metal-organic compounds
Bis[benzyl N′-(3-phenylprop-2-enylidene)hydrazinecarbodithioato-κ2N′,S]zinc(II)
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, cDepartment of Chemistry, Rajshahi University, Rajshahi 6205, Bangladesh, and dDepartment of Chemistry, Rajshahi University of Engineering and Technology, Rajshahi 6205, Bangladesh
*Correspondence e-mail: ttofazzal@yahoo.com
In the title ZnII complex, [Zn(C17H15N2S2)2], the ZnII atom lies on a twofold rotation axis. It exists in a tetrahedral geometry, chelated by two deprotonated Schiff base ligands. The dihedral angle between each ligand is 71.48 (8)°. Molecules are connected by weak C—H⋯S intermolecular interactions into chains along the c axis. The is further stabilized by C—H⋯π interactions involving the phenyl ring of the 3-phenylprop-2-enylidene unit.
Related literature
For the synthesis and structure of S-benzyldithiocarbazates, see: Ali & Tarafder (1977); Shanmuga Sundara Raj et al. (2000). For the structures of ZnII complexes, see: Latheef et al. (2007); Tarafder, Chew et al. (2002). For the structures of other metal dithiocarbazates, see: Ali et al. (2001, 2002, 2008); Chew et al. (2004); Crouse et al. (2004); Tarafder et al. (2001, 2008); Tarafder, Chew et al. (2002); Tarafder, Jin et al. (2002). For the bioactivity of metal S-benzyldithiocarbazates, see, for example: Ali et al. (2001, 2002); Tarafder et al. (2001); Tarafder, Jin et al. (2002).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).
Supporting information
10.1107/S1600536808005643/ng2427sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808005643/ng2427Isup2.hkl
The Schiff base ligand was prepared following the literature procedure (Tarafder et al., 2008) by adding cinamaldehyde (1.32 g, 10 mmol) to a hot solution of S-benzyldithiocarbazate (SBDTC) (1.98 g, 10 mmol) in absolute ethanol (40 ml). The mixture was refluxed for 10 min. The yellow precipitate, which formed, was isolated and washed with hot ethanol. The yellow solid was recrystallized from absolute ethanol (Yield: 1.52 g, 46%). The zinc complex was synthesized by adding the solution of the Schiff base ligand (0.31 g, 1 mmol) in absolute ethanol (70 ml) to a solution of zinc nitrate hexahydrate (0.15 g, 0.5 mmol) in absolute ethanol (5 ml) and stirred under boiling condition for 10 min. A resultant yellow precipitate was separated and washed with hot ethanol (Yield: 0.29 g, 63%). Yellow single crystals of the title complex were crystallized from a mixture solution of chloroform/absolute ethanol (70:5 v/v) after 40 days at room temperature and further recrystallized from chloroform (40 ml) by slow evaporation at 296 K after 10 days, M.p 457–458 K.
All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å, for CH and aromatic, 0.97 Å, for CH2 and Uiso = 1.2Ueq(C). The highest residual electron density peak is located at 0.60 Å from C1 and the deepest hole is located at 0.54 Å from Zn1.
Data collection: APEX2 (Bruker, 2005); cell
APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).[Zn(C17H15N2S2)2] | Dx = 1.455 Mg m−3 |
Mr = 688.23 | Melting point = 457–458 K |
Orthorhombic, Pbcn | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2n 2ab | Cell parameters from 4580 reflections |
a = 36.0897 (4) Å | θ = 1.1–30.0° |
b = 9.9310 (1) Å | µ = 1.08 mm−1 |
c = 8.7633 (1) Å | T = 100 K |
V = 3140.83 (6) Å3 | Block, yellow |
Z = 4 | 0.37 × 0.25 × 0.17 mm |
F(000) = 1424 |
Bruker SMART APEXII CCD area-detector diffractometer | 4580 independent reflections |
Radiation source: fine-focus sealed tube | 4071 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
Detector resolution: 8.33 pixels mm-1 | θmax = 30.0°, θmin = 1.1° |
ω scans | h = −50→50 |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | k = −13→13 |
Tmin = 0.692, Tmax = 0.841 | l = −12→12 |
82655 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.091 | H-atom parameters constrained |
S = 1.15 | w = 1/[σ2(Fo2) + (0.0478P)2 + 1.4067P] where P = (Fo2 + 2Fc2)/3 |
4580 reflections | (Δ/σ)max = 0.001 |
195 parameters | Δρmax = 0.49 e Å−3 |
0 restraints | Δρmin = −0.32 e Å−3 |
[Zn(C17H15N2S2)2] | V = 3140.83 (6) Å3 |
Mr = 688.23 | Z = 4 |
Orthorhombic, Pbcn | Mo Kα radiation |
a = 36.0897 (4) Å | µ = 1.08 mm−1 |
b = 9.9310 (1) Å | T = 100 K |
c = 8.7633 (1) Å | 0.37 × 0.25 × 0.17 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 4580 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 4071 reflections with I > 2σ(I) |
Tmin = 0.692, Tmax = 0.841 | Rint = 0.042 |
82655 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | 0 restraints |
wR(F2) = 0.091 | H-atom parameters constrained |
S = 1.15 | Δρmax = 0.49 e Å−3 |
4580 reflections | Δρmin = −0.32 e Å−3 |
195 parameters |
Experimental. The low-temparture data was collected with the Oxford Cyrosystem Cobra low-temperature attachment. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.0000 | 0.42216 (2) | 0.2500 | 0.01855 (8) | |
S1 | −0.056843 (10) | 0.51031 (4) | 0.20596 (5) | 0.02295 (9) | |
S2 | −0.126368 (10) | 0.40453 (4) | 0.31408 (5) | 0.02541 (10) | |
N1 | −0.02538 (3) | 0.29452 (12) | 0.40410 (14) | 0.0177 (2) | |
N2 | −0.06402 (3) | 0.29289 (12) | 0.40147 (14) | 0.0183 (2) | |
C1 | 0.10940 (4) | 0.21479 (15) | 0.60174 (17) | 0.0215 (3) | |
H1A | 0.1007 | 0.2854 | 0.5420 | 0.026* | |
C2 | 0.14657 (4) | 0.20851 (16) | 0.63939 (18) | 0.0238 (3) | |
H2B | 0.1627 | 0.2745 | 0.6040 | 0.029* | |
C3 | 0.16001 (4) | 0.10408 (18) | 0.72987 (18) | 0.0251 (3) | |
H3A | 0.1851 | 0.0999 | 0.7541 | 0.030* | |
C4 | 0.13595 (4) | 0.00646 (18) | 0.78363 (19) | 0.0263 (3) | |
H4A | 0.1448 | −0.0627 | 0.8451 | 0.032* | |
C5 | 0.09847 (4) | 0.01154 (17) | 0.74589 (18) | 0.0233 (3) | |
H5A | 0.0824 | −0.0543 | 0.7825 | 0.028* | |
C6 | 0.08479 (4) | 0.11508 (15) | 0.65326 (16) | 0.0191 (3) | |
C7 | 0.04530 (4) | 0.11779 (15) | 0.61642 (17) | 0.0197 (3) | |
H7A | 0.0304 | 0.0534 | 0.6627 | 0.024* | |
C8 | 0.02865 (4) | 0.20541 (15) | 0.52127 (17) | 0.0203 (3) | |
H8A | 0.0434 | 0.2660 | 0.4676 | 0.024* | |
C9 | −0.01069 (4) | 0.20968 (15) | 0.49886 (16) | 0.0194 (3) | |
H9A | −0.0258 | 0.1509 | 0.5530 | 0.023* | |
C10 | −0.07830 (4) | 0.38814 (15) | 0.31855 (16) | 0.0188 (3) | |
C11 | −0.14245 (4) | 0.29477 (17) | 0.46680 (18) | 0.0239 (3) | |
H11A | −0.1382 | 0.2011 | 0.4407 | 0.029* | |
H11B | −0.1295 | 0.3146 | 0.5611 | 0.029* | |
C12 | −0.18343 (4) | 0.32244 (15) | 0.48382 (17) | 0.0216 (3) | |
C13 | −0.19570 (4) | 0.42883 (18) | 0.5729 (2) | 0.0300 (3) | |
H13A | −0.1785 | 0.4831 | 0.6226 | 0.036* | |
C14 | −0.23315 (5) | 0.4555 (2) | 0.5890 (2) | 0.0327 (4) | |
H14A | −0.2410 | 0.5265 | 0.6503 | 0.039* | |
C15 | −0.25893 (4) | 0.37653 (18) | 0.51415 (19) | 0.0281 (3) | |
H15A | −0.2841 | 0.3942 | 0.5249 | 0.034* | |
C16 | −0.24710 (4) | 0.27147 (19) | 0.4234 (2) | 0.0316 (4) | |
H16A | −0.2644 | 0.2187 | 0.3722 | 0.038* | |
C17 | −0.20951 (4) | 0.24407 (17) | 0.4082 (2) | 0.0281 (3) | |
H17A | −0.2018 | 0.1729 | 0.3470 | 0.034* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.01629 (12) | 0.02017 (13) | 0.01920 (13) | 0.000 | 0.00389 (8) | 0.000 |
S1 | 0.02122 (17) | 0.02294 (18) | 0.02470 (18) | 0.00512 (13) | 0.00525 (14) | 0.00599 (14) |
S2 | 0.01511 (16) | 0.0341 (2) | 0.02701 (19) | 0.00377 (14) | −0.00046 (13) | 0.00913 (15) |
N1 | 0.0135 (5) | 0.0205 (5) | 0.0191 (5) | 0.0002 (4) | 0.0008 (4) | −0.0007 (4) |
N2 | 0.0131 (5) | 0.0227 (6) | 0.0191 (5) | −0.0007 (4) | −0.0003 (4) | 0.0002 (5) |
C1 | 0.0198 (6) | 0.0222 (7) | 0.0226 (7) | 0.0018 (5) | −0.0006 (5) | 0.0003 (5) |
C2 | 0.0176 (6) | 0.0265 (7) | 0.0272 (7) | −0.0010 (5) | 0.0016 (5) | −0.0024 (6) |
C3 | 0.0168 (6) | 0.0325 (8) | 0.0260 (7) | 0.0047 (6) | −0.0026 (5) | −0.0048 (6) |
C4 | 0.0240 (7) | 0.0294 (8) | 0.0255 (7) | 0.0061 (6) | −0.0039 (6) | 0.0025 (6) |
C5 | 0.0214 (7) | 0.0241 (7) | 0.0243 (7) | 0.0016 (6) | −0.0001 (5) | 0.0029 (6) |
C6 | 0.0166 (6) | 0.0224 (6) | 0.0184 (6) | 0.0019 (5) | −0.0006 (5) | −0.0011 (5) |
C7 | 0.0163 (6) | 0.0228 (7) | 0.0199 (6) | −0.0003 (5) | 0.0008 (5) | −0.0003 (5) |
C8 | 0.0155 (6) | 0.0235 (7) | 0.0219 (6) | −0.0004 (5) | 0.0011 (5) | 0.0008 (5) |
C9 | 0.0164 (6) | 0.0226 (7) | 0.0192 (6) | −0.0007 (5) | 0.0009 (5) | 0.0008 (5) |
C10 | 0.0156 (6) | 0.0227 (7) | 0.0182 (6) | 0.0008 (5) | 0.0010 (5) | −0.0008 (5) |
C11 | 0.0151 (6) | 0.0301 (8) | 0.0266 (7) | 0.0006 (5) | −0.0003 (5) | 0.0060 (6) |
C12 | 0.0148 (6) | 0.0268 (7) | 0.0230 (7) | 0.0001 (5) | −0.0011 (5) | 0.0044 (6) |
C13 | 0.0212 (7) | 0.0377 (9) | 0.0311 (8) | −0.0008 (6) | −0.0057 (6) | −0.0092 (7) |
C14 | 0.0235 (8) | 0.0425 (10) | 0.0322 (8) | 0.0068 (7) | −0.0010 (6) | −0.0106 (8) |
C15 | 0.0153 (6) | 0.0392 (9) | 0.0297 (8) | 0.0025 (6) | 0.0009 (6) | 0.0018 (7) |
C16 | 0.0172 (7) | 0.0347 (9) | 0.0428 (10) | −0.0042 (6) | −0.0036 (6) | −0.0053 (7) |
C17 | 0.0189 (7) | 0.0273 (8) | 0.0380 (9) | −0.0004 (6) | −0.0015 (6) | −0.0070 (7) |
Zn1—N1 | 2.0662 (12) | C6—C7 | 1.4616 (19) |
Zn1—N1i | 2.0662 (12) | C7—C8 | 1.347 (2) |
Zn1—S1i | 2.2634 (4) | C7—H7A | 0.9300 |
Zn1—S1 | 2.2636 (4) | C8—C9 | 1.4337 (19) |
S1—C10 | 1.7450 (15) | C8—H8A | 0.9300 |
S2—C10 | 1.7428 (14) | C9—H9A | 0.9300 |
S2—C11 | 1.8210 (16) | C11—C12 | 1.5118 (19) |
N1—C9 | 1.2964 (18) | C11—H11A | 0.9700 |
N1—N2 | 1.3948 (15) | C11—H11B | 0.9700 |
N2—C10 | 1.2994 (19) | C12—C13 | 1.386 (2) |
C1—C2 | 1.383 (2) | C12—C17 | 1.390 (2) |
C1—C6 | 1.405 (2) | C13—C14 | 1.384 (2) |
C1—H1A | 0.9300 | C13—H13A | 0.9300 |
C2—C3 | 1.393 (2) | C14—C15 | 1.382 (2) |
C2—H2B | 0.9300 | C14—H14A | 0.9300 |
C3—C4 | 1.384 (2) | C15—C16 | 1.379 (2) |
C3—H3A | 0.9300 | C15—H15A | 0.9300 |
C4—C5 | 1.393 (2) | C16—C17 | 1.390 (2) |
C4—H4A | 0.9300 | C16—H16A | 0.9300 |
C5—C6 | 1.400 (2) | C17—H17A | 0.9300 |
C5—H5A | 0.9300 | ||
N1—Zn1—N1i | 104.32 (7) | C7—C8—C9 | 123.08 (13) |
N1—Zn1—S1i | 121.84 (3) | C7—C8—H8A | 118.5 |
N1i—Zn1—S1i | 86.96 (3) | C9—C8—H8A | 118.5 |
N1—Zn1—S1 | 86.96 (3) | N1—C9—C8 | 120.80 (13) |
N1i—Zn1—S1 | 121.84 (3) | N1—C9—H9A | 119.6 |
S1i—Zn1—S1 | 134.50 (2) | C8—C9—H9A | 119.6 |
C10—S1—Zn1 | 92.11 (5) | N2—C10—S2 | 118.39 (11) |
C10—S2—C11 | 104.17 (7) | N2—C10—S1 | 130.26 (11) |
C9—N1—N2 | 114.33 (12) | S2—C10—S1 | 111.35 (8) |
C9—N1—Zn1 | 129.50 (10) | C12—C11—S2 | 105.99 (10) |
N2—N1—Zn1 | 116.07 (9) | C12—C11—H11A | 110.5 |
C10—N2—N1 | 113.42 (12) | S2—C11—H11A | 110.5 |
C2—C1—C6 | 120.33 (14) | C12—C11—H11B | 110.5 |
C2—C1—H1A | 119.8 | S2—C11—H11B | 110.5 |
C6—C1—H1A | 119.8 | H11A—C11—H11B | 108.7 |
C1—C2—C3 | 120.48 (14) | C13—C12—C17 | 118.62 (14) |
C1—C2—H2B | 119.8 | C13—C12—C11 | 120.44 (14) |
C3—C2—H2B | 119.8 | C17—C12—C11 | 120.92 (14) |
C4—C3—C2 | 119.80 (14) | C14—C13—C12 | 121.01 (15) |
C4—C3—H3A | 120.1 | C14—C13—H13A | 119.5 |
C2—C3—H3A | 120.1 | C12—C13—H13A | 119.5 |
C3—C4—C5 | 120.19 (15) | C15—C14—C13 | 120.01 (16) |
C3—C4—H4A | 119.9 | C15—C14—H14A | 120.0 |
C5—C4—H4A | 119.9 | C13—C14—H14A | 120.0 |
C4—C5—C6 | 120.44 (15) | C16—C15—C14 | 119.63 (15) |
C4—C5—H5A | 119.8 | C16—C15—H15A | 120.2 |
C6—C5—H5A | 119.8 | C14—C15—H15A | 120.2 |
C5—C6—C1 | 118.75 (13) | C15—C16—C17 | 120.35 (15) |
C5—C6—C7 | 119.05 (13) | C15—C16—H16A | 119.8 |
C1—C6—C7 | 122.18 (13) | C17—C16—H16A | 119.8 |
C8—C7—C6 | 125.72 (14) | C12—C17—C16 | 120.37 (15) |
C8—C7—H7A | 117.1 | C12—C17—H17A | 119.8 |
C6—C7—H7A | 117.1 | C16—C17—H17A | 119.8 |
N1—Zn1—S1—C10 | −6.84 (6) | C6—C7—C8—C9 | −174.96 (14) |
N1i—Zn1—S1—C10 | 98.14 (6) | N2—N1—C9—C8 | −176.13 (12) |
S1i—Zn1—S1—C10 | −140.35 (5) | Zn1—N1—C9—C8 | 7.7 (2) |
N1i—Zn1—N1—C9 | 64.77 (12) | C7—C8—C9—N1 | −178.89 (14) |
S1i—Zn1—N1—C9 | −30.62 (14) | N1—N2—C10—S2 | −176.19 (9) |
S1—Zn1—N1—C9 | −173.11 (13) | N1—N2—C10—S1 | 3.1 (2) |
N1i—Zn1—N1—N2 | −111.33 (10) | C11—S2—C10—N2 | 11.23 (14) |
S1i—Zn1—N1—N2 | 153.28 (8) | C11—S2—C10—S1 | −168.22 (8) |
S1—Zn1—N1—N2 | 10.79 (9) | Zn1—S1—C10—N2 | 4.50 (14) |
C9—N1—N2—C10 | 172.96 (13) | Zn1—S1—C10—S2 | −176.13 (7) |
Zn1—N1—N2—C10 | −10.34 (15) | C10—S2—C11—C12 | 171.23 (11) |
C6—C1—C2—C3 | −0.6 (2) | S2—C11—C12—C13 | −84.45 (16) |
C1—C2—C3—C4 | −0.6 (2) | S2—C11—C12—C17 | 94.11 (16) |
C2—C3—C4—C5 | 0.8 (2) | C17—C12—C13—C14 | 1.2 (3) |
C3—C4—C5—C6 | 0.1 (2) | C11—C12—C13—C14 | 179.80 (16) |
C4—C5—C6—C1 | −1.2 (2) | C12—C13—C14—C15 | −0.8 (3) |
C4—C5—C6—C7 | −179.72 (14) | C13—C14—C15—C16 | −0.1 (3) |
C2—C1—C6—C5 | 1.4 (2) | C14—C15—C16—C17 | 0.6 (3) |
C2—C1—C6—C7 | 179.91 (14) | C13—C12—C17—C16 | −0.7 (3) |
C5—C6—C7—C8 | −175.41 (15) | C11—C12—C17—C16 | −179.28 (16) |
C1—C6—C7—C8 | 6.1 (2) | C15—C16—C17—C12 | −0.2 (3) |
Symmetry code: (i) −x, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13A···S2ii | 0.93 | 2.76 | 3.6697 (17) | 167 |
C11—H11B···Cg1iii | 0.97 | 2.98 | 3.5785 (17) | 121 |
Symmetry codes: (ii) x, −y+1, z+1/2; (iii) x+1/2, −y+1/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Zn(C17H15N2S2)2] |
Mr | 688.23 |
Crystal system, space group | Orthorhombic, Pbcn |
Temperature (K) | 100 |
a, b, c (Å) | 36.0897 (4), 9.9310 (1), 8.7633 (1) |
V (Å3) | 3140.83 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.08 |
Crystal size (mm) | 0.37 × 0.25 × 0.17 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.692, 0.841 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 82655, 4580, 4071 |
Rint | 0.042 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.091, 1.15 |
No. of reflections | 4580 |
No. of parameters | 195 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.49, −0.32 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13A···S2i | 0.93 | 2.7569 | 3.6697 (17) | 167 |
C11—H11B···Cg1ii | 0.97 | 2.9763 | 3.5785 (17) | 121 |
Symmetry codes: (i) x, −y+1, z+1/2; (ii) x+1/2, −y+1/2, −z+1. |
Acknowledgements
MTHT and MTI thank Rajshahi University for financial support. SC thanks Prince of Songkla University for generous support. The authors also thank the Malaysian Government and Universiti Sains Malaysia for the Scientific Advancement Grant Allocation (SAGA) grant No. 304/PFIZIK/653003/A118.
References
Ali, M. A., Baker, H. J. H. A., Mirza, A. H., Smith, S. J., Gahan, L. R. & Bernhardt, P. V. (2008). Polyhedron, 27, 71–79. Web of Science CSD CrossRef CAS Google Scholar
Ali, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H. & Ali, A. M. (2001). Inorg. Chim. Acta, 320, 1–6. Google Scholar
Ali, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B. & Ali, A. M. (2002). J. Inorg. Biochem. 92, 141–148. CSD CrossRef PubMed Google Scholar
Ali, M. A. & Tarafder, M. T. H. (1977). J. Inorg. Nucl. Chem. 39, 1785–1788. Google Scholar
Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chew, K.-B., Tarafder, M. T. H., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2004). Polyhedron, 23, 1385–1392. Web of Science CSD CrossRef CAS Google Scholar
Crouse, K. A., Chew, K.-B., Tarafder, M. T. H., Kasbollah, A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2004). Polyhedron, 23, 161–168. Web of Science CSD CrossRef CAS Google Scholar
Latheef, L., Manoj, E. & Kurup, M. R. P. (2007). Polyhedron, 26, 4107–4113. Web of Science CSD CrossRef CAS Google Scholar
Shanmuga Sundara Raj, S., Yamin, B. M., Yussof, Y. A., Tarafder, M. T. H., Fun, H.-K. & Grouse, K. A. (2000). Acta Cryst. C56, 1236–1237. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tarafder, M. T. H., Chew, K.-B., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2683–2690. Web of Science CSD CrossRef CAS Google Scholar
Tarafder, M. T. H., Islam, M. T., Islam, M. A. A. A. A., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, m416–m417. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Tarafder, M. T. H., Jin, K.-T., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2547–2554. Web of Science CSD CrossRef CAS Google Scholar
Tarafder, M. T. H., Kasbollah, A., Crouse, K. A., Ali, M. A., Yamin, B. M. & Fun, H.-K. (2001). Polyhedron, 20, 2363–2370. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The coordination chemistry of the ligands derived from S-benzyldithiocarbazate (SBDTC) had been of immense interests because of their intriguing coordination chemistry as well as their increasingly important biomedical properties (Ali et al., 2001; 2002; Tarafder et al., 2001; Tarafder, Jin et al., 2002b). Synthesis (Ali & Tarafder, 1977) and structure (Shanmuga Sundara Raj et al., 2000) of SBDTC were reported. We have previously reported the Schiff bases complexes derived from dithiocarbazate derivatives (Ali et al., 2001; 2002; 2008; Chew et al., 2004; Crouse et al., 2004; Tarafder et al., 2001, 2008; Tarafder, Chew et al., 2002; Tarafder, Jin et al., 2002). In continuation of our interests, we report herein the X-ray structure of the zinc(II) complex of Schiff base ligand of SBDTC which is found to be isostructural with the copper(II) analog (Tarafder et al., 2008).
The ZnII atom of the title complex, lies on a twofold rotation axis and therefore the asymmetric unit contains one-half of a molecule (Fig. 1). The ligands coordinate to the ZnII through the two azomethine nitrogen and the two thiolate sulfur atoms forming a distorted tetrahedral geometry (Fig. 1). Both the two nitrogen atoms (N1 and N1A) and two sulfur atoms (S1 and S1A) from the two ligands are coordinated at opposite positions. The NS chelation results in the two five membered ZnII-bidentate rings (Zn1, N1, N2, C8, S1), atom Zn1 having a maximum deviation of 0.0839 (5) Å. The dihedral angle between these ZnII-bidentate rings is 80.03 (4) °. The smaller angle around ZnII is 86.96 (3) ° for N1—Zn1—S1. The N—Zn—N and S—Zn—S bond angles are 104.32 (7) ° and 134.49 (2) °, respectively. The Zn1—N1 distance of 2.0662 (12) Å is slightly longer compared to the [Zn(C14H18N3OS)2] by Latheef et al., 2007 (Zn—N = 2.026 (3) and 2.040 (3) Å) whereas the Zn1—S1 distance of 2.2636 (4) Å in the title complex is in the same range (Zn—S = 2.2597 (13) and 2.2462 (12) Å (Latheef et al., 2007)). The mean plane of the prop-2-enylidene moiety (C7/C8/C9/N1/N2) makes a dihedral angle of 12.25 (12)° with mean plane of the attached C1–C6 phenyl ring. Atoms N1, N2, C10, S1 and S2 lie on the same plane and this plane makes a dihedral angle of 76.75 (6) ° with the C12–C17 phenyl ring. The dihedral angle between the two phenhyl rings (C1–C6 and C12–C17) is 71.48 (8)°. Bond lengths and angles observed in the Schiff base ligand are of normal values.
In the crystal packing (Fig. 2), the molecules are interconnected by weak C—H···S intermolecular interactions (Table 1) into chains along the c axis. The crystal is further stabilized by C—H···π interactions (Table 1) involving the C1–C6 phenyl ring (centroid Cg1) of the 3-phenylprop-2-enylidene moiety.