metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­chloridocobalt(II)]-μ-1,2-di-4-pyridylethane-κ2N:N′]

aCollege of Biology and Environmental Engineering, Shuren University, Hangzhou 310015, Zhejiang, People's Republic of China
*Correspondence e-mail: hslj2004@126.com

(Received 7 March 2008; accepted 10 March 2008; online 14 March 2008)

In the title compound, [CoCl2(C12H12N2)], the CoII atom is coordinated in a tetra­hedral geometry by the N atoms of two different 1,3-di-4-pyridylpropane ligands. The compound adopts a linear chain structure.

Related literature

For related literature, see: Carlucci et al. (2003[Carlucci, L., Ciani, G., Proserpio, D. M. & Rizzato, S. (2003). CrystEngComm, 5, 190-199.]); Fujita et al. (1998[Fujita, M., Sasaki, O., Watanabe, K., Ogura, K. & Yamaguchi, K. (1998). New J. Chem. pp. 189-191.]).

[Scheme 1]

Experimental

Crystal data
  • [CoCl2(C12H12N2)]

  • Mr = 314.07

  • Triclinic, [P \overline 1]

  • a = 5.3979 (17) Å

  • b = 8.806 (3) Å

  • c = 14.018 (4) Å

  • α = 87.988 (5)°

  • β = 84.165 (5)°

  • γ = 84.475 (5)°

  • V = 659.6 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.68 mm−1

  • T = 298 (2) K

  • 0.27 × 0.21 × 0.18 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.659, Tmax = 0.751

  • 3306 measured reflections

  • 2297 independent reflections

  • 1942 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.134

  • S = 1.02

  • 2297 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.98 e Å−3

  • Δρmin = −1.01 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, a wide range of 1-D infinite frameworks have been generated by using simple linear bifunctional ligands (Fujita et al., 1998), such as 4,4'-bipyridine (bpy). 1,3-bis(4-pyridyl)propane (bpp) ligand is typical building element for the assembly of infinite architectures. A double-helical chain was synthesized based on transition metal salts and bpp ligand (Carlucci et al., 2003). In this paper, we report the synthesis and crystal structure of the title complex,(I).

As shown in Fig. 1, the complex I is connected to two bpp ligands. The CoII atom in compound I is tetrahedrally coordinatted by two N atoms of two different pyridyl groups and two chloride anions. This coordination mode of cobalt atom is very rare so far. The CoII ions are linked by bpp liagnds and form a zigzag chain. The Co—N bond lengths range from 2.036 (3) to 2.038 (3)Å (Table1). While the Co—Cl bond lengths range from 2.2399 (10) to 2.2484 (11) Å.

Related literature top

For related literature, see: Carlucci et al. (2003); Fujita et al. (1998).

Experimental top

CoCl2(0.023 g, 0.012 mmol), bpp(0.021 g, 0.013 mmol) were added in a mixed solvent of methanol and benzene, the mixture was heated for ten hours under reflux. During the process stirring and influx were required. The resultant was then filtered to give a pure solution which was infiltrated by diethyl ether freely in a closed vessel, Six weeks later some single crystals was obtained.

Refinement top

The H atoms (pyridine ring) were placed in calculated positions [Csp2—H = 0.93 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C). The maximum peak hole is located on the Co1 with 1.01 Å.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 30% probability displacement ellipsoids. (symmetrical code: (i) 1 - x, -y, 1 - z).
catena-Poly[[dichloridocobalt(II)]-µ-1,2-di-4-pyridylethane- κ2N:N'] top
Crystal data top
[CoCl2(C12H12N2)]Z = 2
Mr = 314.07F(000) = 318
Triclinic, P1Dx = 1.581 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.3979 (17) ÅCell parameters from 2297 reflections
b = 8.806 (3) Åθ = 1.5–25.1°
c = 14.018 (4) ŵ = 1.68 mm1
α = 87.988 (5)°T = 298 K
β = 84.165 (5)°Block, pink
γ = 84.475 (5)°0.27 × 0.21 × 0.18 mm
V = 659.6 (4) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
2297 independent reflections
Radiation source: fine-focus sealed tube1942 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 25.1°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 46
Tmin = 0.659, Tmax = 0.752k = 910
3306 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.1008P)2]
where P = (Fo2 + 2Fc2)/3
2297 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.98 e Å3
0 restraintsΔρmin = 1.01 e Å3
Crystal data top
[CoCl2(C12H12N2)]γ = 84.475 (5)°
Mr = 314.07V = 659.6 (4) Å3
Triclinic, P1Z = 2
a = 5.3979 (17) ÅMo Kα radiation
b = 8.806 (3) ŵ = 1.68 mm1
c = 14.018 (4) ÅT = 298 K
α = 87.988 (5)°0.27 × 0.21 × 0.18 mm
β = 84.165 (5)°
Data collection top
Bruker APEXII area-detector
diffractometer
2297 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1942 reflections with I > 2σ(I)
Tmin = 0.659, Tmax = 0.752Rint = 0.022
3306 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.03Δρmax = 0.98 e Å3
2297 reflectionsΔρmin = 1.01 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.88487 (8)0.54658 (4)0.74750 (3)0.0386 (2)
Cl11.00798 (18)0.70640 (10)0.62711 (6)0.0535 (3)
Cl21.14897 (18)0.42183 (11)0.84306 (6)0.0533 (3)
N10.7275 (5)0.3806 (3)0.68363 (19)0.0403 (6)
N20.6308 (5)0.6763 (3)0.8353 (2)0.0421 (7)
C10.5435 (7)0.4131 (4)0.6281 (3)0.0456 (8)
H10.48510.51510.62000.055*
C20.4336 (7)0.3066 (4)0.5819 (3)0.0489 (9)
H20.30530.33620.54380.059*
C30.5184 (7)0.1528 (4)0.5933 (2)0.0466 (8)
C40.7079 (8)0.1187 (4)0.6500 (3)0.0564 (10)
H40.77110.01760.65850.068*
C50.8076 (7)0.2329 (4)0.6950 (3)0.0518 (9)
H50.93430.20620.73440.062*
C60.4098 (7)0.0307 (4)0.5416 (3)0.0536 (9)
H6A0.25470.07300.51760.064*
H6B0.37200.05230.58640.064*
C70.4596 (8)0.7756 (4)0.7979 (3)0.0561 (10)
H70.46110.78580.73160.067*
C80.2815 (8)0.8629 (5)0.8552 (3)0.0628 (11)
H80.16520.93040.82700.075*
C90.2745 (7)0.8507 (4)0.9545 (3)0.0508 (9)
C100.4501 (8)0.7480 (5)0.9904 (3)0.0582 (10)
H100.45270.73541.05650.070*
C110.6216 (7)0.6636 (4)0.9308 (3)0.0532 (9)
H110.73720.59420.95780.064*
C120.0852 (8)0.9406 (4)1.0232 (3)0.0610 (11)
H12A0.01640.86971.05980.073*
H12B0.17460.99031.06800.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0492 (3)0.0344 (3)0.0329 (3)0.0032 (2)0.0083 (2)0.00010 (19)
Cl10.0644 (6)0.0466 (5)0.0484 (5)0.0056 (4)0.0054 (4)0.0137 (4)
Cl20.0599 (6)0.0565 (6)0.0444 (5)0.0006 (4)0.0178 (4)0.0065 (4)
N10.0491 (16)0.0361 (15)0.0366 (15)0.0040 (12)0.0079 (12)0.0013 (11)
N20.0495 (16)0.0389 (15)0.0389 (15)0.0014 (12)0.0116 (12)0.0018 (12)
C10.055 (2)0.0361 (18)0.046 (2)0.0001 (15)0.0103 (16)0.0003 (15)
C20.055 (2)0.049 (2)0.045 (2)0.0050 (16)0.0140 (16)0.0012 (16)
C30.057 (2)0.044 (2)0.0397 (19)0.0111 (16)0.0043 (16)0.0026 (15)
C40.076 (3)0.0332 (19)0.063 (3)0.0038 (17)0.020 (2)0.0002 (17)
C50.064 (2)0.039 (2)0.055 (2)0.0021 (16)0.0222 (18)0.0003 (16)
C60.066 (2)0.049 (2)0.049 (2)0.0170 (18)0.0087 (18)0.0057 (17)
C70.070 (2)0.060 (2)0.0354 (19)0.0119 (19)0.0096 (17)0.0024 (17)
C80.068 (3)0.065 (3)0.050 (2)0.023 (2)0.0088 (19)0.0051 (19)
C90.060 (2)0.047 (2)0.043 (2)0.0028 (17)0.0025 (16)0.0014 (16)
C100.070 (3)0.065 (3)0.0367 (19)0.012 (2)0.0080 (17)0.0022 (17)
C110.061 (2)0.053 (2)0.045 (2)0.0080 (17)0.0085 (17)0.0017 (17)
C120.070 (3)0.061 (3)0.047 (2)0.012 (2)0.0005 (19)0.0018 (18)
Geometric parameters (Å, º) top
Co1—N12.036 (3)C5—H50.9300
Co1—N22.038 (3)C6—C6i1.521 (7)
Co1—Cl22.2399 (10)C6—H6A0.9700
Co1—Cl12.2484 (11)C6—H6B0.9700
N1—C11.327 (4)C7—C81.379 (5)
N1—C51.340 (4)C7—H70.9300
N2—C111.335 (5)C8—C91.390 (5)
N2—C71.343 (5)C8—H80.9300
C1—C21.370 (5)C9—C101.368 (5)
C1—H10.9300C9—C121.514 (5)
C2—C31.397 (5)C10—C111.364 (5)
C2—H20.9300C10—H100.9300
C3—C41.362 (5)C11—H110.9300
C3—C61.512 (5)C12—C12ii1.500 (8)
C4—C51.385 (5)C12—H12A0.9700
C4—H40.9300C12—H12B0.9700
N1—Co1—N2112.50 (11)C3—C6—C6i111.5 (4)
N1—Co1—Cl2105.20 (8)C3—C6—H6A109.3
N2—Co1—Cl2106.04 (8)C6i—C6—H6A109.3
N1—Co1—Cl1105.09 (9)C3—C6—H6B109.3
N2—Co1—Cl1104.94 (9)C6i—C6—H6B109.3
Cl2—Co1—Cl1123.22 (4)H6A—C6—H6B108.0
C1—N1—C5116.8 (3)N2—C7—C8121.8 (3)
C1—N1—Co1121.9 (2)N2—C7—H7119.1
C5—N1—Co1121.3 (2)C8—C7—H7119.1
C11—N2—C7117.5 (3)C7—C8—C9120.5 (4)
C11—N2—Co1122.3 (2)C7—C8—H8119.7
C7—N2—Co1120.2 (2)C9—C8—H8119.7
N1—C1—C2124.5 (3)C10—C9—C8116.2 (3)
N1—C1—H1117.8C10—C9—C12119.4 (3)
C2—C1—H1117.8C8—C9—C12124.4 (4)
C1—C2—C3118.7 (3)C11—C10—C9121.0 (4)
C1—C2—H2120.7C11—C10—H10119.5
C3—C2—H2120.7C9—C10—H10119.5
C4—C3—C2117.2 (3)N2—C11—C10122.9 (3)
C4—C3—C6121.9 (3)N2—C11—H11118.5
C2—C3—C6120.9 (3)C10—C11—H11118.5
C3—C4—C5120.7 (3)C12ii—C12—C9115.1 (4)
C3—C4—H4119.6C12ii—C12—H12A108.5
C5—C4—H4119.6C9—C12—H12A108.5
N1—C5—C4122.1 (3)C12ii—C12—H12B108.5
N1—C5—H5118.9C9—C12—H12B108.5
C4—C5—H5118.9H12A—C12—H12B107.5
N2—Co1—N1—C158.9 (3)C6—C3—C4—C5178.7 (4)
Cl2—Co1—N1—C1173.9 (3)C1—N1—C5—C41.1 (6)
Cl1—Co1—N1—C154.7 (3)Co1—N1—C5—C4178.1 (3)
N2—Co1—N1—C5121.9 (3)C3—C4—C5—N11.4 (7)
Cl2—Co1—N1—C56.9 (3)C4—C3—C6—C6i72.0 (6)
Cl1—Co1—N1—C5124.5 (3)C2—C3—C6—C6i105.6 (5)
N1—Co1—N2—C11106.3 (3)C11—N2—C7—C80.6 (6)
Cl2—Co1—N2—C118.2 (3)Co1—N2—C7—C8178.6 (3)
Cl1—Co1—N2—C11140.0 (3)N2—C7—C8—C90.2 (7)
N1—Co1—N2—C771.5 (3)C7—C8—C9—C100.6 (7)
Cl2—Co1—N2—C7174.0 (3)C7—C8—C9—C12179.5 (4)
Cl1—Co1—N2—C742.2 (3)C8—C9—C10—C110.3 (6)
C5—N1—C1—C20.5 (6)C12—C9—C10—C11179.2 (4)
Co1—N1—C1—C2178.8 (3)C7—N2—C11—C101.0 (6)
N1—C1—C2—C30.1 (6)Co1—N2—C11—C10178.9 (3)
C1—C2—C3—C40.3 (6)C9—C10—C11—N20.6 (7)
C1—C2—C3—C6178.0 (3)C10—C9—C12—C12ii175.1 (5)
C2—C3—C4—C51.0 (6)C8—C9—C12—C12ii6.1 (8)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+2, z+2.

Experimental details

Crystal data
Chemical formula[CoCl2(C12H12N2)]
Mr314.07
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)5.3979 (17), 8.806 (3), 14.018 (4)
α, β, γ (°)87.988 (5), 84.165 (5), 84.475 (5)
V3)659.6 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.68
Crystal size (mm)0.27 × 0.21 × 0.18
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.659, 0.752
No. of measured, independent and
observed [I > 2σ(I)] reflections
3306, 2297, 1942
Rint0.022
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.134, 1.03
No. of reflections2297
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.98, 1.01

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The author is grateful to Shuren University for financial support.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationCarlucci, L., Ciani, G., Proserpio, D. M. & Rizzato, S. (2003). CrystEngComm, 5, 190–199.  Web of Science CSD CrossRef CAS Google Scholar
First citationFujita, M., Sasaki, O., Watanabe, K., Ogura, K. & Yamaguchi, K. (1998). New J. Chem. pp. 189–191.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds