organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl 2,5-bis­­[(E)-2-furylmethyl­ene­amino]thio­phene-3,4-di­carboxyl­ate

aDepartment of Chemistry, University of Montreal, CP 6128, succ. Centre-ville, Montréal, Québec, Canada H3C 3J7
*Correspondence e-mail: w.skene@umontreal.ca

(Received 29 February 2008; accepted 9 March 2008; online 14 March 2008)

The title compound, C20H18N2O6S, crystallizes as two independent mol­ecules that are disposed about a pseudo-inversion center (1/2, 1/4, 1/8). The mean planes of the two terminal furyl rings are twisted with respect to the central thio­phene ring by 7.33 (4) and 21.74 (5)° in one mol­ecule, and by 6.91 (4) and 39.80 (6)° in the other.

Related literature

For general background, see: Dufresne et al. (2007[Dufresne, S., Bourgeaux, M. & Skene, W. G. (2007). J. Mater. Chem. 17, 1166-1177.]). For related literature, see: Dufresne et al. (2006[Dufresne, S., Bourgeaux, M. & Skene, W. G. (2006). Acta Cryst. E62, o5602-o5604.]). For compounds crystallizing with two independent mol­ecules in the space groups Pca21 and Pna21, disposed about a pseudo-inversion center, see: Marsh et al. (1998[Marsh, R. E., Schomaker, V. & Herbstein, F. H. (1998). Acta Cryst. B54, 921-924.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18N2O6S

  • Mr = 414.42

  • Orthorhombic, P c a 21

  • a = 8.2540 (3) Å

  • b = 10.1578 (3) Å

  • c = 46.087 (2) Å

  • V = 3864.0 (2) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 1.85 mm−1

  • T = 220 (2) K

  • 0.28 × 0.23 × 0.14 mm

Data collection
  • Bruker SMART 2000 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.640, Tmax = 0.781

  • 45562 measured reflections

  • 7392 independent reflections

  • 7164 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.087

  • S = 1.03

  • 7392 reflections

  • 527 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3551 Friedel pairs

  • Flack parameter: 0.021 (10)

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: UdMX (Marris, 2004[Marris, T. (2004). UdMX. Université de Montréal, Montréal, Québec, Canada.]).

Supporting information


Comment top

The molecule (I) was prepared as a result of our ongoing research of conjugated azomethines for electronic devices. The crystal structure of (I) confirmed that the compound consisted of a central thiophene capped by two terminal furans that are connected by two azomethine bonds. Even though two isomers are possible, only the more stable E isomer was confirmed by the resolved structure. The chemical structure occurs eight times in the Pca21 lattice as seen in Figure 2 with two different molecules of (I) per cell disposed near a false inversion center at 1/2, 1/4, 1/8. (Marsh et al., 1998) Neither solvent nor counter-ions were found in the closed-packed stacking.

A major point of interest is the azomethine bond. The measured imine bond lengths for C14—C15, N11—C15 and N11—C16 are 1.429 (2), 1.287 (2) and 1.375 (2) Å, respectively. The bond distances are comparable to an all thiophene bisazomethine analogue (Dufresne et al., 2006) whose analogous lengths are 1.441 (4), 1.272 (3) and 1.388 (3) Å.

The mean plane angles described by all three heterocycles of (I) are not entirely coplanar. The mean plane angles of the terminal furans are twisted 7.33 (4)° and 21.74 (5)° for one molecule of (I) with respect to the central thiohene. Similarly, the mean planes are twisted by 6.91 (4)° and 39.80 (6)° for the second molecule found in the lattice. Meanwhile, the average mean plane angles for the analogous all thiophene azomethine are 9.04 (4)° and 25.07 (6)°.

Interestingly, the three-dimensional network of (I) is very different than for its all thiophene analogue in which all the molecules are linear and aligned in one direction. Since no traditional hydrogen bonding occurs, the furans and thiophene adopt a mix of parallel and perpendicular π-stacking, according to Figure 3. One such π-stacking occurs between the O21 and the O21ii rings with a distance of 3.674 (3) Å between the planes. Other interactions involve the oxygen or sulfur acting as electron donors while the heterocycles act as electron acceptors. For example, O11î^ interacts with O11—C11—C12—C13—C14, S1 with S1i—C16i—C17i—C18i—C19i, S2 with S2ii—C26ii—C27ii—C28ii—C29ii and O26ii with O26—C211—C212—C213—C214. The centre-to-centre distances for these interactions are 3.517 (3), 3.659 (3), 3.680 (3) and 3.541 (3) Å, respectively.

Related literature top

For general background, see: Dufresne et al. (2007). For related literature, see: Dufresne et al. (2006). For compounds crystallizing with two independent molecules in the Pca21 and Pna21 space groups that are disposed about a false inversion center, see: Marsh et al. (1998).

Experimental top

In 25 ml of anhydrous toluene was added 2-furaldehyde to which was subsequently added DABCO, TiCl4 in toluene at 0 °C and then diethyl 2,5-diaminothiophene-3,4-dicarboxylate. The mixture was then refluxed for two hours after which the solvent was removed. Purification by flash chromatography yielded the title product as a red solid. Single crystals of (I) were obtained by slow evaporation of a acetone.

Refinement top

H atoms were placed in calculated positions (C—H = 0.94–0.97 Å) and included in the refinement in the riding-model approximation, with Uĩso~(H) = 1.2 U~eq~(C).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SMART (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: UdMX (Marris, 2004).

Figures top
[Figure 1] Fig. 1. ORTEP representation of the two different molecules of (I) with the numbering scheme adopted (Farrugia 1997). Ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The three-dimensional network demonstrating the closed packing in the lattice.
[Figure 3] Fig. 3. Supramolecular structure showing the intermolecular π-stacking giving the structural arrangement. Dashed lines indicate the π-stacking. [Symmetry codes: (i) 1/2 + x, -y, z; (ii) 1/2 + x, 1 - y, z.]
Diethyl 2,5-bis[(E)-2-furylmethyleneamino]thiophene-3,4-dicarboxylate top
Crystal data top
C20H18N2O6SF(000) = 1728
Mr = 414.42Dx = 1.425 Mg m3
Orthorhombic, Pca21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2c -2acCell parameters from 26576 reflections
a = 8.2540 (3) Åθ = 3.8–71.8°
b = 10.1578 (3) ŵ = 1.85 mm1
c = 46.087 (2) ÅT = 220 K
V = 3864.0 (2) Å3Block, red
Z = 80.28 × 0.23 × 0.14 mm
Data collection top
Bruker SMART 2000
diffractometer
7392 independent reflections
Radiation source: X-ray Sealed Tube7164 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 5.5 pixels mm-1θmax = 71.9°, θmin = 1.9°
ω scansh = 98
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1212
Tmin = 0.640, Tmax = 0.781l = 5655
45562 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0652P)2 + 0.3926P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
7392 reflectionsΔρmax = 0.25 e Å3
527 parametersΔρmin = 0.21 e Å3
1 restraintAbsolute structure: Flack (1983), 3551 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.021 (10)
Crystal data top
C20H18N2O6SV = 3864.0 (2) Å3
Mr = 414.42Z = 8
Orthorhombic, Pca21Cu Kα radiation
a = 8.2540 (3) ŵ = 1.85 mm1
b = 10.1578 (3) ÅT = 220 K
c = 46.087 (2) Å0.28 × 0.23 × 0.14 mm
Data collection top
Bruker SMART 2000
diffractometer
7392 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
7164 reflections with I > 2σ(I)
Tmin = 0.640, Tmax = 0.781Rint = 0.030
45562 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.087Δρmax = 0.25 e Å3
S = 1.03Δρmin = 0.21 e Å3
7392 reflectionsAbsolute structure: Flack (1983), 3551 Friedel pairs
527 parametersAbsolute structure parameter: 0.021 (10)
1 restraint
Special details top

Experimental. X-ray crystallographic data for I were collected from a single-crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker Platform diffractometer, equipped with a Bruker SMART 2 K Charged-Coupled Device (CCD) Area Detector using the program SMART and normal focus sealed tube source graphite monochromated Cu—Kα radiation. The crystal-to-detector distance was 4.908 cm, and the data collection was carried out in 512 x 512 pixel mode, utilizing 4 x 4 pixel binning. The initial unit-cell parameters were determined by a least-squares fit of the angular setting of strong reflections, collected by a 9.0 degree scan in 30 frames over four different parts of the reciprocal space (120 frames total). One complete sphere of data was collected, to better than 0.8Å resolution. Upon completion of the data collection, the first 101 frames were recollected in order to improve the decay correction analysis.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.88387 (5)0.03066 (4)0.280712 (9)0.02929 (11)
O110.7551 (2)0.00706 (16)0.39480 (3)0.0514 (4)
O120.62152 (17)0.36759 (14)0.33348 (3)0.0384 (3)
O130.42379 (16)0.28718 (14)0.30508 (3)0.0378 (3)
O140.61655 (17)0.44246 (12)0.26116 (3)0.0382 (3)
O150.5786 (2)0.31388 (17)0.22228 (3)0.0510 (4)
O160.99383 (17)0.13629 (12)0.16959 (3)0.0347 (3)
N110.76907 (19)0.08247 (14)0.33642 (3)0.0295 (3)
N120.86068 (18)0.13026 (14)0.22505 (3)0.0271 (3)
C110.7720 (4)0.0574 (2)0.42031 (5)0.0579 (7)
H110.71770.03430.43750.069*
C120.8754 (3)0.1583 (2)0.41805 (5)0.0496 (6)
H120.90550.21770.43270.060*
C130.9302 (3)0.1569 (2)0.38902 (5)0.0444 (5)
H131.00520.21510.38060.053*
C140.8537 (2)0.0556 (2)0.37561 (4)0.0330 (4)
C150.8600 (2)0.01021 (18)0.34629 (5)0.0307 (4)
H150.93420.05010.33360.037*
C160.7747 (2)0.11598 (16)0.30753 (4)0.0255 (3)
C170.6861 (2)0.21581 (15)0.29546 (3)0.0236 (3)
C180.7036 (2)0.22618 (15)0.26477 (3)0.0241 (3)
C190.8078 (2)0.13381 (15)0.25344 (3)0.0252 (3)
C1100.9376 (2)0.02961 (17)0.21527 (4)0.0290 (4)
H1100.94870.04490.22720.035*
C1111.0068 (2)0.02703 (17)0.18691 (4)0.0280 (4)
C1121.0949 (2)0.06749 (19)0.17307 (4)0.0360 (4)
H1121.12130.15140.18030.043*
C1131.1388 (3)0.0152 (2)0.14591 (5)0.0391 (4)
H1131.20030.05720.13150.047*
C1141.0754 (3)0.1067 (2)0.14468 (4)0.0378 (4)
H1141.08590.16400.12880.045*
C1150.5773 (2)0.30049 (16)0.31350 (4)0.0249 (3)
C1160.3026 (3)0.3701 (2)0.31926 (6)0.0494 (6)
H11A0.29050.45320.30870.059*
H11B0.33630.39010.33920.059*
C1170.1467 (3)0.2974 (2)0.31946 (6)0.0492 (5)
H11C0.12380.26470.30010.074*
H11D0.06040.35600.32560.074*
H11E0.15390.22390.33280.074*
C1180.6262 (2)0.32909 (17)0.24645 (4)0.0278 (4)
C1190.5416 (3)0.55525 (19)0.24660 (6)0.0458 (5)
H11F0.47180.60250.26030.055*
H11G0.47420.52430.23050.055*
C1200.6692 (3)0.6460 (3)0.23539 (7)0.0606 (7)
H12A0.73760.67450.25130.091*
H12B0.61840.72200.22650.091*
H12C0.73460.60030.22110.091*
S21.11876 (5)0.47091 (4)0.029580 (9)0.02897 (11)
O211.2717 (2)0.38213 (14)0.13750 (3)0.0462 (3)
O220.8366 (2)0.17631 (14)0.08863 (3)0.0453 (4)
O230.85661 (17)0.05444 (12)0.04810 (3)0.0319 (3)
O240.66327 (15)0.21385 (13)0.00495 (3)0.0335 (3)
O250.86107 (17)0.12997 (13)0.02296 (3)0.0367 (3)
O260.9906 (2)0.49263 (17)0.08447 (3)0.0505 (4)
N211.10411 (18)0.37203 (15)0.08486 (3)0.0288 (3)
N221.00539 (18)0.41810 (15)0.02615 (3)0.0292 (3)
C211.3475 (3)0.4236 (3)0.16214 (5)0.0555 (6)
H211.39020.36690.17630.067*
C221.3536 (3)0.5541 (3)0.16356 (5)0.0564 (6)
H221.39830.60500.17860.068*
C231.2795 (3)0.6011 (2)0.13803 (5)0.0498 (6)
H231.26540.68950.13250.060*
C241.2323 (3)0.49250 (19)0.12296 (4)0.0343 (4)
C251.1536 (2)0.48230 (18)0.09525 (4)0.0329 (4)
H251.13770.55930.08430.039*
C261.0469 (2)0.36631 (16)0.05677 (4)0.0260 (3)
C270.9456 (2)0.27116 (15)0.04542 (4)0.0233 (3)
C280.92640 (19)0.28218 (16)0.01478 (3)0.0236 (3)
C291.0115 (2)0.38413 (16)0.00280 (4)0.0256 (3)
C2101.0948 (2)0.51116 (18)0.03598 (4)0.0302 (4)
H2101.16780.55200.02320.036*
C2111.0894 (2)0.55595 (19)0.06526 (4)0.0323 (4)
C2121.1659 (3)0.6574 (2)0.07884 (4)0.0424 (5)
H2121.24070.71600.07040.051*
C2131.1120 (3)0.6582 (2)0.10780 (5)0.0482 (6)
H2131.14290.71720.12250.058*
C2141.0072 (4)0.5572 (2)0.11012 (5)0.0576 (7)
H2140.95250.53430.12730.069*
C2150.8737 (2)0.16534 (16)0.06346 (4)0.0257 (3)
C2160.7854 (2)0.05829 (18)0.06304 (5)0.0363 (4)
H21A0.72140.11010.04920.044*
H21B0.71240.02700.07830.044*
C2170.9139 (3)0.1440 (2)0.07620 (6)0.0536 (6)
H21C0.98510.17630.06100.080*
H21D0.86350.21780.08600.080*
H21E0.97640.09310.09010.080*
C2180.8169 (2)0.19833 (15)0.00340 (3)0.0249 (3)
C2190.5416 (2)0.1321 (2)0.00932 (5)0.0455 (5)
H21F0.53090.04780.00090.055*
H21G0.57380.11430.02940.055*
C2200.3842 (2)0.2042 (2)0.00878 (6)0.0467 (6)
H22A0.36690.24110.01040.070*
H22B0.29680.14380.01330.070*
H22C0.38650.27450.02300.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0359 (2)0.0292 (2)0.0227 (2)0.00906 (15)0.00331 (16)0.00053 (17)
O110.0749 (11)0.0499 (8)0.0293 (8)0.0218 (8)0.0123 (7)0.0054 (7)
O120.0412 (8)0.0407 (7)0.0332 (7)0.0033 (6)0.0031 (5)0.0142 (6)
O130.0291 (6)0.0407 (7)0.0436 (7)0.0044 (5)0.0006 (6)0.0180 (6)
O140.0474 (8)0.0238 (6)0.0435 (8)0.0055 (5)0.0125 (6)0.0008 (6)
O150.0705 (10)0.0548 (9)0.0277 (7)0.0281 (8)0.0133 (7)0.0079 (6)
O160.0452 (8)0.0314 (6)0.0277 (7)0.0046 (5)0.0076 (5)0.0025 (5)
N110.0363 (8)0.0294 (7)0.0229 (7)0.0022 (6)0.0018 (6)0.0018 (6)
N120.0308 (7)0.0287 (7)0.0218 (7)0.0014 (5)0.0027 (5)0.0020 (6)
C110.0882 (19)0.0577 (13)0.0278 (11)0.0163 (13)0.0123 (11)0.0064 (10)
C120.0674 (16)0.0512 (13)0.0302 (11)0.0067 (10)0.0023 (9)0.0112 (10)
C130.0561 (13)0.0453 (11)0.0317 (10)0.0118 (10)0.0023 (9)0.0055 (9)
C140.0394 (10)0.0345 (9)0.0251 (9)0.0046 (7)0.0006 (7)0.0008 (8)
C150.0359 (10)0.0308 (9)0.0255 (11)0.0034 (7)0.0014 (7)0.0008 (7)
C160.0283 (8)0.0256 (7)0.0228 (7)0.0006 (6)0.0029 (6)0.0028 (6)
C170.0267 (8)0.0214 (7)0.0228 (7)0.0031 (6)0.0009 (6)0.0014 (6)
C180.0274 (8)0.0228 (7)0.0222 (7)0.0016 (6)0.0013 (6)0.0013 (6)
C190.0305 (9)0.0229 (7)0.0222 (8)0.0004 (6)0.0009 (6)0.0010 (6)
C1100.0358 (10)0.0293 (9)0.0221 (8)0.0045 (7)0.0013 (7)0.0002 (6)
C1110.0325 (9)0.0284 (9)0.0230 (8)0.0036 (7)0.0001 (6)0.0006 (7)
C1120.0427 (10)0.0368 (9)0.0285 (9)0.0107 (8)0.0003 (7)0.0026 (8)
C1130.0453 (11)0.0483 (11)0.0237 (10)0.0086 (9)0.0058 (7)0.0044 (8)
C1140.0488 (11)0.0420 (10)0.0225 (8)0.0008 (9)0.0058 (7)0.0031 (7)
C1150.0322 (9)0.0214 (7)0.0212 (8)0.0020 (6)0.0034 (7)0.0004 (6)
C1160.0347 (12)0.0512 (12)0.0623 (14)0.0084 (9)0.0072 (9)0.0253 (11)
C1170.0364 (11)0.0559 (13)0.0555 (14)0.0069 (9)0.0085 (9)0.0017 (11)
C1180.0263 (9)0.0296 (8)0.0275 (9)0.0041 (7)0.0036 (6)0.0011 (7)
C1190.0457 (12)0.0297 (9)0.0621 (14)0.0098 (8)0.0105 (10)0.0054 (9)
C1200.0605 (15)0.0490 (13)0.0724 (17)0.0167 (11)0.0151 (13)0.0281 (12)
S20.0361 (2)0.0274 (2)0.0234 (2)0.00820 (15)0.00294 (16)0.00184 (16)
O210.0663 (10)0.0405 (7)0.0319 (7)0.0001 (7)0.0103 (7)0.0015 (6)
O220.0677 (10)0.0425 (8)0.0257 (7)0.0186 (7)0.0124 (6)0.0059 (6)
O230.0440 (7)0.0229 (5)0.0289 (6)0.0054 (5)0.0046 (5)0.0007 (5)
O240.0275 (6)0.0335 (6)0.0397 (7)0.0028 (5)0.0026 (5)0.0114 (5)
O250.0410 (8)0.0378 (7)0.0312 (7)0.0018 (6)0.0029 (5)0.0119 (6)
O260.0727 (11)0.0496 (8)0.0292 (8)0.0227 (8)0.0116 (7)0.0065 (6)
N210.0352 (8)0.0284 (7)0.0226 (7)0.0022 (6)0.0017 (5)0.0007 (6)
N220.0351 (8)0.0300 (7)0.0227 (7)0.0028 (6)0.0010 (6)0.0026 (6)
C210.0706 (16)0.0680 (15)0.0279 (11)0.0011 (12)0.0118 (9)0.0040 (10)
C220.0795 (17)0.0611 (14)0.0287 (11)0.0281 (13)0.0110 (10)0.0050 (10)
C230.0813 (17)0.0374 (10)0.0307 (10)0.0234 (11)0.0055 (10)0.0010 (8)
C240.0452 (11)0.0330 (9)0.0246 (9)0.0095 (8)0.0010 (7)0.0002 (7)
C250.0433 (10)0.0300 (9)0.0253 (9)0.0031 (7)0.0013 (8)0.0007 (7)
C260.0297 (9)0.0240 (7)0.0243 (8)0.0018 (6)0.0007 (6)0.0007 (6)
C270.0262 (8)0.0206 (7)0.0230 (8)0.0027 (6)0.0004 (6)0.0013 (6)
C280.0256 (8)0.0222 (7)0.0229 (8)0.0028 (6)0.0005 (6)0.0012 (6)
C290.0292 (8)0.0241 (8)0.0236 (8)0.0007 (6)0.0017 (6)0.0001 (6)
C2100.0370 (10)0.0302 (8)0.0233 (10)0.0031 (7)0.0005 (8)0.0008 (7)
C2110.0396 (10)0.0320 (9)0.0252 (9)0.0047 (7)0.0008 (7)0.0002 (8)
C2120.0553 (12)0.0416 (11)0.0303 (10)0.0136 (9)0.0025 (9)0.0051 (8)
C2130.0665 (15)0.0490 (13)0.0292 (10)0.0076 (10)0.0045 (9)0.0123 (9)
C2140.0891 (18)0.0600 (14)0.0237 (10)0.0137 (13)0.0135 (10)0.0078 (10)
C2150.0282 (9)0.0270 (8)0.0219 (8)0.0007 (6)0.0000 (6)0.0005 (6)
C2160.0374 (10)0.0292 (9)0.0423 (10)0.0100 (7)0.0035 (8)0.0040 (8)
C2170.0505 (13)0.0393 (12)0.0711 (17)0.0130 (10)0.0103 (12)0.0223 (11)
C2180.0308 (9)0.0211 (7)0.0227 (8)0.0003 (6)0.0029 (7)0.0038 (6)
C2190.0321 (10)0.0445 (11)0.0597 (14)0.0065 (8)0.0065 (9)0.0176 (10)
C2200.0333 (11)0.0522 (13)0.0547 (14)0.0043 (8)0.0070 (9)0.0035 (11)
Geometric parameters (Å, º) top
S1—C191.7528 (16)S2—C261.7468 (17)
S1—C161.7579 (16)S2—C291.7563 (17)
O11—C111.353 (3)O21—C241.346 (2)
O11—C141.360 (2)O21—C211.363 (3)
O12—C1151.202 (2)O22—C2151.205 (2)
O13—C1151.332 (2)O23—C2151.338 (2)
O13—C1161.462 (2)O23—C2161.460 (2)
O14—C1181.339 (2)O24—C2181.334 (2)
O14—C1191.465 (2)O24—C2191.460 (2)
O15—C1181.191 (2)O25—C2181.195 (2)
O16—C1141.364 (2)O26—C2141.359 (3)
O16—C1111.371 (2)O26—C2111.365 (2)
N11—C151.287 (2)N21—C251.285 (2)
N11—C161.375 (2)N21—C261.379 (2)
N12—C1101.285 (2)N22—C2101.282 (2)
N12—C191.380 (2)N22—C291.379 (2)
C11—C121.338 (3)C21—C221.329 (4)
C11—H110.94C21—H210.94
C12—C131.412 (3)C22—C231.410 (3)
C12—H120.94C22—H220.94
C13—C141.356 (3)C23—C241.361 (3)
C13—H130.94C23—H230.94
C14—C151.429 (3)C24—C251.437 (3)
C15—H150.94C25—H250.94
C16—C171.368 (2)C26—C271.380 (2)
C17—C181.426 (2)C27—C281.425 (2)
C17—C1151.496 (2)C27—C2151.483 (2)
C18—C191.376 (2)C28—C291.368 (2)
C18—C1181.488 (2)C28—C2181.498 (2)
C110—C1111.426 (2)C210—C2111.425 (3)
C110—H1100.94C210—H2100.94
C111—C1121.363 (2)C211—C2121.361 (3)
C112—C1131.407 (3)C212—C2131.407 (3)
C112—H1120.94C212—H2120.94
C113—C1141.346 (3)C213—C2141.347 (3)
C113—H1130.94C213—H2130.94
C114—H1140.94C214—H2140.94
C116—C1171.484 (3)C216—C2171.500 (3)
C116—H11a0.98C216—H21a0.98
C116—H11b0.98C216—H21b0.98
C117—H11c0.97C217—H21c0.97
C117—H11d0.97C217—H21d0.97
C117—H11e0.97C217—H21e0.97
C119—C1201.492 (3)C219—C2201.491 (3)
C119—H11f0.98C219—H21f0.98
C119—H11g0.98C219—H21g0.98
C120—H12a0.97C220—H22a0.97
C120—H12b0.97C220—H22b0.97
C120—H12c0.97C220—H22c0.97
C19—S1—C1691.48 (8)C26—S2—C2991.57 (8)
C11—O11—C14106.08 (17)C24—O21—C21105.59 (17)
C115—O13—C116117.53 (15)C215—O23—C216116.98 (14)
C118—O14—C119117.79 (16)C218—O24—C219117.17 (14)
C114—O16—C111105.86 (14)C214—O26—C211106.05 (17)
C15—N11—C16120.24 (16)C25—N21—C26119.69 (16)
C110—N12—C19120.65 (15)C210—N22—C29120.37 (16)
C12—C11—O11111.6 (2)C22—C21—O21111.5 (2)
C12—C11—H11124.2C22—C21—H21124.3
O11—C11—H11124.2O21—C21—H21124.3
C11—C12—C13105.7 (2)C21—C22—C23106.3 (2)
C11—C12—H12127.2C21—C22—H22126.8
C13—C12—H12127.2C23—C22—H22126.8
C14—C13—C12106.9 (2)C24—C23—C22106.0 (2)
C14—C13—H13126.6C24—C23—H23127
C12—C13—H13126.6C22—C23—H23127
C13—C14—O11109.71 (18)O21—C24—C23110.61 (17)
C13—C14—C15131.22 (19)O21—C24—C25119.47 (17)
O11—C14—C15119.06 (17)C23—C24—C25129.91 (19)
N11—C15—C14123.32 (18)N21—C25—C24122.54 (17)
N11—C15—H15118.3N21—C25—H25118.7
C14—C15—H15118.3C24—C25—H25118.7
C17—C16—N11123.99 (15)N21—C26—C27126.33 (15)
C17—C16—S1110.70 (13)N21—C26—S2122.09 (13)
N11—C16—S1125.17 (13)C27—C26—S2111.08 (12)
C16—C17—C18113.83 (15)C26—C27—C28112.81 (15)
C16—C17—C115121.40 (15)C26—C27—C215122.50 (15)
C18—C17—C115124.73 (15)C28—C27—C215124.60 (15)
C19—C18—C17112.93 (15)C29—C28—C27113.72 (15)
C19—C18—C118122.16 (15)C29—C28—C218120.97 (15)
C17—C18—C118124.84 (15)C27—C28—C218125.21 (15)
C18—C19—N12125.14 (15)C28—C29—N22124.16 (15)
C18—C19—S1111.07 (12)C28—C29—S2110.81 (13)
N12—C19—S1123.44 (13)N22—C29—S2124.93 (13)
N12—C110—C111122.27 (16)N22—C210—C211123.53 (18)
N12—C110—H110118.9N22—C210—H210118.2
C111—C110—H110118.9C211—C210—H210118.2
C112—C111—O16109.84 (16)C212—C211—O26109.61 (17)
C112—C111—C110130.94 (17)C212—C211—C210131.53 (19)
O16—C111—C110119.16 (15)O26—C211—C210118.85 (17)
C111—C112—C113106.72 (17)C211—C212—C213107.10 (19)
C111—C112—H112126.6C211—C212—H212126.5
C113—C112—H112126.6C213—C212—H212126.5
C114—C113—C112106.54 (17)C214—C213—C212105.89 (19)
C114—C113—H113126.7C214—C213—H213127.1
C112—C113—H113126.7C212—C213—H213127.1
C113—C114—O16111.04 (17)C213—C214—O26111.34 (19)
C113—C114—H114124.5C213—C214—H214124.3
O16—C114—H114124.5O26—C214—H214124.3
O12—C115—O13124.72 (16)O22—C215—O23124.07 (16)
O12—C115—C17124.69 (17)O22—C215—C27125.07 (16)
O13—C115—C17110.55 (14)O23—C215—C27110.86 (14)
O13—C116—C117108.03 (17)O23—C216—C217111.14 (16)
O13—C116—H11A110.1O23—C216—H21A109.4
C117—C116—H11A110.1C217—C216—H21A109.4
O13—C116—H11B110.1O23—C216—H21B109.4
C117—C116—H11B110.1C217—C216—H21B109.4
H11A—C116—H11B108.4H21A—C216—H21B108
C116—C117—H11C109.5C216—C217—H21C109.5
C116—C117—H11D109.5C216—C217—H21D109.5
H11C—C117—H11D109.5H21C—C217—H21D109.5
C116—C117—H11E109.5C216—C217—H21E109.5
H11C—C117—H11E109.5H21C—C217—H21E109.5
H11D—C117—H11E109.5H21D—C217—H21E109.5
O15—C118—O14124.43 (17)O25—C218—O24125.20 (16)
O15—C118—C18125.53 (16)O25—C218—C28124.60 (16)
O14—C118—C18110.04 (14)O24—C218—C28110.19 (14)
O14—C119—C120110.11 (18)O24—C219—C220108.20 (17)
O14—C119—H11F109.6O24—C219—H21F110.1
C120—C119—H11F109.6C220—C219—H21F110.1
O14—C119—H11G109.6O24—C219—H21G110.1
C120—C119—H11G109.6C220—C219—H21G110.1
H11F—C119—H11G108.2H21F—C219—H21G108.4
C119—C120—H12A109.5C219—C220—H22A109.5
C119—C120—H12B109.5C219—C220—H22B109.5
H12A—C120—H12B109.5H22A—C220—H22B109.5
C119—C120—H12C109.5C219—C220—H22C109.5
H12A—C120—H12C109.5H22A—C220—H22C109.5
H12B—C120—H12C109.5H22B—C220—H22C109.5
C14—O11—C11—C120.5 (3)C24—O21—C21—C221.1 (3)
O11—C11—C12—C130.8 (3)O21—C21—C22—C231.0 (3)
C11—C12—C13—C140.8 (3)C21—C22—C23—C240.5 (3)
C12—C13—C14—O110.5 (3)C21—O21—C24—C230.8 (3)
C12—C13—C14—C15178.5 (2)C21—O21—C24—C25178.3 (2)
C11—O11—C14—C130.0 (3)C22—C23—C24—O210.2 (3)
C11—O11—C14—C15179.1 (2)C22—C23—C24—C25178.8 (2)
C16—N11—C15—C14176.15 (18)C26—N21—C25—C24172.38 (17)
C13—C14—C15—N11174.4 (2)O21—C24—C25—N217.1 (3)
O11—C14—C15—N114.5 (3)C23—C24—C25—N21173.9 (2)
C15—N11—C16—C17177.87 (18)C25—N21—C26—C27158.36 (18)
C15—N11—C16—S16.9 (2)C25—N21—C26—S230.5 (2)
C19—S1—C16—C170.44 (13)C29—S2—C26—N21172.08 (15)
C19—S1—C16—N11176.23 (15)C29—S2—C26—C270.28 (13)
N11—C16—C17—C18175.90 (15)N21—C26—C27—C28171.76 (16)
S1—C16—C17—C180.05 (19)S2—C26—C27—C280.21 (18)
N11—C16—C17—C1151.8 (3)N21—C26—C27—C2155.0 (3)
S1—C16—C17—C115177.66 (12)S2—C26—C27—C215176.96 (12)
C16—C17—C18—C190.5 (2)C26—C27—C28—C290.0 (2)
C115—C17—C18—C19178.13 (15)C215—C27—C28—C29176.66 (15)
C16—C17—C18—C118177.43 (15)C26—C27—C28—C218176.23 (15)
C115—C17—C18—C1184.9 (3)C215—C27—C28—C2187.1 (3)
C17—C18—C19—N12172.48 (16)C27—C28—C29—N22176.66 (15)
C118—C18—C19—N124.5 (3)C218—C28—C29—N220.3 (2)
C17—C18—C19—S10.83 (18)C27—C28—C29—S20.21 (18)
C118—C18—C19—S1177.85 (13)C218—C28—C29—S2176.19 (12)
C110—N12—C19—C18169.26 (17)C210—N22—C29—C28176.66 (17)
C110—N12—C19—S118.2 (2)C210—N22—C29—S27.4 (2)
C16—S1—C19—C180.72 (13)C26—S2—C29—C280.28 (13)
C16—S1—C19—N12172.72 (15)C26—S2—C29—N22176.70 (15)
C19—N12—C110—C111174.25 (16)C29—N22—C210—C211176.86 (17)
C114—O16—C111—C1120.3 (2)C214—O26—C211—C2120.2 (3)
C114—O16—C111—C110177.77 (17)C214—O26—C211—C210178.7 (2)
N12—C110—C111—C112178.2 (2)N22—C210—C211—C212175.0 (2)
N12—C110—C111—O161.3 (3)N22—C210—C211—O263.6 (3)
O16—C111—C112—C1130.1 (2)O26—C211—C212—C2130.3 (3)
C110—C111—C112—C113177.2 (2)C210—C211—C212—C213178.4 (2)
C111—C112—C113—C1140.1 (2)C211—C212—C213—C2140.3 (3)
C112—C113—C114—O160.3 (3)C212—C213—C214—O260.2 (3)
C111—O16—C114—C1130.4 (2)C211—O26—C214—C2130.0 (3)
C116—O13—C115—O126.4 (3)C216—O23—C215—O221.2 (3)
C116—O13—C115—C17176.02 (17)C216—O23—C215—C27179.36 (15)
C16—C17—C115—O1260.1 (2)C26—C27—C215—O2232.2 (3)
C18—C17—C115—O12122.5 (2)C28—C27—C215—O22151.47 (19)
C16—C17—C115—O13117.47 (18)C26—C27—C215—O23147.22 (15)
C18—C17—C115—O1360.0 (2)C28—C27—C215—O2329.1 (2)
C115—O13—C116—C117150.0 (2)C215—O23—C216—C21792.5 (2)
C119—O14—C118—O150.3 (3)C219—O24—C218—O255.6 (3)
C119—O14—C118—C18179.32 (16)C219—O24—C218—C28175.98 (16)
C19—C18—C118—O1537.5 (3)C29—C28—C218—O2563.6 (2)
C17—C18—C118—O15145.8 (2)C27—C28—C218—O25120.41 (19)
C19—C18—C118—O14142.83 (16)C29—C28—C218—O24114.78 (17)
C17—C18—C118—O1433.8 (2)C27—C28—C218—O2461.2 (2)
C118—O14—C119—C120100.7 (2)C218—O24—C219—C220152.24 (18)

Experimental details

Crystal data
Chemical formulaC20H18N2O6S
Mr414.42
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)220
a, b, c (Å)8.2540 (3), 10.1578 (3), 46.087 (2)
V3)3864.0 (2)
Z8
Radiation typeCu Kα
µ (mm1)1.85
Crystal size (mm)0.28 × 0.23 × 0.14
Data collection
DiffractometerBruker SMART 2000
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.640, 0.781
No. of measured, independent and
observed [I > 2σ(I)] reflections
45562, 7392, 7164
Rint0.030
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.087, 1.03
No. of reflections7392
No. of parameters527
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.21
Absolute structureFlack (1983), 3551 Friedel pairs
Absolute structure parameter0.021 (10)

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), UdMX (Marris, 2004).

 

Acknowledgements

The authors acknowledge financial support from the Natural Sciences and Engineering Research Council Canada, the Centre for Self-Assembled Chemical Structures, and Canada Foundation for Innovation. SD thanks the Université de Montréal for a graduate scholarship.

References

First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDufresne, S., Bourgeaux, M. & Skene, W. G. (2006). Acta Cryst. E62, o5602–o5604.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDufresne, S., Bourgeaux, M. & Skene, W. G. (2007). J. Mater. Chem. 17, 1166–1177.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMarris, T. (2004). UdMX. Université de Montréal, Montréal, Québec, Canada.  Google Scholar
First citationMarsh, R. E., Schomaker, V. & Herbstein, F. H. (1998). Acta Cryst. B54, 921–924.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds