organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(7-Hydr­­oxy-2-naphth­yl­oxy)-N-(6-methyl-2-pyrid­yl)acetamide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, India
*Correspondence e-mail: hkfun@usm.my

(Received 5 March 2008; accepted 6 March 2008; online 12 March 2008)

In the title compound, C18H16N2O3, the dihedral angle between the naphthalene ring system and the pyridyl ring is 18.1 (8)°. The mol­ecules are inter­connected via C—H⋯O and O—H⋯O hydrogen bonds. Inversion-related mol­ecules are linked by O—H⋯O hydrogen bonds into cyclic centrosymmetric R22(22) dimers. Intra­molecular N—H⋯O hydrogen bonding produces an S(5) ring motif. The crystal structure is further stabilized by weak C—H—π inter­actions.

Related literature

For related literature on the applications; see: Atwood et al. (1996[Atwood, J. L., Davies, J. E. D., MacNico, D. D. & Vogtle, F. (1996). Editors. Comprehensive Supramolecular Chemistry, Vols. 6, 7, 9. Oxford: Pergamon.]); Garcia-Tellado et al. (1990[Garcia-Tellado, F., Goswami, S., Chang, S. K., Geib, S. J. & Hamilton, A. D. (1990). J. Am. Chem. Soc. 112, 7393-7394.]); Ghosh & Masanta (2006[Ghosh, K. & Masanta, G. (2006). Tetrahedron Lett. 47, 2365-2369.]). For comparison bond lengths and angles see: Jin & Jin (2005[Jin, C.-Z. & Jin, L.-F. (2005). Acta Cryst. E61, o275-o276.]); Liu & Li (2004[Liu, W.-Y. & Li, Y.-Z. (2004). Acta Cryst. E60, o694-o695.]); Rozycka-Sokolowska et al. (2004[Rozycka-Sokolowska, E., Marciniak, B. & Pavlyuk, V. (2004). Acta Cryst. E60, o884-o885.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16N2O3

  • Mr = 308.33

  • Triclinic, [P \overline 1]

  • a = 5.3676 (3) Å

  • b = 11.6991 (7) Å

  • c = 12.2915 (6) Å

  • α = 104.994 (4)°

  • β = 94.777 (3)°

  • γ = 94.877 (4)°

  • V = 738.42 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100.0 (1) K

  • 0.4 × 0.16 × 0.09 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SAINT and SMART. Bruker Axs Inc., Madison, Wisconsin, USA.]) Tmin = 0.963, Tmax = 0.992

  • 12299 measured reflections

  • 3340 independent reflections

  • 2480 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.130

  • S = 1.08

  • 3340 reflections

  • 217 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11B⋯O3i 0.97 2.45 3.410 (2) 168
N1—H1N1⋯O1 0.88 (2) 2.11 (2) 2.5688 (18) 111.9 (16)
O3—H1O3⋯O2ii 0.88 (3) 1.85 (2) 2.6575 (17) 152 (2)
C11—H11ACg1iii 0.97 2.63 3.438 141
C18—H18ACg2iv 0.97 2.92 3.805 153
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x, -y+1, -z+2; (iii) x-1, y, z; (iv) -x, -y+1, -z+1. Cg1 is the centroid of the C1,C2,C7–C10 ring and Cg2 is the centroid of C2–C7 ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). SAINT and SMART. Bruker Axs Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). SAINT and SMART. Bruker Axs Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Pyridine amide moiety is widely used for the recognition of carboxylic acid functional group due to its complementary donor-acceptor arrangement (Garcia-Tellado et al., 1990). This group attached with different spacer having photo physical properties is the current interest for the recognition studies of both mono/di carboxylic acids (Ghosh & Masanta, 2006).This type of compounds is also important for its unique supramolecular arrangement (Atwood et al., 1996).

The asymmetric unit of (I) contains one molecule of 2–(7-hydroxy– naphthalene-2-yloxy)-N-(6-methyl-pyridine–2–yl) –acetamide. The dihedral angle between the naphthalene ring and the pyridine rings being 18.03 (8)°. The bond lengths and bond angles are comparable with the values reported in the literature (Rozycka-Sokolowska et al., 2004; Jin & Jin, 2005). The bond distance of C12=O2 is 1.226 (2) Å, which is typical for double bonds (Liu & Li., 2004). The naphthalene ring is planar, the maximum deviation from the least squares plane being -0.011 (2) Å for atom C10. The pyridine ring is planar with the maximum deviation from planarity being -0.010 (2) Å for atom C17.

The molecules are stacked into layers parallel to the bc-plane by C11—H11B—O3i and O3—H1O3—O2ii hydrogen bonds (Fig. 2). In the crystal structure of (I), inversion-related molecules at (x,y,z) and (2 - x,1 - y,3 - z) are linked by O3—H1O3—O2 hydrogen bonds into cyclic centrosymmetric R22(22) dimers. The crystal structure is further stabilized by weak C—H—π interactions involving rings C11—H11A—Cg1 (where Cg1 is the centroid of the C1,C2,C7—C10 ring) and C18—H18A—Cg2 (where Cg2 is the centroid of C2—C7 ring). The molecular conformation is stabilized by a N1—H1N1—O1 intramolecular interaction generating a ring motif S(5).

Related literature top

For related literature on the applications; see: Atwood et al. (1996); Garcia-Tellado et al. (1990); Ghosh & Masanta (2006). For comparison bond lengths and angles see: Jin & Jin (2005); Liu & Li (2004); Rozycka-Sokolowska et al. (2004). Cg1 is the centroid of the C1,C2,C7–C10 ring and Cg2 is the centroid of C2–C7 ring

Experimental top

2,7-Dihydroxynaphthalene (160 mg, 1.0 mmol) and N–picolylchloroacetamide (185 mg, 1.0 mmol) were stirred with K2CO3 (345 mg, 2.5 mmol) and tBu4N+Br- (50 mg, 0.16 mmol) in dry acetone (10 ml) for 7 h at room temperature. Acetone was then distilled off and the crude product was extracted with CHCl3 (4 x 20 ml) after washing with water. The product (I) was purified by column chromatography (Silica gel 100–200 mesh) using 20% ethyl acetate in pet ether as eluent to afford an off-white coloured solid compound (Yield 61%). Single crystals were grown by slow evaporation of CHCl3/MeOH/Xylene solution (v/v 1:1:3) (Mp. 178–80 °C).

Refinement top

H atoms were placed in calculated positions, with C—H=0.93 Å,and O—H=0.86 Å, N—H=0.86 Å, and refined using a riding model, with Uiso(H)=1.2Uequ(C,N,O).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering scheme. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.
2-(7-Hydroxy-2-naphthyloxy)-N-(6-methyl-2-pyridyl)acetamide top
Crystal data top
C18H16N2O3Z = 2
Mr = 308.33F(000) = 324
Triclinic, P1Dx = 1.387 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.3676 (3) ÅCell parameters from 2511 reflections
b = 11.6991 (7) Åθ = 3.4–30.4°
c = 12.2915 (6) ŵ = 0.10 mm1
α = 104.994 (4)°T = 100 K
β = 94.777 (3)°Block, colourless
γ = 94.877 (4)°0.4 × 0.16 × 0.09 mm
V = 738.42 (7) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2480 reflections with I > 2σ(I)
Detector resolution: 8.33 pixels mm-1Rint = 0.046
ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 66
Tmin = 0.963, Tmax = 0.992k = 1513
12299 measured reflectionsl = 1515
3340 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.0577P)2 + 0.2187P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.130(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.24 e Å3
3340 reflectionsΔρmin = 0.31 e Å3
217 parameters
Crystal data top
C18H16N2O3γ = 94.877 (4)°
Mr = 308.33V = 738.42 (7) Å3
Triclinic, P1Z = 2
a = 5.3676 (3) ÅMo Kα radiation
b = 11.6991 (7) ŵ = 0.10 mm1
c = 12.2915 (6) ÅT = 100 K
α = 104.994 (4)°0.4 × 0.16 × 0.09 mm
β = 94.777 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3340 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2480 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.992Rint = 0.046
12299 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.24 e Å3
3340 reflectionsΔρmin = 0.31 e Å3
217 parameters
Special details top

Geometry. Experimental. The low-temperature data was collected with the Oxford Crysosystem Cobra low-temperature attachement.

All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0438 (2)0.40705 (11)0.65093 (10)0.0240 (3)
O20.5889 (2)0.23059 (11)0.67844 (10)0.0252 (3)
O30.8081 (2)0.77389 (11)1.13643 (11)0.0245 (3)
N10.3537 (3)0.23114 (14)0.53179 (13)0.0225 (3)
N20.3711 (3)0.13147 (13)0.34601 (12)0.0204 (3)
C10.2212 (3)0.52560 (15)0.81993 (14)0.0202 (4)
H1A0.12220.49750.86810.024*
C20.4376 (3)0.60921 (15)0.86540 (14)0.0188 (4)
C30.5095 (3)0.65141 (15)0.98390 (14)0.0201 (4)
H3A0.41280.62581.03420.024*
C40.7222 (3)0.73013 (15)1.02417 (14)0.0199 (4)
C50.8699 (3)0.77091 (16)0.94921 (15)0.0222 (4)
H5A1.01290.82450.97770.027*
C60.8034 (3)0.73183 (15)0.83490 (15)0.0220 (4)
H6A0.90190.7590.7860.026*
C70.5856 (3)0.65024 (15)0.79020 (14)0.0194 (4)
C80.5140 (3)0.60795 (16)0.67167 (15)0.0218 (4)
H8A0.61040.63490.6220.026*
C90.3063 (3)0.52862 (16)0.62984 (15)0.0219 (4)
H9A0.26080.50190.55210.026*
C100.1598 (3)0.48687 (15)0.70512 (15)0.0212 (4)
C110.2068 (3)0.35993 (16)0.71767 (15)0.0214 (4)
H11A0.28740.42340.76410.026*
H11B0.1110.32350.76750.026*
C120.4042 (3)0.26785 (15)0.64022 (14)0.0201 (4)
C130.4891 (3)0.14402 (15)0.43903 (15)0.0206 (4)
C140.7171 (3)0.08120 (16)0.44454 (16)0.0241 (4)
H14A0.79450.09410.5110.029*
C150.8235 (3)0.00193 (17)0.34564 (16)0.0259 (4)
H15A0.97530.04690.34480.031*
C160.7042 (3)0.01777 (16)0.24877 (15)0.0227 (4)
H16A0.77330.07420.18260.027*
C170.4792 (3)0.05155 (15)0.25079 (14)0.0198 (4)
C180.3482 (3)0.04513 (16)0.14692 (15)0.0244 (4)
H18D0.17190.04160.16460.037*
H18A0.37120.11450.12090.037*
H18B0.41740.02480.08870.037*
H1N10.210 (4)0.2626 (18)0.5165 (17)0.026 (5)*
H1O30.700 (5)0.756 (2)1.181 (2)0.043 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0247 (6)0.0271 (7)0.0162 (6)0.0067 (5)0.0001 (5)0.0022 (5)
O20.0267 (6)0.0274 (7)0.0193 (7)0.0016 (5)0.0039 (5)0.0034 (5)
O30.0262 (6)0.0291 (7)0.0146 (7)0.0054 (5)0.0010 (5)0.0031 (5)
N10.0234 (7)0.0243 (8)0.0165 (8)0.0042 (6)0.0005 (6)0.0021 (6)
N20.0226 (7)0.0195 (7)0.0174 (8)0.0006 (5)0.0010 (6)0.0037 (6)
C10.0224 (8)0.0214 (9)0.0162 (9)0.0007 (6)0.0028 (7)0.0042 (7)
C20.0210 (8)0.0170 (8)0.0174 (9)0.0027 (6)0.0020 (7)0.0025 (7)
C30.0233 (8)0.0205 (9)0.0161 (9)0.0001 (6)0.0028 (7)0.0048 (7)
C40.0233 (8)0.0186 (9)0.0159 (9)0.0019 (6)0.0002 (7)0.0020 (7)
C50.0219 (8)0.0213 (9)0.0211 (10)0.0015 (6)0.0010 (7)0.0035 (7)
C60.0238 (8)0.0210 (9)0.0207 (9)0.0011 (7)0.0047 (7)0.0051 (7)
C70.0231 (8)0.0177 (8)0.0168 (9)0.0021 (6)0.0022 (7)0.0035 (7)
C80.0258 (8)0.0216 (9)0.0187 (9)0.0034 (7)0.0050 (7)0.0058 (7)
C90.0281 (9)0.0226 (9)0.0133 (9)0.0028 (7)0.0008 (7)0.0021 (7)
C100.0219 (8)0.0182 (9)0.0203 (9)0.0021 (6)0.0012 (7)0.0004 (7)
C110.0239 (8)0.0219 (9)0.0167 (9)0.0009 (7)0.0003 (7)0.0031 (7)
C120.0241 (8)0.0196 (9)0.0158 (9)0.0027 (7)0.0001 (7)0.0038 (7)
C130.0241 (8)0.0195 (9)0.0165 (9)0.0008 (6)0.0013 (7)0.0033 (7)
C140.0251 (9)0.0277 (10)0.0186 (9)0.0014 (7)0.0022 (7)0.0062 (8)
C150.0240 (8)0.0277 (10)0.0241 (10)0.0060 (7)0.0029 (7)0.0082 (8)
C160.0257 (8)0.0205 (9)0.0183 (9)0.0032 (7)0.0038 (7)0.0028 (7)
C170.0233 (8)0.0183 (8)0.0168 (9)0.0022 (6)0.0012 (7)0.0039 (7)
C180.0272 (9)0.0243 (9)0.0183 (9)0.0000 (7)0.0001 (7)0.0016 (7)
Geometric parameters (Å, º) top
O1—C101.376 (2)C6—H6A0.93
O1—C111.419 (2)C7—C81.420 (2)
O2—C121.226 (2)C8—C91.360 (2)
O3—C41.366 (2)C8—H8A0.93
O3—H1O30.88 (3)C9—C101.415 (3)
N1—C121.348 (2)C9—H9A0.93
N1—C131.415 (2)C11—C121.516 (2)
N1—H1N10.88 (2)C11—H11A0.97
N2—C131.334 (2)C11—H11B0.97
N2—C171.345 (2)C13—C141.389 (2)
C1—C101.368 (2)C14—C151.388 (2)
C1—C21.426 (2)C14—H14A0.93
C1—H1A0.93C15—C161.377 (3)
C2—C71.415 (2)C15—H15A0.93
C2—C31.420 (2)C16—C171.391 (2)
C3—C41.374 (2)C16—H16A0.93
C3—H3A0.93C17—C181.496 (3)
C4—C51.411 (2)C18—H18D0.96
C5—C61.366 (2)C18—H18A0.96
C5—H5A0.93C18—H18B0.96
C6—C71.418 (2)
C10—O1—C11118.54 (13)C1—C10—O1125.35 (16)
C4—O3—H1O3112.9 (16)C1—C10—C9121.31 (16)
C12—N1—C13129.91 (15)O1—C10—C9113.33 (15)
C12—N1—H1N1115.8 (13)O1—C11—C12109.16 (14)
C13—N1—H1N1114.2 (13)O1—C11—H11A109.8
C13—N2—C17117.79 (14)C12—C11—H11A109.8
C10—C1—C2119.74 (17)O1—C11—H11B109.8
C10—C1—H1A120.1C12—C11—H11B109.8
C2—C1—H1A120.1H11A—C11—H11B108.3
C7—C2—C3119.23 (15)O2—C12—N1125.19 (16)
C7—C2—C1119.02 (15)O2—C12—C11120.00 (15)
C3—C2—C1121.74 (16)N1—C12—C11114.78 (15)
C4—C3—C2119.93 (16)N2—C13—C14124.72 (16)
C4—C3—H3A120N2—C13—N1111.27 (15)
C2—C3—H3A120C14—C13—N1124.00 (17)
O3—C4—C3124.03 (16)C15—C14—C13116.46 (17)
O3—C4—C5115.14 (15)C15—C14—H14A121.8
C3—C4—C5120.83 (16)C13—C14—H14A121.8
C6—C5—C4120.17 (15)C16—C15—C14120.03 (16)
C6—C5—H5A119.9C16—C15—H15A120
C4—C5—H5A119.9C14—C15—H15A120
C5—C6—C7120.59 (17)C15—C16—C17119.32 (16)
C5—C6—H6A119.7C15—C16—H16A120.3
C7—C6—H6A119.7C17—C16—H16A120.3
C2—C7—C6119.24 (15)N2—C17—C16121.65 (16)
C2—C7—C8119.26 (15)N2—C17—C18116.05 (15)
C6—C7—C8121.50 (16)C16—C17—C18122.26 (15)
C9—C8—C7120.91 (17)C17—C18—H18D109.5
C9—C8—H8A119.5C17—C18—H18A109.5
C7—C8—H8A119.5H18D—C18—H18A109.5
C8—C9—C10119.75 (16)C17—C18—H18B109.5
C8—C9—H9A120.1H18D—C18—H18B109.5
C10—C9—H9A120.1H18A—C18—H18B109.5
C10—C1—C2—C70.2 (2)C11—O1—C10—C9179.27 (14)
C10—C1—C2—C3179.63 (16)C8—C9—C10—C10.7 (3)
C7—C2—C3—C40.7 (3)C8—C9—C10—O1179.89 (15)
C1—C2—C3—C4178.70 (16)C10—O1—C11—C12175.79 (14)
C2—C3—C4—O3178.86 (15)C13—N1—C12—O21.0 (3)
C2—C3—C4—C50.6 (3)C13—N1—C12—C11177.16 (16)
O3—C4—C5—C6179.21 (16)O1—C11—C12—O2167.56 (15)
C3—C4—C5—C60.3 (3)O1—C11—C12—N114.2 (2)
C4—C5—C6—C70.1 (3)C17—N2—C13—C140.6 (3)
C3—C2—C7—C60.5 (2)C17—N2—C13—N1179.81 (14)
C1—C2—C7—C6178.93 (15)C12—N1—C13—N2178.05 (16)
C3—C2—C7—C8179.92 (16)C12—N1—C13—C142.7 (3)
C1—C2—C7—C80.5 (2)N2—C13—C14—C151.4 (3)
C5—C6—C7—C20.2 (3)N1—C13—C14—C15179.45 (16)
C5—C6—C7—C8179.62 (16)C13—C14—C15—C160.6 (3)
C2—C7—C8—C90.2 (3)C14—C15—C16—C171.0 (3)
C6—C7—C8—C9179.21 (16)C13—N2—C17—C161.1 (2)
C7—C8—C9—C100.4 (3)C13—N2—C17—C18176.69 (15)
C2—C1—C10—O1179.74 (15)C15—C16—C17—N21.9 (3)
C2—C1—C10—C90.4 (3)C15—C16—C17—C18175.75 (17)
C11—O1—C10—C10.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O3i0.972.453.410 (2)168
N1—H1N1···O10.88 (2)2.11 (2)2.5688 (18)111.9 (16)
O3—H1O3···O2ii0.88 (3)1.85 (2)2.6575 (17)152 (2)
C11—H11A···Cg1iii0.972.633.438141
C18—H18A···Cg2iv0.972.933.805153
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+2; (iii) x1, y, z; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC18H16N2O3
Mr308.33
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.3676 (3), 11.6991 (7), 12.2915 (6)
α, β, γ (°)104.994 (4), 94.777 (3), 94.877 (4)
V3)738.42 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.4 × 0.16 × 0.09
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.963, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
12299, 3340, 2480
Rint0.046
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.130, 1.08
No. of reflections3340
No. of parameters217
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.31

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O3i0.972.453.410 (2)168.2
N1—H1N1···O10.88 (2)2.11 (2)2.5688 (18)111.9 (16)
O3—H1O3···O2ii0.88 (3)1.85 (2)2.6575 (17)152 (2)
C11—H11A···Cg1iii0.972.6313.438140.85
C18—H18A···Cg2iv0.972.9253.805152.91
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+2; (iii) x1, y, z; (iv) x, y+1, z+1.
 

Footnotes

Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India

Acknowledgements

FHK and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks the Universiti Sains Malaysia for the awarding of a post-doctoral research fellowship. SG thanks the CSIR and DST for financial support. RC thanks the CSIR for a research fellowship.

References

First citationAtwood, J. L., Davies, J. E. D., MacNico, D. D. & Vogtle, F. (1996). Editors. Comprehensive Supramolecular Chemistry, Vols. 6, 7, 9. Oxford: Pergamon.  Google Scholar
First citationBruker (2005). SAINT and SMART. Bruker Axs Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGarcia-Tellado, F., Goswami, S., Chang, S. K., Geib, S. J. & Hamilton, A. D. (1990). J. Am. Chem. Soc. 112, 7393–7394.  CSD CrossRef CAS Web of Science Google Scholar
First citationGhosh, K. & Masanta, G. (2006). Tetrahedron Lett. 47, 2365–2369.  Web of Science CrossRef CAS Google Scholar
First citationJin, C.-Z. & Jin, L.-F. (2005). Acta Cryst. E61, o275–o276.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, W.-Y. & Li, Y.-Z. (2004). Acta Cryst. E60, o694–o695.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRozycka-Sokolowska, E., Marciniak, B. & Pavlyuk, V. (2004). Acta Cryst. E60, o884–o885.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds