metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m553-m554

Tetra­kis(μ-2-methyl­benzoato)bis­­[(2-methyl­benzoic acid)copper(II)]

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: bezuidbc.sci@ufs.ac.za

(Received 22 February 2008; accepted 10 March 2008; online 14 March 2008)

In the title centrosymmetric dinuclear compound, [Cu2(C8H7O2)4(C8H8O2)2], four o-toluate anions form a cage around two Cu atoms in a synsyn configuration. Two more o-toluic acid mol­ecules are apically bonded to the Cu atoms, which show a square-pyramidal coordination geometry. The acid H atoms are hydrogen bonded to the cage carboxyl O atoms [O⋯O = 2.660 (2) Å]. The mol­ecular packing forms a puckered pseudo-hexa­gonal close-packed layer in the (h00) plane, with soft inter­molecular H⋯H contacts (2.46–2.58 Å).

Related literature

For the synthesis of aromatic carboxylic acids, see: Kaeding (1967[Kaeding, W. W. (1967). J. Org. Chem. 26, 3144-3148.]). For tetra­kis(μ2-2-fluoro­benzoato)bis­(2-fluoro­benzoic acid)dicopper(II), see: Valach et al. (2000[Valach, F., Tokarcik, M., Maris, T., Watkin, D. J. & Prout, C. K. (2000). Z. Kristallogr. 215, 56-60.]), For tetra­kis(μ2-benzoato)bis­(2-fluoro­benzoic acid)dicopper(II), see: Kawata et al. (1992[Kawata, T., Uekusa, H., Ohba, S., Furukawa, T., Tokii, T., Muto, Y. & Kato, M. (1992). Acta Cryst. B48, 253-261.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C8H7O2)4(C8H8O2)2]

  • Mr = 939.96

  • Triclinic, [P \overline 1]

  • a = 10.530 (3) Å

  • b = 10.579 (3) Å

  • c = 10.773 (4) Å

  • α = 109.248 (2)°

  • β = 93.156 (2)°

  • γ = 106.287 (2)°

  • V = 1073.0 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.06 mm−1

  • T = 100 (2) K

  • 0.25 × 0.08 × 0.06 mm

Data collection
  • Bruker X8 APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT-Plus (including XPREP) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]b) Tmin = 0.778, Tmax = 0.939

  • 17497 measured reflections

  • 5138 independent reflections

  • 4668 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.065

  • S = 1.05

  • 5138 reflections

  • 284 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O21i 1.9402 (12)
Cu1—O11 1.9559 (12)
Cu1—O12 1.9585 (13)
Cu1—O22i 1.9900 (13)
Cu1—O31 2.1622 (13)
Cu1⋯Cu1i 2.5780 (9)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O32—H32⋯O22i 0.82 1.85 2.6604 (18) 168
C16—H16⋯O21 0.93 2.39 2.721 (2) 101
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus (including XPREP) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). SAINT-Plus (including XPREP) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In our endeavours to produce phenols from aromatic carboxylic acids, we came across work by Kaeding (1967). In order to verify the reaction sequence as proposed by Kaeding, we prepared the copper salt of o-toluic acid and obtained single crystals.

The title compound, (I), [Cu2(C8H7O2)4(C8H8O2)2] crystallized with molecular symmetry -1 (Fig.1). The title compound exhibits a cage-like structure. Four o-toluic anionic ligands form a cage around two Cu-atoms in a syn-syn configuration. Two more carboxylic acid are apically bonded to the Cu-atoms. The acid protons are hydrogen bonded to the cage carboxylate O atoms, O32—H32···O22 = 167.6° and O32···O22 = 2.6604 (18) Å. Another intra-molecular H···H short contact is present at C16···O21 with C16—H16···O21 = 100.9° and C16···O21 = 2.721 (2) Å.

Comparing the Van der Waals radii of copper, 2.32 Å, and the metallic Cu—Cu bond length, 2.55 Å, to the Cu—Cu separation in (I), 2.5780 (9) Å, one would expect the presence of weak orbital interaction. The Cu—O bond lengths of the cage carboxylates vary between 1.9402 (12) - 1.9900 (13) Å. The Cu—O bond distances to the adducted acid molecules show a ca 0.2 Å increase. Each Cu atom is displaced from the basal plane of the four caged carboxylates by 0.171 Å, towards the apical O atom. Compound (I) forms a puckered pseudo-hexagonal close packed layer in the (h 0 0) plane, with soft inter-molecular H···H contacts, 2.457–2.580 Å (Fig.2).

Related literature top

For the synthesis of aromatic carboxylic acids, see: Kaeding (1967). For tetrakis(µ2-2-fluorobenzoato)-bis(2-fluorobenzoic acid)-di-copper(II), see: Valach et al. (2000), For tetrakis(µ2benzoato)-bis(2-fluorobenzoic acid)-di-copper(II), see: Kawata et al. (1992).

Experimental top

The complex [Cu2(C8H7O2)4(C8H8O2)2] was prepared by heating o-toluic acid (2.52 g, 18.5 mmol), copper carbonate (0.73 g, 3.3 mmol) and magnesium oxide (0.19 g, 4.68 mmol) under reflux, in toluene (30 ml) for 24 h. The product was extacted and crystallized from diethyl ether to yield a blue crystalline solid. (Yield: 84%)

Refinement top

Hydrogen atoms were placed in calculated positions, and they ride on the parent C-atoms, with U set to 1.2 to 1.5 times Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I) showing the atom-numbering scheme with displacement ellipsoids at the 30% probability level, non labelled atoms are symmetric equivalents. For the phenyl C-atoms, the first digit indicates ring number and the second digit the position of the atom in the ring.
[Figure 2] Fig. 2. Indication of pseudo-hexagonal close packing along the b axis.
Tetrakis(µ-2-methylbenzoato)bis[(2-methylbenzoic acid)copper(II)] top
Crystal data top
[Cu2(C8H7O2)4(C8H8O2)2]Z = 1
Mr = 939.96F(000) = 486
Triclinic, P1Dx = 1.455 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 10.530 (3) ÅCell parameters from 8974 reflections
b = 10.579 (3) Åθ = 2.6–28.3°
c = 10.773 (4) ŵ = 1.06 mm1
α = 109.248 (2)°T = 100 K
β = 93.156 (2)°Needle, blue
γ = 106.287 (2)°0.25 × 0.08 × 0.06 mm
V = 1073.0 (6) Å3
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
5138 independent reflections
Radiation source: fine-focus sealed tube4668 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω and ϕ scansθmax = 28°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004b)
h = 1313
Tmin = 0.778, Tmax = 0.939k = 1313
17497 measured reflectionsl = 1414
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.024P)2 + 0.7431P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.41 e Å3
5138 reflectionsΔρmin = 0.33 e Å3
284 parameters
Crystal data top
[Cu2(C8H7O2)4(C8H8O2)2]γ = 106.287 (2)°
Mr = 939.96V = 1073.0 (6) Å3
Triclinic, P1Z = 1
a = 10.530 (3) ÅMo Kα radiation
b = 10.579 (3) ŵ = 1.06 mm1
c = 10.773 (4) ÅT = 100 K
α = 109.248 (2)°0.25 × 0.08 × 0.06 mm
β = 93.156 (2)°
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
5138 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004b)
4668 reflections with I > 2σ(I)
Tmin = 0.778, Tmax = 0.939Rint = 0.026
17497 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.05Δρmax = 0.41 e Å3
5138 reflectionsΔρmin = 0.33 e Å3
284 parameters
Special details top

Experimental. The intensity data was collected on a Bruker X8 Apex II 4 K Kappa CCD diffractometer using an exposure time of 30 s/frame. The 1757 frames were collected with a frame width of 0.5° covering up to θ = 28° with 99.3% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.444832 (17)0.389154 (17)0.395103 (17)0.01027 (6)
O320.51055 (11)0.07974 (12)0.26534 (12)0.0217 (2)
H320.55250.15940.31750.033*
O310.36065 (11)0.18596 (11)0.23619 (10)0.0154 (2)
O210.47477 (11)0.50089 (11)0.70973 (10)0.0175 (2)
O220.38457 (10)0.65099 (11)0.57571 (11)0.0168 (2)
O110.38005 (11)0.30802 (11)0.52758 (10)0.0157 (2)
O120.29312 (10)0.46128 (11)0.39073 (10)0.0150 (2)
C160.36586 (15)0.36861 (16)0.87485 (15)0.0161 (3)
H160.39990.46660.90490.019*
C310.31192 (15)0.05882 (15)0.11267 (14)0.0142 (3)
C110.35899 (14)0.29021 (15)0.74017 (14)0.0126 (3)
C360.37677 (17)0.14773 (16)0.03537 (16)0.0189 (3)
H360.46980.12260.05170.023*
C250.00903 (16)0.72093 (17)0.56202 (18)0.0235 (3)
H250.03260.74790.63580.028*
C3210.09555 (16)0.00753 (18)0.17572 (17)0.0229 (3)
H32A0.09540.06740.14430.034*
H32B0.1380.03180.26720.034*
H32C0.00490.0650.16840.034*
C10.40786 (14)0.37152 (15)0.65233 (14)0.0127 (3)
C120.30930 (15)0.14154 (15)0.69355 (15)0.0143 (3)
C150.32315 (16)0.30349 (17)0.96407 (16)0.0183 (3)
H150.32850.35691.05330.022*
C20.29274 (14)0.57566 (15)0.47500 (14)0.0119 (3)
C130.26600 (15)0.07881 (16)0.78583 (16)0.0166 (3)
H130.23180.01910.75710.02*
C320.17142 (16)0.09665 (16)0.09292 (15)0.0168 (3)
C210.17807 (14)0.62904 (14)0.45946 (15)0.0131 (3)
C330.10027 (17)0.22517 (17)0.00704 (16)0.0229 (3)
H330.00710.25360.02130.027*
C220.13237 (16)0.63473 (16)0.33772 (16)0.0182 (3)
C1210.30291 (18)0.04573 (16)0.55228 (16)0.0211 (3)
H12A0.2780.05050.54750.032*
H12B0.38920.07070.52560.032*
H12C0.23750.05610.49390.032*
C260.11778 (16)0.67358 (16)0.57076 (16)0.0175 (3)
H260.1510.67140.65160.021*
C340.16490 (19)0.31154 (17)0.08566 (16)0.0254 (4)
H340.11490.3960.15250.03*
C30.39545 (15)0.08020 (15)0.21105 (14)0.0137 (3)
C350.30350 (19)0.27297 (17)0.06539 (16)0.0238 (4)
H350.34690.33050.11890.029*
C140.27235 (15)0.15762 (17)0.91873 (16)0.0177 (3)
H140.24250.11250.97750.021*
C240.03711 (16)0.72774 (17)0.44262 (19)0.0261 (4)
H240.110.75980.4360.031*
C2210.1966 (2)0.5912 (2)0.21626 (17)0.0314 (4)
H22A0.29170.63780.23880.047*
H22B0.16030.61730.14810.047*
H22C0.17890.49090.18420.047*
C230.02467 (17)0.68697 (17)0.33293 (18)0.0250 (4)
H230.00620.69450.25390.03*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01089 (9)0.00896 (9)0.01017 (9)0.00293 (6)0.00121 (6)0.00270 (6)
O320.0162 (5)0.0158 (5)0.0258 (6)0.0068 (4)0.0053 (5)0.0019 (5)
O310.0165 (5)0.0124 (5)0.0150 (5)0.0054 (4)0.0001 (4)0.0019 (4)
O210.0211 (6)0.0135 (5)0.0143 (5)0.0004 (4)0.0038 (4)0.0047 (4)
O220.0126 (5)0.0159 (5)0.0178 (5)0.0056 (4)0.0018 (4)0.0006 (4)
O110.0205 (5)0.0135 (5)0.0122 (5)0.0031 (4)0.0019 (4)0.0053 (4)
O120.0145 (5)0.0132 (5)0.0157 (5)0.0058 (4)0.0003 (4)0.0025 (4)
C160.0170 (7)0.0144 (7)0.0160 (7)0.0042 (6)0.0020 (6)0.0052 (6)
C310.0177 (7)0.0117 (6)0.0126 (7)0.0041 (6)0.0018 (6)0.0043 (5)
C110.0099 (6)0.0153 (7)0.0139 (7)0.0045 (5)0.0023 (5)0.0066 (6)
C360.0235 (8)0.0156 (7)0.0187 (8)0.0083 (6)0.0057 (6)0.0057 (6)
C250.0163 (8)0.0180 (8)0.0319 (9)0.0058 (6)0.0088 (7)0.0026 (7)
C3210.0146 (7)0.0262 (8)0.0265 (9)0.0060 (6)0.0035 (6)0.0082 (7)
C10.0115 (7)0.0141 (7)0.0142 (7)0.0061 (5)0.0027 (5)0.0055 (5)
C120.0121 (7)0.0154 (7)0.0158 (7)0.0048 (6)0.0011 (5)0.0057 (6)
C150.0197 (8)0.0227 (8)0.0139 (7)0.0081 (6)0.0042 (6)0.0067 (6)
C20.0121 (7)0.0116 (6)0.0131 (7)0.0026 (5)0.0035 (5)0.0066 (5)
C130.0134 (7)0.0149 (7)0.0216 (8)0.0028 (6)0.0021 (6)0.0083 (6)
C320.0190 (7)0.0156 (7)0.0152 (7)0.0028 (6)0.0008 (6)0.0073 (6)
C210.0109 (6)0.0093 (6)0.0169 (7)0.0015 (5)0.0013 (5)0.0038 (5)
C330.0232 (8)0.0182 (8)0.0211 (8)0.0025 (6)0.0041 (7)0.0082 (6)
C220.0196 (8)0.0158 (7)0.0181 (8)0.0072 (6)0.0005 (6)0.0038 (6)
C1210.0297 (9)0.0130 (7)0.0189 (8)0.0054 (6)0.0039 (7)0.0048 (6)
C260.0165 (7)0.0151 (7)0.0191 (7)0.0040 (6)0.0038 (6)0.0044 (6)
C340.0394 (10)0.0137 (7)0.0149 (8)0.0004 (7)0.0029 (7)0.0034 (6)
C30.0138 (7)0.0146 (7)0.0120 (7)0.0041 (6)0.0036 (5)0.0043 (5)
C350.0401 (10)0.0146 (7)0.0167 (8)0.0110 (7)0.0069 (7)0.0034 (6)
C140.0147 (7)0.0242 (8)0.0194 (8)0.0063 (6)0.0046 (6)0.0141 (6)
C240.0141 (7)0.0183 (8)0.0399 (10)0.0076 (6)0.0033 (7)0.0022 (7)
C2210.0442 (11)0.0427 (11)0.0175 (8)0.0258 (9)0.0062 (8)0.0134 (8)
C230.0246 (9)0.0205 (8)0.0264 (9)0.0094 (7)0.0085 (7)0.0041 (7)
Geometric parameters (Å, º) top
Cu1—O21i1.9402 (12)C321—H32B0.96
Cu1—O111.9559 (12)C321—H32C0.96
Cu1—O121.9585 (13)C12—C131.397 (2)
Cu1—O22i1.9900 (13)C12—C1211.510 (2)
Cu1—O312.1622 (13)C15—C141.385 (2)
Cu1—Cu1i2.5780 (9)C15—H150.93
O32—C31.3184 (19)C2—C211.492 (2)
O32—H320.82C13—C141.386 (2)
O31—C31.2250 (18)C13—H130.93
O21—C11.2670 (18)C32—C331.394 (2)
O21—Cu1i1.9402 (12)C21—C261.394 (2)
O22—C21.2764 (18)C21—C221.398 (2)
O22—Cu1i1.9900 (13)C33—C341.385 (3)
O11—C11.2626 (18)C33—H330.93
O12—C21.2518 (18)C22—C231.399 (2)
C16—C151.382 (2)C22—C2211.502 (2)
C16—C111.400 (2)C121—H12A0.96
C16—H160.93C121—H12B0.96
C31—C361.397 (2)C121—H12C0.96
C31—C321.404 (2)C26—H260.93
C31—C31.485 (2)C34—C351.384 (3)
C11—C121.410 (2)C34—H340.93
C11—C11.497 (2)C35—H350.93
C36—C351.384 (2)C14—H140.93
C36—H360.93C24—C231.383 (3)
C25—C241.381 (3)C24—H240.93
C25—C261.383 (2)C221—H22A0.96
C25—H250.93C221—H22B0.96
C321—C321.506 (2)C221—H22C0.96
C321—H32A0.96C23—H230.93
O21i—Cu1—O11170.01 (4)O12—C2—O22124.23 (14)
O21i—Cu1—O1287.99 (5)O12—C2—C21118.96 (13)
O11—Cu1—O1291.79 (5)O22—C2—C21116.81 (13)
O21i—Cu1—O22i89.93 (5)C14—C13—C12122.17 (14)
O11—Cu1—O22i88.55 (5)C14—C13—H13118.9
O12—Cu1—O22i169.88 (4)C12—C13—H13118.9
O21i—Cu1—O3198.74 (6)C33—C32—C31117.35 (15)
O11—Cu1—O3191.16 (6)C33—C32—C321119.26 (15)
O12—Cu1—O3199.14 (5)C31—C32—C321123.37 (14)
O22i—Cu1—O3190.97 (5)C26—C21—C22120.83 (14)
O21i—Cu1—Cu1i87.75 (5)C26—C21—C2117.76 (13)
O11—Cu1—Cu1i82.27 (5)C22—C21—C2121.41 (13)
O12—Cu1—Cu1i86.61 (4)C34—C33—C32121.67 (16)
O22i—Cu1—Cu1i83.41 (4)C34—C33—H33119.2
O31—Cu1—Cu1i171.44 (3)C32—C33—H33119.2
C3—O32—H32109.5C21—C22—C23117.30 (15)
C3—O31—Cu1129.50 (10)C21—C22—C221122.57 (15)
C1—O21—Cu1i119.83 (10)C23—C22—C221120.12 (15)
C2—O22—Cu1i123.41 (10)C12—C121—H12A109.5
C1—O11—Cu1125.45 (10)C12—C121—H12B109.5
C2—O12—Cu1122.02 (10)H12A—C121—H12B109.5
C15—C16—C11121.39 (14)C12—C121—H12C109.5
C15—C16—H16119.3H12A—C121—H12C109.5
C11—C16—H16119.3H12B—C121—H12C109.5
C36—C31—C32120.86 (14)C25—C26—C21120.55 (15)
C36—C31—C3118.27 (14)C25—C26—H26119.7
C32—C31—C3120.78 (13)C21—C26—H26119.7
C16—C11—C12119.90 (13)C35—C34—C33120.44 (15)
C16—C11—C1116.94 (13)C35—C34—H34119.8
C12—C11—C1123.16 (13)C33—C34—H34119.8
C35—C36—C31120.42 (16)O31—C3—O32123.59 (13)
C35—C36—H36119.8O31—C3—C31122.29 (14)
C31—C36—H36119.8O32—C3—C31114.10 (13)
C24—C25—C26119.35 (16)C36—C35—C34119.22 (16)
C24—C25—H25120.3C36—C35—H35120.4
C26—C25—H25120.3C34—C35—H35120.4
C32—C321—H32A109.5C15—C14—C13120.05 (14)
C32—C321—H32B109.5C15—C14—H14120
H32A—C321—H32B109.5C13—C14—H14120
C32—C321—H32C109.5C25—C24—C23120.20 (16)
H32A—C321—H32C109.5C25—C24—H24119.9
H32B—C321—H32C109.5C23—C24—H24119.9
O11—C1—O21124.51 (13)C22—C221—H22A109.5
O11—C1—C11118.61 (13)C22—C221—H22B109.5
O21—C1—C11116.88 (13)H22A—C221—H22B109.5
C13—C12—C11117.39 (14)C22—C221—H22C109.5
C13—C12—C121117.89 (14)H22A—C221—H22C109.5
C11—C12—C121124.70 (13)H22B—C221—H22C109.5
C16—C15—C14119.09 (15)C24—C23—C22121.72 (16)
C16—C15—H15120.5C24—C23—H23119.1
C14—C15—H15120.5C22—C23—H23119.1
O21i—Cu1—O31—C3108.89 (13)C11—C12—C13—C140.8 (2)
O11—Cu1—O31—C369.75 (13)C121—C12—C13—C14177.70 (14)
O12—Cu1—O31—C3161.75 (13)C36—C31—C32—C330.5 (2)
O22i—Cu1—O31—C318.81 (13)C3—C31—C32—C33176.08 (14)
O12—Cu1—O11—C188.41 (12)C36—C31—C32—C321178.06 (14)
O22i—Cu1—O11—C181.47 (12)C3—C31—C32—C3215.4 (2)
O31—Cu1—O11—C1172.41 (12)O12—C2—C21—C26131.59 (15)
Cu1i—Cu1—O11—C12.08 (11)O22—C2—C21—C2647.95 (19)
O21i—Cu1—O12—C287.01 (12)O12—C2—C21—C2248.5 (2)
O11—Cu1—O12—C283.00 (12)O22—C2—C21—C22131.91 (15)
O22i—Cu1—O12—C28.8 (3)C31—C32—C33—C341.1 (2)
O31—Cu1—O12—C2174.46 (11)C321—C32—C33—C34179.70 (15)
Cu1i—Cu1—O12—C20.85 (11)C26—C21—C22—C230.1 (2)
C15—C16—C11—C120.8 (2)C2—C21—C22—C23179.71 (14)
C15—C16—C11—C1179.95 (14)C26—C21—C22—C221178.43 (16)
C32—C31—C36—C352.2 (2)C2—C21—C22—C2211.4 (2)
C3—C31—C36—C35174.48 (14)C24—C25—C26—C211.9 (2)
Cu1—O11—C1—O215.1 (2)C22—C21—C26—C251.7 (2)
Cu1—O11—C1—C11175.02 (9)C2—C21—C26—C25178.42 (14)
Cu1i—O21—C1—O115.4 (2)C32—C33—C34—C351.0 (2)
Cu1i—O21—C1—C11174.78 (9)Cu1—O31—C3—O3213.1 (2)
C16—C11—C1—O11166.58 (13)Cu1—O31—C3—C31168.70 (10)
C12—C11—C1—O1114.2 (2)C36—C31—C3—O31144.89 (15)
C16—C11—C1—O2113.27 (19)C32—C31—C3—O3131.8 (2)
C12—C11—C1—O21165.91 (14)C36—C31—C3—O3233.43 (19)
C16—C11—C12—C131.3 (2)C32—C31—C3—O32149.91 (14)
C1—C11—C12—C13179.57 (13)C31—C36—C35—C342.2 (2)
C16—C11—C12—C121177.11 (14)C33—C34—C35—C360.7 (2)
C1—C11—C12—C1212.1 (2)C16—C15—C14—C130.6 (2)
C11—C16—C15—C140.1 (2)C12—C13—C14—C150.2 (2)
Cu1—O12—C2—O225.0 (2)C26—C25—C24—C230.3 (2)
Cu1—O12—C2—C21175.52 (9)C25—C24—C23—C221.6 (3)
Cu1i—O22—C2—O127.4 (2)C21—C22—C23—C241.8 (2)
Cu1i—O22—C2—C21173.12 (9)C221—C22—C23—C24179.87 (17)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O32—H32···O22i0.821.852.6604 (18)168
C16—H16···O210.932.392.721 (2)101
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C8H7O2)4(C8H8O2)2]
Mr939.96
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.530 (3), 10.579 (3), 10.773 (4)
α, β, γ (°)109.248 (2), 93.156 (2), 106.287 (2)
V3)1073.0 (6)
Z1
Radiation typeMo Kα
µ (mm1)1.06
Crystal size (mm)0.25 × 0.08 × 0.06
Data collection
DiffractometerBruker X8 APEXII 4K KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004b)
Tmin, Tmax0.778, 0.939
No. of measured, independent and
observed [I > 2σ(I)] reflections
17497, 5138, 4668
Rint0.026
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.065, 1.05
No. of reflections5138
No. of parameters284
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.33

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Cu1—O21i1.9402 (12)Cu1—Cu1i2.5780 (9)
Cu1—O111.9559 (12)C31—C31.485 (2)
Cu1—O121.9585 (13)C11—C11.497 (2)
Cu1—O22i1.9900 (13)C2—C211.492 (2)
Cu1—O312.1622 (13)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O32—H32···O22i0.821.852.6604 (18)167.6
C16—H16···O210.932.392.721 (2)100.9
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

Financial assistance from the University of the Free State and SASOL to ACS is gratefully acknowledged. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of SASOL.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SAINT-Plus (including XPREP) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKaeding, W. W. (1967). J. Org. Chem. 26, 3144–3148.  CrossRef Web of Science Google Scholar
First citationKawata, T., Uekusa, H., Ohba, S., Furukawa, T., Tokii, T., Muto, Y. & Kato, M. (1992). Acta Cryst. B48, 253–261.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationValach, F., Tokarcik, M., Maris, T., Watkin, D. J. & Prout, C. K. (2000). Z. Kristallogr. 215, 56–60.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m553-m554
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds