8iii 0.83 1.88 2.706 (2) 169
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) x-1, y, z-1.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Xanthone compounds commonly occur in several higher plant families, such as Gentianaceae,Guttiferae, Moraceae and Polygalaceae. Simple oxygenated xanthones possess different biological activities such as antidepressant, antitumor, antimicrobial, antifungal, anti-inflammatory, antiviral, cardiotonic, hypoglycemic, antihepatotoxic and immunomodulatory (Liou et al., 1993; Basnet et al., 1994; Fernandes et al., 1995; Parmar et al., 1996; Karan et al., 1999; Miura et al., 2001; Pedro et al., 2002; Sousa et al., 2002). The majority of the xanthones isolated so far are hydroxyl or methoxy substituted in the xanthone skeleton. Up to present, only ten simple oxygenated xanthones were characterized by X-ray diffraction (Stout et al., 1969; Vijayalakshmi et al., 1987; Kijjoa et al., 1998; Gales et al., 2001; Kabaleeswaran et al., 2003; Jiang et al., 2004; Shi et al., 2004; Evans et al., 2004; Kato et al., 2005; Shi et al., 2005). 1,7-dihydroxy-2,3,4-trimethoxyxanthone (I) was first isolated from Halenia elliptica D. Don (Gentianaceae) and has antioxidant activity. Its crystal structure is reported for the first time in this paper. The structure of I (Figure 1) is similar to other xanthones reported with a planar three-ring skeleton. The asymmetric unit of crystal I contains one molecule I plus one water molecule. I forms hydrogen bonds with the water molecule through its carbonyl, one of the two hydroxyl and two of the three methoxyl O atoms (Table 1, Figure 2). The crystal structure is stabilized by the extensive hydrogen bond network.

Related literature top

For the antidepressant, antitumor, antimicrobial, antifungal, anti-inflammatory, antiviral, cardiotonic, hypoglycemic, antihepatotoxic and immunomodulatory activities of simple xanthones, see: Basnet et al. (1994); Fernandes et al. (1995); Karan et al. (1999); Liou et al. (1993); Miura et al. (2001); Parmar et al. (1996); Pedro et al. (2002); Sousa et al. (2002). For the crystal structures of oxygenated xanthones, see: Evans et al. (2004); Gales et al. (2001); Jiang et al. (2004); Kabaleeswaran et al. (2003); Kato et al. (2005); Kijjoa et al. (1998); Shi et al. (2004, 2005); Stout et al. (1969); Vijayalakshmi et al. (1987).

Experimental top

Halenia elliptica D. Don was collected in DALI, Yunnan Province, in April 2005 and was identified by Professor Xiaokuang Ma, Department of Pharmacognosy, School of Pharmacy, DALI University, People's Republic of China.

Extraction and isolation: 1,7-dihydroxy-2,3,4-trimethoxyxanthone (I) was isolated from ethyl acetate fraction of the ethanol extract of the aerial parts of Halenia elliptica with other four 1,7-dihydroxy substituted xanthones by silica gel column chromatography with gradient mixtures of petroleum ether and ethyl acetate. Yellow crystals of I were obtained by slow evaporation of a solution in EtOH. M.p.164–165°C. ESI-MS m/z (rel. %): 319[M+H]+.1H-NMR (400 MHz, CDCl3), d12.60 (1H, s, OH-1), 7.60 (1H, d, J=3.0 Hz, H-8), 7.49 (1H, d, J=9.3 Hz, H-5), 7.34 (1H, dd, J=3.0, 9.0 Hz, H-6), 5.32 (1H, br. s, OH-7), 4.15 (3H, s, OCH3), 3.96 (3H, s, OCH3), 3.95 (3H, s, OCH3).

Refinement top

H atoms attached to O atoms were located in a difference map and refined with bond restraints O—H = 0.82 (2) Å. C-bound H atoms were positioned geometrically (C—H 0.93 - 0.96 Å). All H atoms were refined as riding, with Uiso(H) = 1.2 - 1.5 Ueq of the parent atom.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level. Arbitrary atom numbering.
[Figure 2] Fig. 2. The packing of (I), viewed down the b axis.
1,7-dihydroxy-2,3,4-trimethoxy-9H-xanthen-9-one monohydrate top
Crystal data top
C16H14O7·H2OF(000) = 704
Mr = 336.29Dx = 1.501 Mg m3
Monoclinic, P21/cMelting point: 437 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.9272 (9) ÅCell parameters from 3563 reflections
b = 10.4511 (8) Åθ = 2.5–28.3°
c = 14.0201 (11) ŵ = 0.12 mm1
β = 111.683 (1)°T = 298 K
V = 1487.8 (2) Å3Block, yellow
Z = 40.2 × 0.1 × 0.05 mm
Data collection top
Bruker SMART 1K CCD
diffractometer
2848 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.053
Graphite monochromatorθmax = 28.3°, θmin = 2.5°
Thin–slice ω scansh = 1414
8808 measured reflectionsk = 813
3563 independent reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0743P)2 + 0.2855P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3563 reflectionsΔρmax = 0.29 e Å3
233 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0085 (18)
Crystal data top
C16H14O7·H2OV = 1487.8 (2) Å3
Mr = 336.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.9272 (9) ŵ = 0.12 mm1
b = 10.4511 (8) ÅT = 298 K
c = 14.0201 (11) Å0.2 × 0.1 × 0.05 mm
β = 111.683 (1)°
Data collection top
Bruker SMART 1K CCD
diffractometer
2848 reflections with I > 2σ(I)
8808 measured reflectionsRint = 0.053
3563 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.29 e Å3
3563 reflectionsΔρmin = 0.24 e Å3
233 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O50.62447 (9)0.47253 (9)0.17678 (8)0.0374 (2)
O10.44791 (10)0.90069 (10)0.12081 (9)0.0441 (3)
H10.37580.85900.09430.066*
C110.52749 (12)0.68367 (13)0.14635 (9)0.0315 (3)
O60.29738 (10)0.70239 (10)0.06007 (9)0.0492 (3)
O20.69716 (11)0.99477 (10)0.21570 (8)0.0437 (3)
C20.67515 (14)0.86433 (13)0.20640 (10)0.0361 (3)
C120.63679 (13)0.60211 (13)0.18592 (10)0.0325 (3)
C100.39784 (13)0.63185 (13)0.09340 (10)0.0343 (3)
C130.50227 (13)0.41989 (13)0.12579 (10)0.0336 (3)
C40.76454 (13)0.64776 (14)0.23766 (11)0.0370 (3)
C80.26918 (14)0.43164 (14)0.02687 (11)0.0371 (3)
H80.19340.47980.00490.045*
O30.89800 (11)0.84290 (12)0.29620 (11)0.0599 (4)
C30.78279 (13)0.78037 (15)0.24786 (11)0.0385 (3)
C90.38925 (13)0.49338 (13)0.08075 (10)0.0331 (3)
C10.54949 (13)0.81769 (13)0.15801 (10)0.0331 (3)
O70.14973 (11)0.23466 (11)0.03034 (10)0.0517 (3)
H70.08820.28640.05600.078*
C70.26315 (14)0.30003 (14)0.02086 (11)0.0386 (3)
O40.86845 (10)0.56302 (11)0.26990 (9)0.0500 (3)
C50.49582 (15)0.28688 (14)0.12202 (11)0.0398 (3)
H50.57110.23830.15430.048*
C60.37723 (16)0.22793 (14)0.07010 (11)0.0421 (3)
H60.37270.13910.06770.051*
C151.02209 (16)0.7842 (2)0.32996 (18)0.0673 (5)
H15A1.03210.73090.38810.101*
H15B1.08950.84860.34920.101*
H15C1.02970.73290.27560.101*
C140.7299 (2)1.04398 (18)0.13328 (16)0.0595 (5)
H14A0.80340.99740.12900.089*
H14B0.75261.13280.14530.089*
H14C0.65571.03490.07000.089*
C160.8790 (2)0.4892 (2)0.35909 (16)0.0701 (6)
H16A0.87950.54570.41320.105*
H16B0.95920.44060.38110.105*
H16C0.80520.43210.34250.105*
O80.92795 (15)0.37653 (18)0.88918 (14)0.0695 (4)
H150.862 (4)0.361 (4)0.905 (3)0.123 (12)*
H160.912 (3)0.436 (3)0.860 (2)0.104 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O50.0319 (5)0.0313 (5)0.0448 (5)0.0041 (4)0.0093 (4)0.0004 (4)
O10.0363 (5)0.0311 (5)0.0567 (6)0.0041 (4)0.0076 (5)0.0031 (4)
C110.0310 (6)0.0309 (6)0.0311 (6)0.0016 (5)0.0098 (5)0.0008 (5)
O60.0318 (5)0.0347 (5)0.0694 (7)0.0041 (4)0.0048 (5)0.0046 (5)
O20.0460 (6)0.0323 (5)0.0512 (6)0.0056 (4)0.0160 (5)0.0051 (4)
C20.0382 (7)0.0318 (6)0.0374 (7)0.0016 (5)0.0128 (6)0.0024 (5)
C120.0329 (6)0.0314 (6)0.0328 (6)0.0024 (5)0.0116 (5)0.0001 (5)
C100.0322 (6)0.0318 (6)0.0359 (6)0.0017 (5)0.0089 (5)0.0031 (5)
C130.0348 (7)0.0328 (7)0.0336 (6)0.0019 (5)0.0132 (5)0.0006 (5)
C40.0297 (6)0.0379 (7)0.0396 (7)0.0051 (5)0.0086 (5)0.0001 (5)
C80.0352 (7)0.0341 (7)0.0393 (7)0.0005 (5)0.0107 (6)0.0001 (5)
O30.0317 (5)0.0457 (7)0.0854 (9)0.0031 (5)0.0018 (5)0.0102 (6)
C30.0318 (6)0.0401 (7)0.0401 (7)0.0028 (5)0.0091 (5)0.0042 (6)
C90.0345 (7)0.0314 (6)0.0328 (6)0.0006 (5)0.0119 (5)0.0011 (5)
C10.0342 (6)0.0310 (6)0.0333 (6)0.0024 (5)0.0113 (5)0.0014 (5)
O70.0443 (6)0.0396 (6)0.0659 (7)0.0102 (5)0.0139 (5)0.0092 (5)
C70.0422 (7)0.0356 (7)0.0398 (7)0.0061 (6)0.0175 (6)0.0047 (6)
O40.0329 (5)0.0435 (6)0.0661 (7)0.0095 (4)0.0095 (5)0.0028 (5)
C50.0433 (7)0.0315 (7)0.0449 (7)0.0061 (6)0.0166 (6)0.0003 (6)
C60.0519 (8)0.0294 (6)0.0483 (8)0.0010 (6)0.0222 (7)0.0033 (6)
C150.0329 (8)0.0638 (12)0.0911 (14)0.0019 (8)0.0063 (8)0.0113 (10)
C140.0677 (11)0.0416 (9)0.0790 (12)0.0009 (8)0.0387 (10)0.0066 (8)
C160.0575 (11)0.0644 (12)0.0714 (12)0.0185 (9)0.0038 (9)0.0198 (10)
O80.0527 (8)0.0662 (10)0.0874 (11)0.0122 (7)0.0232 (7)0.0162 (8)
Geometric parameters (Å, º) top
O5—C121.3623 (16)O3—C31.3567 (17)
O5—C131.3753 (17)O3—C151.402 (2)
O1—C11.3523 (16)O7—C71.3640 (17)
O1—H10.8561O7—H70.8336
C11—C121.4040 (18)C7—C61.401 (2)
C11—C11.4204 (19)O4—C161.437 (2)
C11—C101.4402 (18)C5—C61.375 (2)
O6—C101.2601 (16)C5—H50.9300
O2—C21.3820 (17)C6—H60.9300
O2—C141.426 (2)C15—H15A0.9600
C2—C11.3765 (19)C15—H15B0.9600
C2—C31.409 (2)C15—H15C0.9600
C12—C41.3979 (19)C14—H14A0.9600
C10—C91.4568 (19)C14—H14B0.9600
C13—C51.3919 (19)C14—H14C0.9600
C13—C91.3920 (19)C16—H16A0.9600
C4—O41.3779 (16)C16—H16B0.9600
C4—C31.400 (2)C16—H16C0.9600
C8—C71.3781 (19)O8—H150.85 (4)
C8—C91.4057 (19)O8—H160.73 (4)
C8—H80.9300
C12—O5—C13119.33 (10)O1—C1—C11120.54 (12)
C1—O1—H1109.5C2—C1—C11120.10 (12)
C12—C11—C1118.04 (12)C7—O7—H7109.5
C12—C11—C10120.44 (12)O7—C7—C8123.07 (14)
C1—C11—C10121.51 (12)O7—C7—C6117.39 (13)
C2—O2—C14111.49 (12)C8—C7—C6119.54 (13)
C1—C2—O2120.20 (12)C4—O4—C16114.94 (13)
C1—C2—C3120.75 (13)C6—C5—C13119.48 (14)
O2—C2—C3119.05 (12)C6—C5—H5120.3
O5—C12—C4115.67 (12)C13—C5—H5120.3
O5—C12—C11121.75 (12)C5—C6—C7120.84 (13)
C4—C12—C11122.58 (13)C5—C6—H6119.6
O6—C10—C11121.83 (12)C7—C6—H6119.6
O6—C10—C9121.87 (12)O3—C15—H15A109.5
C11—C10—C9116.31 (12)O3—C15—H15B109.5
O5—C13—C5116.43 (12)H15A—C15—H15B109.5
O5—C13—C9122.92 (12)O3—C15—H15C109.5
C5—C13—C9120.65 (13)H15A—C15—H15C109.5
O4—C4—C12119.65 (13)H15B—C15—H15C109.5
O4—C4—C3122.26 (12)O2—C14—H14A109.5
C12—C4—C3117.91 (12)O2—C14—H14B109.5
C7—C8—C9120.33 (13)H14A—C14—H14B109.5
C7—C8—H8119.8O2—C14—H14C109.5
C9—C8—H8119.8H14A—C14—H14C109.5
C3—O3—C15124.13 (14)H14B—C14—H14C109.5
O3—C3—C4126.78 (13)O4—C16—H16A109.5
O3—C3—C2112.65 (13)O4—C16—H16B109.5
C4—C3—C2120.57 (12)H16A—C16—H16B109.5
C13—C9—C8119.08 (12)O4—C16—H16C109.5
C13—C9—C10119.11 (12)H16A—C16—H16C109.5
C8—C9—C10121.79 (12)H16B—C16—H16C109.5
O1—C1—C2119.35 (12)H15—O8—H16106 (3)
C14—O2—C2—C193.37 (16)O5—C13—C9—C8177.67 (12)
C14—O2—C2—C387.18 (17)C5—C13—C9—C83.1 (2)
C13—O5—C12—C4179.21 (11)O5—C13—C9—C104.2 (2)
C13—O5—C12—C111.25 (19)C5—C13—C9—C10175.03 (12)
C1—C11—C12—O5179.12 (11)C7—C8—C9—C131.5 (2)
C10—C11—C12—O50.6 (2)C7—C8—C9—C10176.60 (13)
C1—C11—C12—C41.4 (2)O6—C10—C9—C13175.33 (13)
C10—C11—C12—C4179.86 (12)C11—C10—C9—C134.52 (19)
C12—C11—C10—O6177.61 (13)O6—C10—C9—C82.7 (2)
C1—C11—C10—O64.0 (2)C11—C10—C9—C8177.40 (12)
C12—C11—C10—C92.24 (18)O2—C2—C1—O10.8 (2)
C1—C11—C10—C9176.19 (12)C3—C2—C1—O1178.70 (12)
C12—O5—C13—C5178.02 (12)O2—C2—C1—C11178.48 (12)
C12—O5—C13—C91.24 (19)C3—C2—C1—C112.1 (2)
O5—C12—C4—O43.85 (19)C12—C11—C1—O1179.59 (11)
C11—C12—C4—O4176.61 (12)C10—C11—C1—O11.1 (2)
O5—C12—C4—C3179.11 (12)C12—C11—C1—C20.37 (19)
C11—C12—C4—C31.4 (2)C10—C11—C1—C2178.10 (12)
C15—O3—C3—C410.8 (3)C9—C8—C7—O7179.92 (13)
C15—O3—C3—C2169.68 (17)C9—C8—C7—C60.9 (2)
O4—C4—C3—O35.7 (2)C12—C4—O4—C1675.54 (18)
C12—C4—C3—O3179.12 (14)C3—C4—O4—C16109.41 (18)
O4—C4—C3—C2174.75 (13)O5—C13—C5—C6178.43 (12)
C12—C4—C3—C20.4 (2)C9—C13—C5—C62.3 (2)
C1—C2—C3—O3177.47 (13)C13—C5—C6—C70.2 (2)
O2—C2—C3—O31.98 (19)O7—C7—C6—C5179.03 (13)
C1—C2—C3—C42.1 (2)C8—C7—C6—C51.8 (2)
O2—C2—C3—C4178.45 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8i—H16i···O20.73 (3)2.58 (3)3.091 (2)129.4
O8i—H16i···O30.73 (3)2.46 (3)3.177 (2)167.3
O8ii—H15ii···O60.84 (5)2.08 (5)2.923 (2)172.3
O7—H7···O8iii0.831.882.706 (2)169
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z+1; (iii) x1, y, z1.

Experimental details

Crystal data
Chemical formulaC16H14O7·H2O
Mr336.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.9272 (9), 10.4511 (8), 14.0201 (11)
β (°) 111.683 (1)
V3)1487.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.2 × 0.1 × 0.05
Data collection
DiffractometerBruker SMART 1K CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8808, 3563, 2848
Rint0.053
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.142, 1.06
No. of reflections3563
No. of parameters233
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.24

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8i—H16i···O20.73 (3)2.58 (3)3.091 (2)129.4
O8i—H16i···O30.73 (3)2.46 (3)3.177 (2)167.3
O8ii—H15ii···O60.84 (5)2.08 (5)2.923 (2)172.3
O7—H7···O8iii0.831.882.706 (2)168.5
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z+1; (iii) x1, y, z1.
 

Acknowledgements

This work was supported in part by the NSF-EPSCoR, USA.

References

First citationBasnet, P., Kadota, S., Shimizu, M. & Namba, T. (1994). Planta Med. 60, 507–511.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEvans, I. R., Howard, J. A. K., Šavikin-Fodulović, K. & Menković, N. (2004). Acta Cryst. E60, o1557–o1559.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFernandes, E. R., Carvalho, F. D., Remiao, F. G., Bastos, M. L., Pinto, M. M. & Gottlieb, O. R. (1995). Pharm. Res. 12, 1756–1760.  CAS PubMed Web of Science Google Scholar
First citationGales, L., de Sousa, M. E., Pinto, M. M. M., Kijjoa, A. & Damas, A. M. (2001). Acta Cryst. C57, 1319–1323.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJiang, K. J., Zhang, Y. H., Shao, Z. Y., Chen, J. J. & Kuai, B. K. (2004). Chin. J. Struct. Chem. 23, 262–266.  CAS Google Scholar
First citationKabaleeswaran, V., Malathi, R. & Rajan, S. S. (2003). J. Chem. Crystallogr. 33, 233–237.  Web of Science CSD CrossRef CAS Google Scholar
First citationKaran, M., Vasisht, K. & Handa, S. S. (1999). Phytother. Res. 13, 95–101.  CrossRef PubMed CAS Google Scholar
First citationKato, L., De Oliveira, C. M. A., Vencato, I. & Lauriucci, C. (2005). J. Chem. Crystallogr. 35, 23–26.  Web of Science CSD CrossRef CAS Google Scholar
First citationKijjoa, A., Jose, M., Gonzalez, T. G., Pinto, M. M. M., Damas, A. M., Mondranondra, I. O., Silva, A. M. S. & Herz, W. (1998). Phytochemistry, 49, 2159–2162.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiou, S. S., Shieh, W. L., Cheng, T. H., Won, S. J. & Lin, C. N. (1993). J. Pharm. Pharmacol. 45, 791–794.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMiura, T., Ichiki, H., Hashimoto, I., Iwamoto, N., Kato, M., Kubo, M., Ishihara, E., Komatsu, Y., Okada, M., Ishida, T. & Tanigawa, K. (2001). Phytomedicine, 8, 85–87.  Web of Science CrossRef PubMed CAS Google Scholar
First citationParmar, V. S., Bisht, K. S., Jain, R., Singh, S., Sharma, S. K., Gupta, S., Malhotra, S., Tyagi, O. D. & Vardhan, A. (1996). Indian J. Chem. 35B, 220–232.  CAS Google Scholar
First citationPedro, M., Cerqueira, F., Sousa, M. E., Nascimento, M. S. & Pinto, M. (2002). Bioorg. Med. Chem. 10, 3725–3730.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, G.-F., Lu, R.-H., Yang, Y.-S., Li, C.-L., Yang, A.-M. & Cai, L.-X. (2004). Acta Cryst. E60, o878–o880.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationShi, G. F., Lu, R. H., Yang, Y. S., Li, C. L., Yang, A. M. & Cai, L. X. (2005). J. Chem. Crystallogr. 35, 135–139.  Web of Science CSD CrossRef CAS Google Scholar
First citationSousa, E. P., Silva, A. M. S., Pinto, M. M. M., Pedro, M. M., Cerqueira, F. A. M. & Nascimento, M. S. J. (2002). Helv. Chim. Acta, 85, 2862–2876.  Web of Science CrossRef CAS Google Scholar
First citationStout, G. H., Lin, T. S. & Singh, I. (1969). Tetrahedron, 25, 1975–1983.  CSD CrossRef CAS Web of Science Google Scholar
First citationVijayalakshmi, J., Rajan, S. S. & Srinivasan, R. (1987). Acta Cryst. C43, 2108–2110.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages o651-o652
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds